1
|
Bielczyk-Maczynska E. Quantification of cell cycle re-entry during dedifferentiation of primary adipocytes in vitro. Adipocyte 2024; 13:2376571. [PMID: 38989805 PMCID: PMC11244334 DOI: 10.1080/21623945.2024.2376571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczynska
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- The Institute for Diabetes, Obesity, and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Cancedda R, Mastrogiacomo M. The Phoenix of stem cells: pluripotent cells in adult tissues and peripheral blood. Front Bioeng Biotechnol 2024; 12:1414156. [PMID: 39139297 PMCID: PMC11319133 DOI: 10.3389/fbioe.2024.1414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Pluripotent stem cells are defined as cells that can generate cells of lineages from all three germ layers, ectoderm, mesoderm, and endoderm. On the contrary, unipotent and multipotent stem cells develop into one or more cell types respectively, but their differentiation is limited to the cells present in the tissue of origin or, at most, from the same germ layer. Multipotent and unipotent stem cells have been isolated from a variety of adult tissues, Instead, the presence in adult tissues of pluripotent stem cells is a very debated issue. In the early embryos, all cells are pluripotent. In mammalians, after birth, pluripotent cells are maintained in the bone-marrow and possibly in gonads. In fact, pluripotent cells were isolated from marrow aspirates and cord blood and from cultured bone-marrow stromal cells (MSCs). Only in few cases, pluripotent cells were isolated from other tissues. In addition to have the potential to differentiate toward lineages derived from all three germ layers, the isolated pluripotent cells shared other properties, including the expression of cell surface stage specific embryonic antigen (SSEA) and of transcription factors active in the early embryos, but they were variously described and named. However, it is likely that they are part of the same cell population and that observed diversities were the results of different isolation and expansion strategies. Adult pluripotent stem cells are quiescent and self-renew at very low rate. They are maintained in that state under the influence of the "niche" inside which they are located. Any tissue damage causes the release in the blood of inflammatory cytokines and molecules that activate the stem cells and their mobilization and homing in the injured tissue. The inflammatory response could also determine the dedifferentiation of mature cells and their reversion to a progenitor stage and at the same time stimulate the progenitors to proliferate and differentiate to replace the damaged cells. In this review we rate articles reporting isolation and characterization of tissue resident pluripotent cells. In the attempt to reconcile observations made by different authors, we propose a unifying picture that could represent a starting point for future experiments.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
4
|
Delgadillo-Velázquez J, Alday E, Aguirre-García MM, Canett-Romero R, Astiazaran-Garcia H. The association between the size of adipocyte-derived extracellular vesicles and fasting serum triglyceride-glucose index as proxy measures of adipose tissue insulin resistance in a rat model of early-stage obesity. Front Nutr 2024; 11:1387521. [PMID: 39010858 PMCID: PMC11247012 DOI: 10.3389/fnut.2024.1387521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Obesity is a complex disease that predisposes individuals to cardiometabolic alterations. It leads to adipose tissue (AT) dysfunction, which triggers insulin resistance (IR). This suggests that people with obesity develop local IR first and systemic IR later. AT secretes extracellular vesicles, which may be physiopathologically associated with the development of IR. Our aim was to evaluate the effect of a high-fat diet on different parameters of adiposity in a rat model of early-stage obesity and to determine if these parameters are associated with markers of systemic IR. In addition, we sought to explore the relationship between fasting blood measures of IR (Triglycerides/High Density Lipoprotein-cholesterol [TAG/HDL-c] and Triglycerides-Glucose Index [TyG Index]) with the size of adipocyte-derived extracellular vesicles (adEV). Methods We used a model of diet-induced obesity for ten weeks in Wistar rats exposed to a high-fat diet. Final weight gain was analyzed by Dual X-ray absorptiometry. Visceral obesity was measured as epididymal AT weight. IR was evaluated with fasting TyG Index & TAG/HDL-c, and adEV were isolated from mature adipocytes on ceiling culture. Results In the high-fat diet group, glucose and triglyceride blood concentrations were higher in comparison to the control group (Log2FC, 0.5 and 1.5 times higher, respectively). The values for TyG Index and adEV size were different between the control animals and the high-fat diet group. Multiple linear regression analyses showed that adEV size can be significantly associated with the TyG Index value, when controlling for epididymal AT weight. Conclusion Our results show that lipid and glucose metabolism, as well as the size and zeta potential of adEV are already altered in early-stage obesity and that adEV size can be significantly associated with liver and systemic IR, estimated by TyG Index.
Collapse
Affiliation(s)
| | - Efrain Alday
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - María Magdalena Aguirre-García
- Laboratorio de Inmunología Molecular y Cardiopatías, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Canett-Romero
- Departamento de Investigación y Posgrado en Alimentos, Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - Humberto Astiazaran-Garcia
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
5
|
Lim NK, Jeon HB, Kim S. The transdifferentiation of human dedifferentiated fat cells into fibroblasts: An in vitro experimental pilot study. Medicine (Baltimore) 2024; 103:e37595. [PMID: 38552064 PMCID: PMC10977558 DOI: 10.1097/md.0000000000037595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Skin grafting is a common method of treating damaged skin; however, surgical complications may arise in patients with poor health. Currently, no effective conservative treatment is available for extensive skin loss. Mature adipocytes, which constitute a substantial portion of adipose tissue, have recently emerged as a potential source of stemness. When de-lipidated, these cells exhibit fibroblast-like characteristics and the ability to redifferentiate, offering homogeneity and research utility as "dedifferentiated fat cells." METHODS AND RESULTS We conducted an in vitro study to induce fibroblast-like traits in the adipose tissue by transdifferentiating mature adipocytes for skin regeneration. Human subcutaneous fat tissues were isolated and purified from mature adipocytes that underwent a transformation process over 14 days of cultivation. Microscopic analysis revealed lipid degradation over time, ultimately transforming cells into fibroblast-like forms. Flow cytometry was used to verify their characteristics, highlighting markers such as CD90 and CD105 (mesenchymal stem cell markers) and CD56 and CD106 (for detecting fibroblast characteristics). Administering dedifferentiated fat cells with transforming growth factor-β at the identified optimal differentiation concentration of 5 ng/mL for a span of 14 days led to heightened expression of alpha smooth muscle actin and fibronectin, as evidenced by RNA and protein analysis. Meanwhile, functional validation through cell sorting demonstrated limited fibroblast marker expression in both treated and untreated cells after transdifferentiation by transforming growth factor-β. CONCLUSION Although challenges remain in achieving more effective transformation and definitive fibroblast differentiation, our trial could pave the way for a novel skin regeneration treatment strategy.
Collapse
Affiliation(s)
- Nam Kyu Lim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan, Chungcheongnamdo, Republic of Korea
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan, Chungcheongnamdo, Republic of Korea
| | - Hong Bae Jeon
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan, Chungcheongnamdo, Republic of Korea
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan, Chungcheongnamdo, Republic of Korea
| | - Sungyeon Kim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan, Chungcheongnamdo, Republic of Korea
| |
Collapse
|
6
|
Liang Z, He Y, Tang H, Li J, Cai J, Liao Y. Dedifferentiated fat cells: current applications and future directions in regenerative medicine. Stem Cell Res Ther 2023; 14:207. [PMID: 37605289 PMCID: PMC10441730 DOI: 10.1186/s13287-023-03399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 08/23/2023] Open
Abstract
Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.
Collapse
Affiliation(s)
- Zhuokai Liang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojing Tang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Tassinari R, Olivi E, Cavallini C, Taglioli V, Zannini C, Marcuzzi M, Fedchenko O, Ventura C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2022; 26:105875. [PMID: 36647385 PMCID: PMC9839966 DOI: 10.1016/j.isci.2022.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanical forces play a fundamental role in cellular dynamics from the molecular level to the establishment of complex heterogeneity in somatic and stem cells. Here, we highlight the role of cytoskeletal mechanics and extracellular matrix in generating mechanical forces merging into oscillatory synchronized patterns. We discuss how cellular mechanosensing/-transduction can be modulated by mechanical forces to control tissue metabolism and set the basis for nonpharmacologic tissue rescue. Control of bone anabolic activity and repair, as well as obesity prevention, through a fine-tuning of the stem cell morphodynamics are highlighted. We also discuss the use of mechanical forces in the treatment of cardiovascular diseases and heart failure through the fine modulation of stem cell metabolic activity and regenerative potential. We finally focus on the new landscape of delivering specific mechanical stimuli to reprogram tissue-resident stem cells and enhance our self-healing potential, without the need for stem cell or tissue transplantation.
Collapse
Affiliation(s)
| | - Elena Olivi
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
| | | | | | | | - Martina Marcuzzi
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Oleksandra Fedchenko
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Carlo Ventura
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy,NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy,Corresponding author
| |
Collapse
|
8
|
The Importance of Protecting the Structure and Viability of Adipose Tissue for Fat Grafting. Plast Reconstr Surg 2022; 149:1357-1368. [PMID: 35404340 DOI: 10.1097/prs.0000000000009139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fat grafting is widely used for soft-tissue augmentation; however, the related clinical outcome remains variable and technique-dependent. The mechanisms underlying fat graft survival are not fully understood, particularly regarding the contributions of different cell types, such as functional adipocytes. This study evaluated the importance of adipose tissue structure and viability in fat grafting and, to some extent, revealed the effect of adipocytes in fat grafting. METHODS Human lipoaspirate was harvested using suction-assisted liposuction and processed using three separate methods: cotton-pad filtration, soft centrifugation (400 g for 1 minute), and Coleman centrifugation (1200 g for 3 minutes). Then all samples were subjected to second cotton-pad concentration. Adipose tissue structure and viability, the numbers of adipose-derived stem cells, and their proliferation and multilineage differentiation abilities were compared in vitro. The volume retention rate and fat graft quality were evaluated in vivo. RESULTS Cell structure destruction and viability decline were more evident in the Coleman centrifugation group compared to the cotton-pad filtration group and the soft centrifugation group. However, no intergroup differences were observed in the numbers, proliferation, or multilineage differentiation abilities of adipose-derived stem cells. After transplantation, the volume retention rates were similar in the three groups. However, greater structural and functional damage was associated with poorer graft quality, including decreased levels of graft viability, vessel density, and vascular endothelial growth factor secretion and increased levels of vacuoles, necrotic areas, fibrosis, and inflammation. CONCLUSIONS Protecting adipose tissue structure and viability is crucial for improving fat grafting outcomes. CLINICAL RELEVANCE STATEMENT The protection of the structure and viability of adipose tissue should be ensured throughout the whole process of fat grafting to reduce complications and improve graft quality.
Collapse
|
9
|
Chai Y, Chen Y, Yin B, Zhang X, Han X, Cai L, Yin N, Li F. Dedifferentiation of Human Adipocytes After Fat Transplantation. Aesthet Surg J 2022; 42:NP423-NP431. [PMID: 35032169 DOI: 10.1093/asj/sjab402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fat transplantation is a common method employed to treat soft-tissue defects. The dedifferentiation of mature adipocytes has been well documented, but whether it occurs after fat transplantation remains unclear. OBJECTIVES The major purpose of this project was to investigate the dedifferentiation of mature adipocytes after fat transplantation. METHODS Human lipoaspirate tissue was obtained from 6 female patients who underwent esthetic liposuction. Mature adipocytes were extracted and labeled with PKH26, mixed with lipoaspirate, and injected into nude mice. In addition, PKH26+ adipocytes were subjected to a ceiling culture. Grafted fat was harvested from nude mice, and stromal vascular fragment cells were isolated. The immunophenotype of PKH26+ cells was detected by flow cytometry analysis at 2 days and 1 week. The PKH26+ cells were sorted and counted at 2 and 4 weeks to verify their proliferation and multilineage differentiation abilities. RESULTS Two days after transplantation, almost no PKH26+ cells were found in the stromal vascular fragment cells. The PKH26+ cells found 1 week after transplantation showed a positive expression of cluster of differentiation (CD) 90 (CD90) and CD105 and a negative expression of CD45. This indicates that the labeled adipocytes were dedifferentiated. Its pluripotency was further demonstrated by fluorescent cell sorting and differentiation culture in vitro. In addition, the number of live PKH26+ cells at week 4 [(6.83 ± 1.67) × 104] was similar with that at week 2 [(7.11 ± 1.82) × 104]. CONCLUSIONS Human mature adipocytes can dedifferentiate into stem cell-like cells in vivo after fat transplantation.
Collapse
Affiliation(s)
- Yimeng Chai
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuanjing Chen
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Bo Yin
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xuefeng Han
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lei Cai
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ningbei Yin
- Cleft Lip and Palate Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Facheng Li
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Progenitor cells from brown adipose tissue undergo neurogenic differentiation. Sci Rep 2022; 12:5614. [PMID: 35379860 PMCID: PMC8980074 DOI: 10.1038/s41598-022-09382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Multipotent cells derived from white adipose tissue have been shown to differentiate into multiple lineages including neurogenic lineages. However, the high innervation of brown adipose tissue by the sympathetic nervous system suggest it might be a better source of neural precursor cells. To investigate potential differences between white and brown progenitors, we cultured white and brown dedifferentiated fat (wDFAT and brDFAT) cells from mouse and human adipose tissue and compared marker expression of neural precursors, and neuronal and glial cells, using fluorescence-activated cell sorting, bright-field imaging, immunofluorescence, and RNA analysis by qPCR. The results showed that both wDFAT and brDFAT cells had the capacity to generate neuronal and glial-like cells under neurogenic conditions. However, the brDFAT cells exhibited enhanced propensity for neurogenic differentiation. The neurogenic cells were at least in part derived from Adiponectin-expressing cells. TdTomato-expressing cells derived from Adiponectin (Adipoq) Cre ERT2 -tdTomato flox/flox mice gave rise to individual cells and cell clusters with neurogenic characteristics. Moreover, human brDFAT cells demonstrated a similar ability to undergo neurogenic differentiation after treatment with neurogenic medium, as assessed by immunofluorescence and qPCR. Together, our results support that brDFAT cells have ability to undergo neurogenic differentiation.
Collapse
|
11
|
Liu L, Liu X, Liu M, Jihu Y, Xie D, Yan H. Mechanical signals induces reprogramming of mature adipocytes through the YAP/TAZ-binding motif. Exp Cell Res 2022; 415:113109. [DOI: 10.1016/j.yexcr.2022.113109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022]
|
12
|
Liu S, Wang L, Ling D, Valencak TG, You W, Shan T. Potential key factors involved in regulating adipocyte dedifferentiation. J Cell Physiol 2021; 237:1639-1647. [PMID: 34796916 DOI: 10.1002/jcp.30637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Adipocytes are the key constituents of adipose tissue, and their de-differentiation process has been widely observed in physiological and pathological conditions. For obese people, the promotion of adipocyte de-differentiation or maintenance of an undifferentiated state of adipocytes may help to improve their metabolic condition. Thus, understanding the regulatory mechanisms of adipocyte de-differentiation is necessary for treating metabolic diseases. Attractively, in addition to intracellular signals regulating adipocyte de-differentiation, external factors such as temperature and pressure also affect adipocyte de-differentiation. In this review, we summarize the recent progress in the field and discuss the regulatory roles and mechanisms of involved endogenous and exogenous factors during the process of de-differentiation.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
14
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
15
|
Neurogenic and Neuroprotective Potential of Stem/Stromal Cells Derived from Adipose Tissue. Cells 2021; 10:cells10061475. [PMID: 34208414 PMCID: PMC8231154 DOI: 10.3390/cells10061475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells’ neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen–glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.
Collapse
|
16
|
Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N, Massier L, Griseti E, Mouisel E, Amri EZ, Lauschke VM, Rydén M, Langin D. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol 2021; 320:C822-C841. [PMID: 33439778 DOI: 10.1152/ajpcell.00519.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.
Collapse
Affiliation(s)
- Jérémy Dufau
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Joanne X Shen
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Morgane Couchet
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | | | - Niklas Mejhert
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Elena Griseti
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Etienne Mouisel
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Dominique Langin
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Toulouse University Hospitals, Department of Biochemistry, Toulouse, France
| |
Collapse
|
17
|
Abstract
Insulin plays an important role during adipogenic differentiation of animal preadipocytes and the maintenance of mature phenotypes. However, its role and mechanism in dedifferentiation of adipocyte remains unclear. This study investigated the effects of insulin on dedifferentiation of mice adipocytes, and the potential mechanisms. The preadipocytes were isolated from the subcutaneous white adipose tissue of wild type (WT), TNFα gene mutant (TNFα-/-), leptin gene spontaneous point mutant (db/db) and TNFα-/-/db/db mice and were then induced for differentiation. Interestingly, dedifferentiation of these adipocytes occurred once removing exogenous insulin from the adipogenic medium. As characteristics of dedifferentiation of the adipocytes, downregulation of adipogenic markers, upregulation of stemness markers and loss of intracellular lipids were observed from the four genotypes. Notably, dedifferentiation was occurring earlier if the insulin signal was blocked. These dedifferentiated cells regained the potentials of the stem cell-like characteristics. There is no significant difference in the characteristics of the dedifferentiation between the adipocytes. Overall, the study provided evidence that insulin plays a negative regulatory role in the dedifferentiation of adipocytes. We also confirmed that both dedifferentiation of mouse adipocytes, and effect of the insulin on this process were independent of the cell genotypes, while it is a widespread phenomenon in the adipocytes.
Collapse
Affiliation(s)
- Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yiyi Yang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiangyi Zeng
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lingmin Ye
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- CONTACT Jie Pan College of Life Sciences, Shandong Normal University, 88 East Wenhua Ave. Jinan250014, China
| |
Collapse
|
18
|
Guihard PJ, Guo Y, Wu X, Zhang L, Yao J, Jumabay M, Yao Y, Garfinkel A, Boström KI. Shaping Waves of Bone Morphogenetic Protein Inhibition During Vascular Growth. Circ Res 2020; 127:1288-1305. [PMID: 32854559 PMCID: PMC7987130 DOI: 10.1161/circresaha.120.317439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The BMPs (bone morphogenetic proteins) are essential morphogens in angiogenesis and vascular development. Disruption of BMP signaling can trigger cardiovascular diseases, such as arteriovenous malformations. OBJECTIVE A computational model predicted that BMP4 and BMP9 and their inhibitors MGP (matrix gamma-carboxyglutamic acid [Gla] protein) and CV2 (crossveinless-2) would form a regulatory system consisting of negative feedback loops with time delays and that BMP9 would trigger oscillatory expression of the 2 inhibitors. The goal was to investigate this regulatory system in endothelial differentiation and vascular growth. METHODS AND RESULTS Oscillations in the expression of MGP and CV2 were detected in endothelial cells in vitro, using quantitative real-time polymerase chain reaction and immunoblotting. These organized temporally downstream BMP-related activities, including expression of stalk-cell markers and cell proliferation, consistent with an integral role of BMP9 in vessel maturation. In vivo, the inhibitors were located in distinct zones in relation to the front of the expanding retinal network, as determined by immunofluorescence. Time-dependent changes of the CV2 location in the retina and the existence of an endothelial population with signs of oscillatory MGP expression in developing vasculature supported the in vitro findings. Loss of MGP or its BMP4-binding capacity disrupted the retinal vasculature, resulting in poorly formed networks, especially in the venous drainage areas, and arteriovenous malformations as determined by increased cell coverage and functional testing. CONCLUSIONS Our results suggest a previously unknown mechanism of temporal orchestration of BMP4 and BMP9 activities that utilize the tandem actions of the extracellular antagonists MGP and CV2. Disruption of this mechanism may contribute to vascular malformations and disease.
Collapse
Affiliation(s)
- Pierre J. Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Lily Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center
| | - Alan Garfinkel
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA
| |
Collapse
|
19
|
Ueyama H, Okano T, Orita K, Mamoto K, Sobajima S, Iwaguro H, Nakamura H. Local transplantation of adipose-derived stem cells has a significant therapeutic effect in a mouse model of rheumatoid arthritis. Sci Rep 2020; 10:3076. [PMID: 32080313 PMCID: PMC7033196 DOI: 10.1038/s41598-020-60041-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have anti-inflammatory and regenerative properties. The purpose of this study was to investigate the effect of locally administered ADSCs in a rheumatoid arthritis (RA) mouse model. In an in vivo experiment, single-cell ADSCs and three dimensionally-cultured ADSC spheroids were injected intra-articularly into the knees of RA model mice and histologically assessed. Marked improvement of synovial inflammation and articular cartilage regeneration was found in ADSC-treated mice. Proliferation, migration, and apoptosis assays of synovial fibroblasts incubated with single-cell and spheroid ADSCs were performed. The expression levels of total cytokine RNA in ADSC single cells, spheroids, and ADSC-treated inflammatory synovial fibroblasts were also evaluated by quantitative reverse transcription PCR. ADSCs suppressed the proliferation and migration of activated inflammatory cells and downregulated inflammatory cytokines. TSG-6 and TGFβ1 were significantly upregulated in ADSCs compared to controls and TGFβ1 was significantly upregulated in ADSC spheroids compared to single cells. The apoptosis rate of ADSC spheroids was significantly lower than that of single-cell ADSCs. These results indicated that intra-articular administration of ADSC single cells and spheroids was effective in an RA mouse model, offering a novel approach for the development of effective localized treatments for patients with RA.
Collapse
Affiliation(s)
- Hideki Ueyama
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Okano
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Mamoto
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Ma J, Xia M D J, Gao J, Lu F, Liao Y. Mechanical Signals Induce Dedifferentiation of Mature Adipocytes and Increase the Retention Rate of Fat Grafts. Plast Reconstr Surg 2019; 144:1323-1333. [PMID: 31764645 DOI: 10.1097/prs.0000000000006272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mature adipocytes dedifferentiate in vivo on application of a soft-tissue expander. Dedifferentiated adipocytes can proliferate and redifferentiate. This study used tissue expanders to pretreat adipose flaps, to increase the retention rate after fat graft. METHODS A soft-tissue expander and silicone sheet were implanted beneath the left and right inguinal fat pads of rats, respectively. After 7 days of expansion, the adipose tissue derived from the pads was transplanted beneath dorsal skin. Samples were harvested at various time points, and histologic, immunohistochemical, and gene expression analyses were conducted. Mature adipocytes were cultured in vitro under a pressure of 520 Pa. Changes in cell morphology, the cytoskeleton, and expression of mechanical signal-related proteins were investigated. RESULTS Pressure in adipose flaps increased to 25 kPa on expansion. Mature adipocytes dedifferentiated following expansion. At 1 week after transplantation, the expression of vascular endothelial growth factor (p < 0.05) was higher in the expanded group. The retention rate at 12 weeks after transplantation was higher in the expanded group (56 ± 3 percent) than in the control group (32 ± 3 percent) (p < 0.05), and the surviving/regenerating zones (p < 0.01) were wider. The lipid content of mature adipocytes gradually decreased on culture under increased pressure, and these cells regained a proliferative capacity. This was accompanied by increased expression of mechanical signal--related proteins (p < 0.05). CONCLUSIONS Mechanical signals may induce dedifferentiation of mature adipocytes. Dedifferentiated adipocytes increase the retention rate of fat grafts by acting as seed cells.
Collapse
Affiliation(s)
- Jingjing Ma
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jing Xia M D
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jianhua Gao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunjun Liao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
21
|
Deng Z, Zou J, Wang W, Nie Y, Tung WT, Ma N, Lendlein A. Dedifferentiation of mature adipocytes with periodic exposure to cold. Clin Hemorheol Microcirc 2019; 71:415-424. [PMID: 31006679 DOI: 10.3233/ch-199005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10°C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37°C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1α, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37°C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells.
Collapse
Affiliation(s)
- Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wing-Tai Tung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| |
Collapse
|
22
|
Côté JA, Ostinelli G, Gauthier MF, Lacasse A, Tchernof A. Focus on dedifferentiated adipocytes: characteristics, mechanisms, and possible applications. Cell Tissue Res 2019; 378:385-398. [DOI: 10.1007/s00441-019-03061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
|
23
|
Blázquez-Medela AM, Jumabay M, Rajbhandari P, Sallam T, Guo Y, Yao J, Vergnes L, Reue K, Zhang L, Yao Y, Fogelman AM, Tontonoz P, Lusis AJ, Wu X, Boström KI. Noggin depletion in adipocytes promotes obesity in mice. Mol Metab 2019; 25:50-63. [PMID: 31027994 PMCID: PMC6600080 DOI: 10.1016/j.molmet.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis. METHODS We generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency. RESULTS Our studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice. CONCLUSIONS BMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, USA.
| |
Collapse
|
24
|
Labusca L, Mashayekhi K. Human adult pluripotency: Facts and questions. World J Stem Cells 2019; 11:1-12. [PMID: 30705711 PMCID: PMC6354101 DOI: 10.4252/wjsc.v11.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/16/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cellular reprogramming and induced pluripotent stem cell (IPSC) technology demonstrated the plasticity of adult cell fate, opening a new era of cellular modelling and introducing a versatile therapeutic tool for regenerative medicine. While IPSCs are already involved in clinical trials for various regenerative purposes, critical questions concerning their medium- and long-term genetic and epigenetic stability still need to be answered. Pluripotent stem cells have been described in the last decades in various mammalian and human tissues (such as bone marrow, blood and adipose tissue). We briefly describe the characteristics of human-derived adult stem cells displaying in vitro and/or in vivo pluripotency while highlighting that the common denominators of their isolation or occurrence within tissue are represented by extreme cellular stress. Spontaneous cellular reprogramming as a survival mechanism favoured by senescence and cellular scarcity could represent an adaptative mechanism. Reprogrammed cells could initiate tissue regeneration or tumour formation dependent on the microenvironment characteristics. Systems biology approaches and lineage tracing within living tissues can be used to clarify the origin of adult pluripotent stem cells and their significance for regeneration and disease.
Collapse
Affiliation(s)
- Luminita Labusca
- National Institute of Research and Development for Advanced Technical Physics Iasi, Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Biomedical Informatics and Modeling, Frankfurt D-45367, Germany
| |
Collapse
|
25
|
Medela AMB, Penton A, Bostrom KI, Saparov A, Jumabay M. Generation of Vascular Networks from Adipocytes In Vitro. INTERNATIONAL JOURNAL OF CELL SCIENCE & MOLECULAR BIOLOGY 2019; 6:555684. [PMID: 33954280 PMCID: PMC8095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Multipotent cells derived from white mature adipocytes, referred to as dedifferentiated fat (DFAT) cells have the capacity differentiate into endothelial cells. The objective of this study was to modify the isolation method for DFAT cells in order to optimize the endothelial lineage potential. The adipocytes were preincubated for 24 hours, washed, and then incubated for 5 days to allow the generated DFAT cells to remain in proximity to the adipocytes while the cells aggregated into cell clusters. The DFAT cells rapidly differentiated into adipocytes after which endothelial-like cells (ECs) emerged and formed tube-like structure closely associated with the newly differentiated adipocytes. The lipid-filled cells then gradually disappeared whereas the network of tube structure expanded over the course of 3 weeks. ECs accounted for 35-45% of the cells derived from the DFAT cells, as assessed by qPCR, immunofluorescence and fluorescence-activated cell sorting. The DFAT cell-derived ECs could also be further enriched by magnetic sorting, thereby serving as a mouse cell line for further research.
Collapse
Affiliation(s)
| | - Ashley Penton
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA
| | | | - Arman Saparov
- Department of Medicine, Nazarbayev University School of Medicine, Kazakhstan
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, USA,Corresponding author: Medet Jumabay, Division of Cardiology, David Geffen School of Medicine at UCLA, Box 951679, Los Angeles, CA 90095-1679
| |
Collapse
|
26
|
Côté JA, Gauthier MF, Ostinelli G, Brochu D, Bellmann K, Marette A, Julien F, Lebel S, Tchernof A. Characterization and visualization of the liposecretion process taking place during ceiling culture of human mature adipocytes. J Cell Physiol 2018; 234:10270-10280. [PMID: 30561036 DOI: 10.1002/jcp.27931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate and further characterize the process of mature adipocyte dedifferentiation. Our hypothesis was that dedifferentiation does not involve mitosis but rather a phenomenon of liposecretion. METHODS Mature adipocytes were isolated by collagenase digestion of human adipose tissue samples. Ceiling cultures were established using our six-well plate model. Cells were treated with cytosine β-d-arabinofuranoside (AraC) or vincristine (VCR), two agents blocking cell division, and were compared with vehicle. Liposecretion events were visualized by time-lapse microscopy, with and without AraC in adipocytes transducted with a baculovirus. Microscopic analyses were performed after labeling phosphorylated histone 3 and cyclin B1 in ceiling cultures. RESULTS Treatment with AraC almost entirely prevented the formation of fibroblasts up to 12 days of ceiling culture. Similar results were obtained with VCR. The antimitotic effectiveness of the treatment was confirmed in fibroblast cultures from the adipose tissue stromal-vascular fraction by proliferation assays and colony-forming unit experiments. Using time-lapse microscopy, we visualized liposecretion events in which a large lipid droplet was rapidly secreted from isolated mature adipocytes. The same phenomenon was observed with AraC. This was observed in conjunction with histone 3 phosphorylation and cyclin B1 segregation to the nucleus. CONCLUSION Our results support the notion that dedifferentiation involves rapid secretion of the lipid droplet by the adipocytes with concomitant generation of fibroblast-like cells that subsequently proliferate to generate the dedifferentiated adipocyte population during ceiling culture. The presence of mitotic markers suggests that this process involves cell cycle progression, although cell division does not occur.
Collapse
Affiliation(s)
- Julie Anne Côté
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada.,École de Nutrition, Université Laval, Québec, Québec, Canada
| | - Marie-Frédérique Gauthier
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Giada Ostinelli
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada.,École de Nutrition, Université Laval, Québec, Québec, Canada
| | - Dannick Brochu
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Kerstin Bellmann
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - André Marette
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - François Julien
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Stéfane Lebel
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada.,École de Nutrition, Université Laval, Québec, Québec, Canada
| |
Collapse
|
27
|
SIRT1 reverses senescence via enhancing autophagy and attenuates oxidative stress-induced apoptosis through promoting p53 degradation. Int J Biol Macromol 2018; 117:225-234. [DOI: 10.1016/j.ijbiomac.2018.05.174] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
|
28
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
29
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Dedifferentiated Adipocytes Promote Adipose Tissue Generation within an External Suspension Device. Plast Reconstr Surg 2017; 140:525-536. [DOI: 10.1097/prs.0000000000003601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Côté JA, Lessard J, Pelletier M, Marceau S, Lescelleur O, Fradette J, Tchernof A. Role of the TGF-β pathway in dedifferentiation of human mature adipocytes. FEBS Open Bio 2017; 7:1092-1101. [PMID: 28781950 PMCID: PMC5537071 DOI: 10.1002/2211-5463.12250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022] Open
Abstract
Dedifferentiation of adipocytes contributes to the generation of a proliferative cell population that could be useful in cellular therapy or tissue engineering. Adipocytes can dedifferentiate into precursor cells to acquire a fibroblast‐like phenotype using ceiling culture, in which the buoyancy of fat cells is exploited to allow them to adhere to the inner surface of a container. Ceiling culture is usually performed in flasks, which limits the ability to test various culture conditions. Using a new six‐well plate ceiling culture approach, we examined the relevance of TGF‐β signaling during dedifferentiation. Adipose tissue samples from patients undergoing bariatric surgery were digested with collagenase, and cell suspensions were used for ceiling cultures. Using the six‐well plate approach, cells were treated with SB431542 (an inhibitor of TGF‐β receptor ALK5) or human TGF‐β1 during dedifferentiation. Gene expression was measured in these cultures and in whole adipose tissue, the stromal–vascular fraction (SVF), mature adipocytes, and dedifferentiated fat (DFAT) cells. TGF‐β1 and collagen type I alpha 1 (COL1A1) gene expression was significantly higher in DFAT cells compared to whole adipose tissue samples and SVF cells. TGF‐β1, COL1A1, and COL6A3 gene expression was significantly higher at day 12 of dedifferentiation compared to day 0. In the six‐well plate model, treatment with TGF‐β1 or SB431542, respectively, stimulated and inhibited the TGF‐β pathway as shown by increased TGF‐β1, TGF‐β2, COL1A1, and COL6A3 gene expression and decreased expression of TGF‐β1, COL1A1, COL1A2, and COL6A3, respectively. Treatment of DFAT cells with TGF‐β1 increased the phosphorylation level of SMAD 2 and SMAD 3. Thus, a new six‐well plate model for ceiling culture allowed us to demonstrate a role for TGF‐β in modulating collagen gene expression during dedifferentiation of mature adipocytes.
Collapse
Affiliation(s)
- Julie Anne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Canada.,Endocrinologie et Néphrologie CHU de Québec Canada.,École de Nutrition Université Laval Québec Canada
| | - Julie Lessard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Canada
| | - Mélissa Pelletier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Canada.,Endocrinologie et Néphrologie CHU de Québec Canada
| | - Simon Marceau
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Canada
| | - Odette Lescelleur
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Canada
| | - Julie Fradette
- Faculté de Médecine, Département de Chirurgie, Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Université Laval Québec Canada.,Division de Médecine Régénérative CHU de Québec Canada
| | - André Tchernof
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Canada.,Endocrinologie et Néphrologie CHU de Québec Canada.,École de Nutrition Université Laval Québec Canada
| |
Collapse
|
32
|
Vicente-García C, Villarejo-Balcells B, Irastorza-Azcárate I, Naranjo S, Acemel RD, Tena JJ, Rigby PWJ, Devos DP, Gómez-Skarmeta JL, Carvajal JJ. Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements. Genome Biol 2017; 18:106. [PMID: 28615069 PMCID: PMC5470208 DOI: 10.1186/s13059-017-1225-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts. Results We show that interactions within the PAX3 and FOXO1 domains are restricted to their respective TADs in normal conditions, while in a patient-derived alveolar rhabdomyosarcoma cell line, harbouring the diagnostic t(2;13)(q35;q14) translocation that brings together the PAX3 and FOXO1 genes, the PAX3 promoter interacts ectopically with FOXO1 sequences. Using a combination of 4C-seq datasets, we have modelled the three-dimensional organisation of the fused landscape in alveolar rhabdomyosarcoma. Conclusions The chromosomal translocation that leads to alveolar rhabdomyosarcoma development generates a novel TAD that is likely to favour ectopic PAX3:FOXO1 oncogene activation in non-PAX3 territories. Rhabdomyosarcomas may therefore arise from cells which do not normally express PAX3. The borders of this novel TAD correspond to the original 5'- and 3'- borders of the PAX3 and FOXO1 TADs, respectively, suggesting that TAD organisation precedes the formation of regulatory long-range interactions. Our results demonstrate that, upon translocation, novel regulatory landscapes are formed allowing new intra-TAD interactions between the original loci involved. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1225-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Barbara Villarejo-Balcells
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Ibai Irastorza-Azcárate
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Peter W J Rigby
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jose L Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain.
| |
Collapse
|
33
|
Jumabay M, Zhumabai J, Mansurov N, Niklason KC, Guihard PJ, Cubberly MR, Fogelman AM, Iruela-Arispe L, Yao Y, Saparov A, Boström KI. Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 2017; 233:1812-1822. [PMID: 28464239 DOI: 10.1002/jcp.25983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Abstract
Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jiayinaguli Zhumabai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Nurlan Mansurov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Katharine C Niklason
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mark R Cubberly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alan M Fogelman
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Arman Saparov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
34
|
Ogawa R, Fujita K, Ito K. Mouse embryonic dorsal root ganglia contain pluripotent stem cells that show features similar to embryonic stem cells and induced pluripotent stem cells. Biol Open 2017; 6:602-618. [PMID: 28373172 PMCID: PMC5450311 DOI: 10.1242/bio.021758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present study, we showed that the dorsal root ganglion (DRG) in the mouse embryo contains pluripotent stem cells (PSCs) that have developmental capacities equivalent to those of embryonic stem (ES) cells and induced pluripotent stem cells. Mouse embryonic DRG cells expressed pluripotency-related transcription factors [octamer-binding transcription factor 4, SRY (sex determining region Y)-box containing gene (Sox) 2, and Nanog] that play essential roles in maintaining the pluripotency of ES cells. Furthermore, the DRG cells differentiated into ectoderm-, mesoderm- and endoderm-derived cells. In addition, these cells produced primordial germ cell-like cells and embryoid body-like spheres. We also showed that the combination of leukemia inhibitor factor/bone morphogenetic protein 2/fibroblast growth factor 2 effectively promoted maintenance of the pluripotency of the PSCs present in DRGs, as well as that of neural crest-derived stem cells (NCSCs) in DRGs, which were previously shown to be present there. Furthermore, the expression of pluripotency-related transcription factors in the DRG cells was regulated by chromodomain helicase DNA-binding protein 7 and Sox10, which are indispensable for the formation of NCSCs, and vice versa. These findings support the possibility that PSCs in mouse embryonic DRGs are NCSCs.
Collapse
Affiliation(s)
- Ryuhei Ogawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kyohei Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuo Ito
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Maurizi G, Poloni A, Mattiucci D, Santi S, Maurizi A, Izzi V, Giuliani A, Mancini S, Zingaretti MC, Perugini J, Severi I, Falconi M, Vivarelli M, Rippo MR, Corvera S, Giordano A, Leoni P, Cinti S. Human White Adipocytes Convert Into “Rainbow” Adipocytes In Vitro. J Cell Physiol 2017; 232:2887-2899. [PMID: 27987321 DOI: 10.1002/jcp.25743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Giulia Maurizi
- Dipartimento Scienze Cliniche e Molecolari; Clinica di Ematologia; Università Politecnica delle Marche; Ancona Italy
| | - Antonella Poloni
- Dipartimento Scienze Cliniche e Molecolari; Clinica di Ematologia; Università Politecnica delle Marche; Ancona Italy
| | - Domenico Mattiucci
- Dipartimento Scienze Cliniche e Molecolari; Clinica di Ematologia; Università Politecnica delle Marche; Ancona Italy
| | - Spartaco Santi
- Istituto di Genetica Molecolare del CNR; Laboratorio di Biologia Cellulare Muscoloscheletrica, Istituti Ortopedici Rizzoli; Bologna Italy
| | - Angela Maurizi
- Dipartimento di Medicina Sperimentale e Clinica; Clinica Chirurgia del Pancreas; Università Politecnica delle Marche; Ancona Italy
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine; Center for Cell-Matrix Research and Biocenter Oulu; University of Oulu; Oulu Finland
| | - Angelica Giuliani
- Dipartimento Scienze Cliniche e Molecolari; Laboratorio di Patologia Sperimentale; Ancona Italy
| | - Stefania Mancini
- Dipartimento Scienze Cliniche e Molecolari; Clinica di Ematologia; Università Politecnica delle Marche; Ancona Italy
| | - Maria Cristina Zingaretti
- Dipartimento di Medicina Sperimentale e Clinica; Center of Obesity; Università Politecnica delle Marche; Ancona Italy
| | - Jessica Perugini
- Dipartimento di Medicina Sperimentale e Clinica; Center of Obesity; Università Politecnica delle Marche; Ancona Italy
| | - Ilenia Severi
- Dipartimento di Medicina Sperimentale e Clinica; Center of Obesity; Università Politecnica delle Marche; Ancona Italy
| | - Massimo Falconi
- Dipartimento di Medicina Sperimentale e Clinica; Clinica Chirurgia del Pancreas; Università Politecnica delle Marche; Ancona Italy
| | - Marco Vivarelli
- Department of Experimental and Clinical Medicine; Hepatobiliary and Abdominal Transplantation Surgery; Università Politecnica delle Marche; Ancona Italy
| | - Maria Rita Rippo
- Dipartimento Scienze Cliniche e Molecolari; Laboratorio di Patologia Sperimentale; Ancona Italy
| | - Silvia Corvera
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester Massachusetts
| | - Antonio Giordano
- Dipartimento di Medicina Sperimentale e Clinica; Center of Obesity; Università Politecnica delle Marche; Ancona Italy
| | - Pietro Leoni
- Dipartimento Scienze Cliniche e Molecolari; Clinica di Ematologia; Università Politecnica delle Marche; Ancona Italy
| | - Saverio Cinti
- Dipartimento di Medicina Sperimentale e Clinica; Center of Obesity; Università Politecnica delle Marche; Ancona Italy
| |
Collapse
|
36
|
Temporal Changes in Gene Expression Profile during Mature Adipocyte Dedifferentiation. Int J Genomics 2017; 2017:5149362. [PMID: 28409151 PMCID: PMC5376413 DOI: 10.1155/2017/5149362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/29/2017] [Indexed: 01/25/2023] Open
Abstract
Objective. To characterize changes in gene expression profile during human mature adipocyte dedifferentiation in ceiling culture. Methods. Subcutaneous (SC) and omental (OM) adipose tissue samples were obtained from 4 participants paired for age and BMI. Isolated adipocytes were dedifferentiated in ceiling culture. Gene expression analysis at days 0, 4, 7, and 12 of the cultures was performed using Affymetrix Human Gene 2.0 STvi arrays. Hierarchical clustering according to similarity of expression changes was used to identify overrepresented functions. Results. Four clusters gathered genes with similar expression between day 4 to day 7 but decreasing expression from day 7 to day 12. Most of these genes coded for proteins involved in adipocyte functions (LIPE, PLIN1, DGAT2, PNPLA2, ADIPOQ, CEBPA, LPL, FABP4, SCD, INSR, and LEP). Expression of several genes coding for proteins implicated in cellular proliferation and growth or cell cycle increased significantly from day 7 to day 12 (WNT5A, KITLG, and FGF5). Genes coding for extracellular matrix proteins were differentially expressed between days 0, 4, 7, and 12 (COL1A1, COL1A2, and COL6A3, MMP1, and TGFB1). Conclusion. Dedifferentiation is associated with downregulation of transcripts encoding proteins involved in mature adipocyte functions and upregulation of genes involved in matrix remodeling, cellular development, and cell cycle.
Collapse
|
37
|
Salehi H, Amirpour N, Niapour A, Razavi S. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev Rep 2016; 12:26-41. [PMID: 26490462 DOI: 10.1007/s12015-015-9631-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Collapse
|
38
|
Winters AA, Bou-Ghannam S, Thorp H, Hawayek JA, Atkinson DL, Bartlett CE, Silva FJ, Hsu EW, Moreno AP, Grainger DA, Patel AN. Evaluation of Multiple Biological Therapies for Ischemic Cardiac Disease. Cell Transplant 2016; 25:1591-1607. [DOI: 10.3727/096368916x691501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Sophia Bou-Ghannam
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Hallie Thorp
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jose A. Hawayek
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | - Edward W. Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Alonso P. Moreno
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Nora Eccles Cardiovascular and Training Research Institute, Salt Lake City, UT, USA
| | - David A. Grainger
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Amit N. Patel
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
39
|
Shah M, George RL, Evancho-Chapman MM, Zhang G. Current challenges in dedifferentiated fat cells research. Organogenesis 2016; 12:119-127. [PMID: 27322672 DOI: 10.1080/15476278.2016.1197461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dedifferentiated fat cells show great promises as a novel cell source for stem cell research. It has many advantages when used for cell-based therapeutics including abundance, pluripotency, and safety. However, there are many obstacles researchers need to overcome to make the next big move in DFAT cells research. In this review, we summarize the current main challenges in DFAT cells research including cell culture purity, phenotypic properties, and dedifferentiation mechanisms. The common methods to produce DFAT cells as well as the cell purity issue during DFAT cell production have been introduced. Current approaches to improve DFAT cell purity have been discussed. The phenotypic profile of DFAT cells have been listed and compared with other stem cells. Further studies on elucidating the underlying dedifferentiation mechanisms will dramatically advance DFAT cell research.
Collapse
Affiliation(s)
- Mickey Shah
- a Integrated Bioscience Program , The University of Akron , Akron , OH , USA.,b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| | - Richard L George
- c Department of Surgery , Summa Health System , Akron , OH , USA.,d Department of Surgery , Northeast Ohio Medical University , Rootstown , OH , USA
| | | | - Ge Zhang
- b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| |
Collapse
|
40
|
Firtina Karagonlar Z, Koç D, Şahin E, Avci ST, Yilmaz M, Atabey N, Erdal E. Effect of adipocyte-secreted factors on EpCAM+/CD133+ hepatic stem cell population. Biochem Biophys Res Commun 2016; 474:482-490. [PMID: 27131739 DOI: 10.1016/j.bbrc.2016.04.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Recent epidemiological studies have associated obesity with a variety of cancer types including HCC. However, the tumor initiating role of obesity in hepatocarcinogenesis is still unknown. The objective of this paper is to investigate the effect of adipocyte-secreted factors on EpCAM+/CD133+ cancer stem cells and to identify which factors play a role in modulating hepatic cancer stem cell behavior. Our results demonstrated that adipocyte-secreted factors affect motility and drug resistance of EpCAM+/CD133+ cells. When incubated with adipocyte conditioned media, EpCAM+/CD133+ cells exhibited augmented motility and reduced sorafenib-induced apoptosis. Using array-based system, we identified secretion of several cytokines such as IL6, IL8 and MCP1 by cultured adipocytes and activation of c-Met, STAT3 and ERK1/2 signaling pathways in EpCAM+/CD133+ cells incubated with adipocyte conditioned media. Treating EpCAM+/CD133+ cancer stem cells with IL6 receptor blocking antibody or c-Met inhibitor SU11274 both reduced the increase in motility; however SU11274 had greater effect on relieving protection from sorafenib-induced apoptosis. These results indicate that adipocyte-secreted factors might regulate cancer stem cell behavior through several signaling molecules including c-Met, STAT3 and ERK1/2 and inhibition of these signaling pathways offer novel strategies in targeting the effect of adipose-derived cytokines in cancer.
Collapse
Affiliation(s)
| | - Doğukan Koç
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Eren Şahin
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sanem Tercan Avci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mustafa Yilmaz
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Neşe Atabey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Esra Erdal
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
41
|
Hu C, Cao H, Pan X, Li J, He J, Pan Q, Xin J, Yu X, Li J, Wang Y, Zhu D, Li L. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology. Cell Death Dis 2016; 7:e2141. [PMID: 26986509 PMCID: PMC4823931 DOI: 10.1038/cddis.2016.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.
Collapse
Affiliation(s)
- C Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - H Cao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - X Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J He
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Q Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Xin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - X Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Y Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - D Zhu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - L Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
43
|
Jumabay M, Boström KI. Dedifferentiated fat cells: A cell source for regenerative medicine. World J Stem Cells 2015; 7:1202-1214. [PMID: 26640620 PMCID: PMC4663373 DOI: 10.4252/wjsc.v7.i10.1202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.
Collapse
|
44
|
Jumabay M, Moon JH, Yeerna H, Boström KI. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J Cell Physiol 2015; 230:2821-8. [PMID: 25854185 PMCID: PMC4516692 DOI: 10.1002/jcp.25012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/03/2015] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Jeremiah H. Moon
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Huwate Yeerna
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, UCLA
| |
Collapse
|
45
|
Lessard J, Côté JA, Lapointe M, Pelletier M, Nadeau M, Marceau S, Biertho L, Tchernof A. Generation of human adipose stem cells through dedifferentiation of mature adipocytes in ceiling cultures. J Vis Exp 2015:52485. [PMID: 25867041 PMCID: PMC4401230 DOI: 10.3791/52485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mature adipocytes have been shown to reverse their phenotype into fibroblast-like cells in vitro through a technique called ceiling culture. Mature adipocytes can also be isolated from fresh adipose tissue for depot-specific characterization of their function and metabolic properties. Here, we describe a well-established protocol to isolate mature adipocytes from adipose tissues using collagenase digestion, and subsequent steps to perform ceiling cultures. Briefly, adipose tissues are incubated in a Krebs-Ringer-Henseleit buffer containing collagenase to disrupt tissue matrix. Floating mature adipocytes are collected on the top surface of the buffer. Mature cells are plated in a T25-flask completely filled with media and incubated upside down for a week. An alternative 6-well plate culture approach allows the characterization of adipocytes undergoing dedifferentiation. Adipocyte morphology drastically changes over time of culture. Immunofluorescence can be easily performed on slides cultivated in 6-well plates as demonstrated by FABP4 immunofluorescence staining. FABP4 protein is present in mature adipocytes but down-regulated through dedifferentiation of fat cells. Mature adipocyte dedifferentiation may represent a new avenue for cell therapy and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - André Tchernof
- IUCPQ Research Center; CHU de Québec Research Center; Laval University;
| |
Collapse
|
46
|
Abstract
Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.
Collapse
|
47
|
Poloni A, Maurizi G, Foia F, Mondini E, Mattiucci D, Ambrogini P, Lattanzi D, Mancini S, Falconi M, Cinti S, Olivieri A, Leoni P. Glial-like differentiation potential of human mature adipocytes. J Mol Neurosci 2014; 55:91-98. [PMID: 25007949 DOI: 10.1007/s12031-014-0345-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/30/2023]
Abstract
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here, we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes, suggesting that these cells could be committed to the neural lineage. After neural induction, NeuroD1, Sox1, Double Cortin, and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties, indicating the inability of these cells to differentiate into mature neurons. In contrast, the differentiated cells expressed a high level of CLDN11, as demonstrated using molecular method, and stained positively for the glial cell markers CLDN11 and GFAP, as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production, which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion, our data demonstrate morphological, molecular, and immunocytochemical evidence of initial neural differentiation of mature adipocytes, committing to a glial lineage.
Collapse
Affiliation(s)
- Antonella Poloni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy.
| | - Giulia Maurizi
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Federica Foia
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Eleonora Mondini
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Patrizia Ambrogini
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Fisiologia, Università di Urbino Carlo Bo, Urbino, Italy
| | - Davide Lattanzi
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Fisiologia, Università di Urbino Carlo Bo, Urbino, Italy
| | - Stefania Mancini
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Massimo Falconi
- Clinica Chirurgia del Pancreas, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | - Saverio Cinti
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Pietro Leoni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| |
Collapse
|