1
|
Tang X, Huang H, Hao L. Decadal analysis of efficacy and safety profiles of mesenchymal stem cells from varied sources in knee osteoarthritis patients: A systematic review and network meta-analysis. Exp Gerontol 2024; 192:112460. [PMID: 38772192 DOI: 10.1016/j.exger.2024.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVE Knee Osteoarthritis (KOA) is a debilitating degenerative joint ailment afflicting millions of patients. Numerous studies have assessed the efficacy of mesenchymal stem cells (MSCs) derived from various sources for KOA treatment, yet direct comparisons are scarce and inconsistent. Furthermore, network meta-analysis (NMA) conclusions require updating, while the safety of MSCs therapy remains contentious. This study evaluates therapeutic approaches involving MSCs from different sources in patients with KOA through randomized controlled trials (RCTs) and cohort studies. The objective is to compare the effectiveness and safety of MSCs strategies from various sources for KOA treatment. METHODS A systematic literature review was conducted to identify RCTs and cohort studies comparing different sources of MSCs in KOA patients. A randomized effects network meta-analysis was used to concurrently evaluate both direct and indirect comparisons across all protocols. RESULTS The NMA included 16 RCTS and reported 1005 participants. Adipose-derived mesenchymal stem cells (AD-MSCs) were the most effective treatment, showing significant improvements in the Visual Analogue Scale (VAS), the Short Form 36 (SF-36 scale), the International Knee Literature Committee Knee Evaluation Scale (IKDC subjective scores), and the Knee Injury and OA Outcome Score (KOOS). The probabilities are P = 85.3, P = 70.5, P = 88 and P = 87, respectively. Compared with placebo, AD-MSCs resulted in a VAS Score (SMD 0.97; 95%CI 0.37, 1.57), IKDC subjective scores (SMD -0.71; 95%CI -1.20, -0.21) was significantly reduced. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) showed significant improvements in the University of Western Ontario and McMaster University OA (WOMAC) (P = 91.4). Compared with placebo, UC-MSCs had a higher WOMAC Score (SMD 1.65; 95%CI 0.27, 3.03) and ranked first. Compared with MSCs, placebo emerged as the safer option (P = 74.9), with a notable reduction in AEs associated with HA treatment (RR 0.77; 95%CI 0.61, 0.97). AD-MSCs were found to have the least favorable impact on AEs with a probability of P = 13.3. CONCLUSIONS This network meta-analysis established that MSCs offer pain relief and enhance various knee scores in KOA patients compared to conventional treatment. It also identifies other therapeutic avenues warranting further exploration through high-quality studies. Nonetheless, it underscores the necessity to emphasize the potential complications and safety concerns associated with MSCs.
Collapse
Affiliation(s)
- Xiaofu Tang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Haiqiang Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
3
|
Verdura V, Guastafierro A, Di Pace B, Faenza M, Nicoletti GF, Rubino C. Optimizing Fat Grafting Using a Hydraulic System Technique for Fat Processing: A Time and Cost Analysis. Arch Plast Surg 2022; 49:266-274. [PMID: 35832664 PMCID: PMC9045492 DOI: 10.1055/s-0042-1744361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background
Many authors have researched ways to optimize fat grafting by looking for a technique that offers safe and long-term fat survival rate. To date, there is no standardized protocol. We designed a “hydraulic system technique” optimizing the relationship among the quantity of injected fat, operative time, and material cost to establish fat volume cutoffs for a single procedure.
Methods
Thirty-six patients underwent fat grafting surgery and were organized into three groups according to material used: standard, “1-track,” and “2-tracks” systems. The amount of harvested and grafted fat as well as material used for each procedure was collected. Operating times were recorded and statistical analysis was performed to establish the relationship with the amount of treated fat.
Results
In 15 cases the standard system was used (mean treated fat 72 [30–100] mL, mean cost 4.23 ± 0.27 euros), in 11 cases the “1-track” system (mean treated fat 183.3 [120–280] mL, mean cost 7.63 ± 0.6 euros), and in 10 cases the “2-tracks” one (mean treated fat 311[220–550] mL, mean cost 12.47 ± 1 euros). The mean time difference between the standard system and the “1-track” system is statistically significant starting from three fat syringes (90 mL) in 17.66 versus 6.87 minutes. The difference between the “1-track” system and “2-tracks” system becomes statistically significant from 240 mL of fat in 15 minutes (“1-track”) versus 9.3 minutes for the “2-tracks” system.
Conclusion
Data analysis would indicate the use of the standard system, “1-track,” and “2-tracks” to treat an amount of fat < 90 mL of fat, 90 ÷ 240 mL of fat, and ≥ 240 mL of fat, respectively.
Collapse
Affiliation(s)
- Vincenzo Verdura
- Multidisciplinary Department of Medical Surgical and Dental Specialties, Plastic Surgery Unit, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Antonio Guastafierro
- Multidisciplinary Department of Medical Surgical and Dental Specialties, Plastic Surgery Unit, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Bruno Di Pace
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” PhD School of Translational Medicine of Development and Active Aging, University of Salerno, Salerno, Italy
- Department of Plastic and Reconstructive Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Anglia Ruskin University School of Medicine, Cambridge and Chelmsford, United Kingdom
| | - Mario Faenza
- Multidisciplinary Department of Medical Surgical and Dental Specialties, Plastic Surgery Unit, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical Surgical and Dental Specialties, Plastic Surgery Unit, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Corrado Rubino
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
- Plastic Surgery Unit, Department of Oncology and Haematology, University Hospital Trust of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Singh S, Nyberg EL, O'Sullivan AN, Farris A, Rindone AN, Zhang N, Whitehead EC, Zhou Y, Mihaly E, Achebe CC, Zbijewski W, Grundy W, Garlick D, Jackson ND, Taguchi T, Takawira C, Lopez J, Lopez MJ, Grant MP, Grayson WL. Point-of-care treatment of geometrically complex midfacial critical-sized bone defects with 3D-Printed scaffolds and autologous stromal vascular fraction. Biomaterials 2022; 282:121392. [DOI: 10.1016/j.biomaterials.2022.121392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
|
5
|
Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci 2022; 14:2. [PMID: 34980877 PMCID: PMC8724288 DOI: 10.1038/s41368-021-00152-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Dental stem cells (DSCs), an important source of mesenchymal stem cells (MSCs), can be easily obtained by minimally invasive procedures and have been used for the treatment of various diseases. Classic paradigm attributed the mechanism of their therapeutic action to direct cell differentiation after targeted migration, while contemporary insights into indirect paracrine effect opened new avenues for the mystery of their actual low engraftment and differentiation ability in vivo. As critical paracrine effectors, DSC-derived extracellular vesicles (DSC-EVs) are being increasingly linked to the positive effects of DSCs by an evolving body of in vivo studies. Carrying bioactive contents and presenting therapeutic potential in certain diseases, DSC-EVs have been introduced as promising treatments. Here, we systematically review the latest in vivo evidence that supports the therapeutic effects of DSC-EVs with mechanistic studies. In addition, current challenges and future directions for the clinical translation of DSC-EVs are also highlighted to call for more attentions to the (I) distinguishing features of DSC-EVs compared with other types of MSC-EVs, (II) heterogeneity among different subtypes of DSC-derived EVs, (III) action modes of DSC-EVs, (IV) standardization for eligible DSC-EVs and (V) safety guarantee for the clinical application of DSC-EVs. The present review would provide valuable insights into the emerging opportunities of DSC-EVs in future clinical applications.
Collapse
|
6
|
Nordberg RC, Huebner P, Schuchard KG, Mellor LF, Shirwaiker RA, Loboa EG, Spang JT. The evaluation of a multiphasic 3D-bioplotted scaffold seeded with adipose derived stem cells to repair osteochondral defects in a porcine model. J Biomed Mater Res B Appl Biomater 2021; 109:2246-2258. [PMID: 34114736 DOI: 10.1002/jbm.b.34886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/02/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D-bioplotted osteochondral scaffold design that can drive site-specific tissue formation when seeded with adipose-derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC-seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold-facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.
Collapse
Affiliation(s)
- Rachel C Nordberg
- College of Engineering, University of Missouri, Columbia, Missouri, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Pedro Huebner
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,School of Industrial and Systems Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Karl G Schuchard
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Liliana F Mellor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Rohan A Shirwaiker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- College of Engineering, University of Missouri, Columbia, Missouri, USA.,Office of the Provost, Southern Methodist University, Dallas, Texas, USA
| | - Jeffery T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Combined Treatment of Adipose Derived-Mesenchymal Stem Cells and Pregabalin Is Superior to Monotherapy for the Treatment of Neuropathic Pain in Rats. Stem Cells Int 2021; 2021:8847110. [PMID: 33628271 PMCID: PMC7899775 DOI: 10.1155/2021/8847110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 11/18/2022] Open
Abstract
Aims Neuropathic pain following nerve injury does not respond well to most available pharmacological remedies. We aimed to compare the outcome of the addition of adipose-derived mesenchymal stem cells (ADMSCs) to pregabalin for neuropathic pain treatment. Methods Adult female albino rats (n = 100) were randomized to receive traumatic sciatic nerve injury or sham. Animals were then randomized to ADMSC treatment with or without pregabalin. We conducted a battery of neurobehavioral and electrophysiological to assess neuropathic pain. Following sacrifice, we evaluated the histological changes and gene expression of brain-derived neurotrophic factor (BDNF) in the sciatic nerve. Serum and sciatic nerve tissue pro- and inflammatory cytokine levels were also assessed. Results (1) All treatments significantly improved thermal withdrawal latency, sciatic nerve conduction velocity, and proinflammatory cytokine levels in injured animals, with no significant effect of the combined treatments compared to pregabalin monotherapy (p < 0.05 each). (2) Combined treatment significantly improved medial gastrocnemius electromyographic amplitude and sciatic function index compared to pregabalin monotherapy (p < 0.05 each). (3) Combined treatment significantly increased the BDNF expression, decreased anti-inflammatory cytokine (p < 0.05 each), and restored the structural nerve damage, compared to pregabalin monotherapy. Conclusions Combined treatment is associated with greater improvement of the sciatic nerve structure and function. Further studies are warranted to study the mechanism of action of the combined treatment to improve neuropathic pain.
Collapse
|
8
|
Intrinsic Angiogenic Potential and Migration Capacity of Human Mesenchymal Stromal Cells Derived from Menstrual Blood and Bone Marrow. Int J Mol Sci 2020; 21:ijms21249563. [PMID: 33334068 PMCID: PMC7765504 DOI: 10.3390/ijms21249563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.
Collapse
|
9
|
Lu H, Merfeld-Clauss S, Jawed Y, March KL, Coleman ME, Bogatcheva NV. Distinct Factors Secreted by Adipose Stromal Cells Protect the Endothelium From Barrier Dysfunction and Apoptosis. Front Cell Dev Biol 2020; 8:584653. [PMID: 33102487 PMCID: PMC7554254 DOI: 10.3389/fcell.2020.584653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
We have shown previously that adipose stromal cell (ASC)-derived conditioned media (CM) limited lung injury, endothelial barrier dysfunction, and apoptosis. Here, we used endothelial hyperpermeability and apoptosis assays to investigate how concentration processes affect endothelium-directed bioactivity of ASC-CM and to gain information on the nature of bioactive factors. Comparison of ASC-CM concentrated with differential molecular weight (MW) cutoff filters showed that endothelial barrier protection depended on the species-specific factors in ASC-CM fractionated with MW > 50 kDa. Known barrier regulators-keratin growth factor (KGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF)-were detected in ASC-CM fraction of > 100 kDa. Pretreatment of endothelial monolayers with concentrations of KGF, VEGF, and HGF detected in ASC-CM showed that only KGF and HGF protect the endothelium from barrier dysfunction. Depletion of KGF and HGF from ASC-CM attenuated ASC-CM's ability to protect the endothelial barrier. In contrast to barrier-protective factors, apoptosis-protective factors fractionated with MW < 3 kDa and were not species-specific. Application of donors of apoptosis-mitigating gases showed that the CO donor carbon monoxide-releasing molecule 2 (CORM2) protected the endothelium from apoptosis, while the H2S donor NaSH did not. Knockdown of CO-generating heme oxygenase 1 in ASC attenuated ASC-CM's ability to protect the endothelium from apoptosis. We have shown that tumor necrosis factor alpha (TNFα)-induced apoptosis in endothelium is c-Jun N-terminal kinase (JNK)-dependent, and JNK activation is inhibited by ASC-CM pretreatment of endothelial cells. ASC-CM from heme oxygenase 1-depleted ASC displayed attenuated ability to suppress endothelial JNK activation, suggesting that CO-mediated protection of the endothelium from apoptosis is achieved by the downregulation of the JNK pathway. Altogether, our results demonstrate that the concentration of ASC-CM with low MW cutoff filters significantly reduces its anti-apoptotic activity while preserving its barrier-protective activity.
Collapse
Affiliation(s)
- Hongyan Lu
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | - Stephanie Merfeld-Clauss
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | - Yameena Jawed
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | - Keith L March
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | | | - Natalia V Bogatcheva
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States.,Division of Pulmonary, Sleep and Critical Care, Department of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
10
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
11
|
Bone Morphogenetic Protein-9-Stimulated Adipocyte-Derived Mesenchymal Progenitors Entrapped in a Thermoresponsive Nanocomposite Scaffold Facilitate Cranial Defect Repair. J Craniofac Surg 2020; 30:1915-1919. [PMID: 30896511 DOI: 10.1097/scs.0000000000005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Due to availability and ease of harvest, adipose tissue is a favorable source of progenitor cells in regenerative medicine, but has yet to be optimized for osteogenic differentiation. The purpose of this study was to test cranial bone healing in a surgical defect model utilizing bone morphogenetic protein-9 (BMP-9) transduced immortalized murine adipocyte (iMAD) progenitor cells in a citrate-based, phase-changing, poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN)-gelatin scaffold. Mesenchymal progenitor iMAD cells were transduced with adenovirus expressing either BMP-9 or green fluorescent protein control. Twelve mice underwent craniectomy to achieve a critical-sized cranial defect. The iMAD cells were mixed with the PPCN-gelatin scaffold and injected into the defects. MicroCT imaging was performed in 2-week intervals for 12 weeks to track defect healing. Histologic analysis was performed on skull sections harvested after the final imaging at 12 weeks to assess quality and maturity of newly formed bone. Both the BMP-9 group and control group had similar initial defect sizes (P = 0.21). At each time point, the BMP-9 group demonstrated smaller defect size, higher percentage defect healed, and larger percentage defect change over time. At the end of the 12-week period, the BMP-9 group demonstrated mean defect closure of 27.39%, while the control group showed only a 9.89% defect closure (P < 0.05). The BMP-9-transduced iMADs combined with a PPCN-gelatin scaffold promote in vivo osteogenesis and exhibited significantly greater osteogenesis compared to control. Adipose-derived iMADs are a promising source of mesenchymal stem cells for further studies in regenerative medicine, specifically bone engineering with the aim of potential craniofacial applications.
Collapse
|
12
|
Mellor LF, Nordberg RC, Huebner P, Mohiti-Asli M, Taylor MA, Efird W, Oxford JT, Spang JT, Shirwaiker RA, Loboa EG. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. J Biomed Mater Res B Appl Biomater 2019; 108:2017-2030. [PMID: 31880408 PMCID: PMC7217039 DOI: 10.1002/jbm.b.34542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site-specific osteogenic and chondrogenic differentiation of human adipose-derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D-bioplotting of biodegradable polycraprolactone (PCL) with either β-tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site-specific hASC osteogenesis and chondrogenesis, respectively. PCL-dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D-bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC-seeded 3D-bioplotted PCL-TCP, electrospun PCL, and 3D-bioplotted PCL-dECM phases were evaluated and demonstrated site-specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.
Collapse
Affiliation(s)
- Liliana F Mellor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Rachel C Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| | - Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mahsa Mohiti-Asli
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Michael A Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - William Efird
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Julia T Oxford
- Biomolecular Research Center, Boise State University, Boise, Idaho
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Rohan A Shirwaiker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Elizabeth G Loboa
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Shansky YD, Sergeeva NS, Sviridova IK, Karalkin PA, Kirsanova VA, Akhmedova SA, Fomicheva KA, Shkurnikov MY, Portyannikova AY, Kaprin AD. Human Platelet Lysate Sustains the Osteogenic/Adipogenic Differentiation Potential of Adipose-Derived Mesenchymal Stromal Cells and Maintains Their DNA Integrity in vitro. Cells Tissues Organs 2019; 207:149-164. [PMID: 31593940 DOI: 10.1159/000502813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022] Open
Abstract
Human platelet lysate (HPL) is a promising alternative to fetal calf serum (FCS) for the expansion of adipose tissue mesenchymal stromal cells (AT-MSCs) for translational medicine applications. However, some biological effects of HPL are still to be elucidated. We aimed to compare complex characteristics, such as cell morphology, proliferative activity, differentiation potential, and especially monolayer recovery, DNA integrity, and the gene expression pattern, between AT-MSCs cultured with HPL or FCS. Primary AT-MSC cultures were expanded in medium containing FCS or pooled HPL. Cell growth and proliferation were estimated by cell doubling time and the monolayer formation rate, while migration was assessed by wound-healing assay. The capacity for adipogenic and osteogenic differentiation was evaluated by alkaline phosphatase and Oil Red O staining. DNA integrity was evaluated by comet assay, and analysis of gene expression by real-time PCR. Media supplemented with HPL or FCS provided a similar surface immunophenotype, cell morphology (except some cell dimensions and a bigger colony size in HPL), DNA integrity, and rate of wound healing. Meanwhile, AT-MSC proliferated more intensively in HPL-supplemented media (especially at 5% HPL) and had a reduced doubling population time. AT-MSC in HPL had increased adipogenic potential and similar osteogenic potential in comparison with FCS. Our results indicate the feasibility and evident prospects for the use of pooled HPL as an alternative to FCS and safe non-xenogenic growth supplement for ex vivo expansion of clinical-grade AT-MSCs for regenerative medicine purposes.
Collapse
Affiliation(s)
- Yaroslav D Shansky
- Department of Forecasting the Effectiveness of Conservative Treatment, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation,
| | - Natalia S Sergeeva
- Department of Forecasting the Effectiveness of Conservative Treatment, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Irina K Sviridova
- Department of Forecasting the Effectiveness of Conservative Treatment, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Pavel A Karalkin
- Department of Forecasting the Effectiveness of Conservative Treatment, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Valentina A Kirsanova
- Department of Forecasting the Effectiveness of Conservative Treatment, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Suraja A Akhmedova
- Department of Forecasting the Effectiveness of Conservative Treatment, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Karina A Fomicheva
- Department of Translation Oncology, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Maxim Y Shkurnikov
- Department of Translation Oncology, P. Hertsen Moscow Oncological Research Institute, National Medical Research Centre of Radiology, Moscow, Russian Federation
| | - Alexandra Y Portyannikova
- Laboratory of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Oncological Centre, Moscow, Russian Federation
| | - Andrey D Kaprin
- National Medical Research Centre of Radiology, Moscow, Russian Federation
| |
Collapse
|
14
|
Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells 2019; 8:cells8070724. [PMID: 31311198 PMCID: PMC6679214 DOI: 10.3390/cells8070724] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Adipose derived stromal/stem cells (ASCs) hold potential as cell therapeutics for a wide range of disease states; however, many expansion protocols rely on the use of fetal bovine serum (FBS) as a cell culture nutrient supplement. The current study explores the substitution of lysates from expired human platelets (HPLs) as an FBS substitute. METHODS Expired human platelets from an authorized blood center were lysed by freeze/thawing and used to examine human ASCs with respect to proliferation using hematocytometer cell counts, colony forming unit-fibroblast (CFU-F) frequency, surface immunophenotype by flow cytometry, and tri-lineage (adipocyte, chondrocyte, osteoblast) differentiation potential by histochemical staining. RESULTS The proliferation assays demonstrated that HPLs supported ASC proliferation in a concentration dependent manner, reaching levels that exceeded that observed in the presence of 10% FBS. The concentration of 0.75% HPLs was equivalent to 10% FBS when utilized in cell culture media with respect to proliferation, immunophenotype, and CFU-F frequency. When added to osteogenic, adipogenic, and chondrogenic differentiation media, both supplements showed appropriate differentiation by staining. CONCLUSION HPLs is an effective substitute for FBS in the culture, expansion and differentiation of human ASCs suitable for pre-clinical studies; however, additional assays and analyses will be necessary to validate HPLs for clinical applications and regulatory approval.
Collapse
|
15
|
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L, Sopena JJ. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int J Mol Sci 2019; 20:ijms20123105. [PMID: 31242644 PMCID: PMC6627452 DOI: 10.3390/ijms20123105] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
16
|
Zhao C, Qazvini NT, Sadati M, Zeng Z, Huang S, De La Lastra AL, Zhang L, Feng Y, Liu W, Huang B, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Athiviraham A, Lee MJ, Wolf JM, Reid RR, Tirrell M, Huang W, de Pablo JJ, He TC. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8749-8762. [PMID: 30734555 PMCID: PMC6407040 DOI: 10.1021/acsami.8b19094] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Effective bone tissue engineering can restore bone and skeletal functions that are impaired by traumas and/or certain medical conditions. Bone is a complex tissue and functions through orchestrated interactions between cells, biomechanical forces, and biofactors. To identify ideal scaffold materials for effective mesenchymal stem cell (MSC)-based bone tissue regeneration, here we develop and characterize a composite nanoparticle hydrogel by combining carboxymethyl chitosan (CMCh) and amorphous calcium phosphate (ACP) (designated as CMCh-ACP hydrogel). We demonstrate that the CMCh-ACP hydrogel is readily prepared by incorporating glucono δ-lactone (GDL) into an aqueous dispersion or rehydrating the acidic freeze-dried nanoparticles in a pH-triggered controlled-assembly fashion. The CMCh-ACP hydrogel exhibits excellent biocompatibility and effectively supports MSC proliferation and cell adhesion. Moreover, while augmenting BMP9-induced osteogenic differentiation, the CMCh-ACP hydrogel itself is osteoinductive and induces the expression of osteoblastic regulators and bone markers in MSCs in vitro. The CMCh-ACP scaffold markedly enhances the efficiency and maturity of BMP9-induced bone formation in vivo, while suppressing bone resorption occurred in long-term ectopic osteogenesis. Thus, these results suggest that the pH-responsive self-assembled CMCh-ACP injectable and bioprintable hydrogel may be further exploited as a novel scaffold for osteoprogenitor-cell-based bone tissue regeneration.
Collapse
Affiliation(s)
- Chen Zhao
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Nader Taheri Qazvini
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Monirosadat Sadati
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Shifeng Huang
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | | | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Wei Liu
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
- Department of Clinical
Laboratory Medicine, the Second Affiliated
Hospital of Nanchang University, Nanchang 330031, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department
of Orthopaedic Surgery, the Second Hospital
of Lanzhou University, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Chongqing Hospital
of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Xiangya
Second Hospital of Central South University, Changsha 410011, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Bo Liu
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Yan Lei
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400021, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department
of Orthopaedic Surgery, the Second Hospital
of Lanzhou University, Lanzhou 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Clinical Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Matthew Tirrell
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wei Huang
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- E-mail: . Tel/Fax: (86) 23-89011212 (W.H.)
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
- E-mail: (J.J.d.P)
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- E-mail: . Tel: (773) 702-7169. Fax: (773) 834-4598 (T.-C.H.)
| |
Collapse
|
17
|
Wang J, Liao Y, Xia J, Wang Z, Mo X, Feng J, He Y, Chen X, Li Y, Lu F, Cai J. Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res Ther 2019; 10:42. [PMID: 30678729 PMCID: PMC6345005 DOI: 10.1186/s13287-019-1140-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Background Hypertrophic scars cause cosmetic and functional problems for patients, and their treatment remains challenging. Mechanical micronization of adipose tissue can remove adipocytes and concentrate functional cells. Stromal vascular fraction (SVF)-gel is obtained by a series of simple mechanical processes, including shifting between syringes and centrifugation. This study aimed to assess the therapeutic effect of SVF-gel on hypertrophic scars. Methods A model of hypertrophic scars was established in rabbit ears. SVF-gel and SVF cells were obtained from rabbit inguinal fat pads and injected into scars. Phosphate-buffered saline (PBS) was used as a control. Scars were structurally characterized by histologic and immunohistochemical analyses. Expression of inflammatory and fibrogenic genes was evaluated. Results Hypertrophic scars became less visible and softer following injection of SVF-gel or SVF cells. Dermal thickness was significantly lower in the groups treated with SVF-gel and SVF cells than in the PBS-treated group. Treatment with SVF-gel restored subcutaneous fat tissue in scars, while treatment with SVF cells and PBS did not. Injection of SVF-gel and SVF cells reduced macrophage infiltration in the dermal layer and decreased mRNA expression of interleukin-6 and monocyte chemoattractant protein-1. In addition, the level of myofibroblasts and collagen deposition were reduced in the groups treated with SVF-gel and SVF cells. Conclusions SVF-gel has therapeutic effects on hypertrophic scars. Injection of SVF-gel into hypertrophic scars restores subcutaneous fat tissue and reduces the levels of macrophages and myofibroblasts; thus, it decreased the dermal thickness of the scar.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Xia
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zijue Wang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaopei Mo
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingwei Feng
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunfan He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xihang Chen
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Nordberg RC, Wang H, Wu Q, Loboa EG. Corin is a key regulator of endochondral ossification and bone development via modulation of vascular endothelial growth factor A expression. J Tissue Eng Regen Med 2018; 12:2277-2286. [PMID: 30352487 DOI: 10.1002/term.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
Abstract
Corin has been studied extensively within the vascular system and is known to regulate blood pressure. We have shown that corin is one of the most highly upregulated genes during osteogenic differentiation of human adipose-derived stem cells (hASCs). This study tested the hypothesis that, through modulation of angiogenic signalling pathways, corin is a critical regulator of osteogenic differentiation and endochondral ossification. In vitro, corin expression in hASC was suppressed via siRNA knockdown and vascular endothelial growth factor A (VEGF-A) expression was quantified via reverse transcription polymerase chain reaction. In vivo, a murine corin knockout model (female, 10 weeks) was used to determine the effect of corin deficiency on long bone development. Wild-type and corin knockout long bones were compared via haematoxylin and eosin staining to assess tissue characteristics and cellular organization, three-point bending to assess mechanical characteristics, and immunohistochemistry to visualize VEGF-A expression patterns. Corin knockdown significantly (p < 0.05) increased VEGF-A mRNA expression during osteogenic differentiation. In vivo, corin knockout reduced tibial growth plate thickness (p < 0.01) and severely diminished the hypertrophic region. Corin knockout femurs had significantly increased stiffness (p < 0.01) and maximum loads (p < 0.01) but reduced postyield deflections (p < 0.01). In corin knockout mice, VEGF-A expression was increased near the growth plate but was reduced throughout the tibial shaft and distal head of the tibiae. This is the first study to show that corin is a key regulator of bone development by modulation of VEGF-A expression. Further elucidation of this mechanism will aid in the development of optimized bone tissue engineering and regenerative medicine therapies.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Hao Wang
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Qingyu Wu
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
20
|
Osteogenic Effect and Cell Signaling Activation of Extremely Low-Frequency Pulsed Electromagnetic Fields in Adipose-Derived Mesenchymal Stromal Cells. Stem Cells Int 2018; 2018:5402853. [PMID: 30123287 PMCID: PMC6079332 DOI: 10.1155/2018/5402853] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 11/27/2022] Open
Abstract
Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) devices have been used in the clinic for the treatment of bone disorders over the past 30 years. However, the underlying mechanism of which ELF-PEMFs exert an effect on tissues at a cellular level is not well understood. Hence, in this study, we explored the potential of different ELF-PEMF signals in modulating human adipose-derived mesenchymal stromal cells' (hAMSC) osteogenic capability. The cell proliferation rate was assessed using carboxyfluorescein succinimidyl ester (CFSE) method. The osteogenesis potential of cells was determined by alkaline phosphatase (ALP) activity, Alizarin-Red S staining, and RT-qPCR. Finally, the intracellular signaling pathway of a selected ELF-PEMF signal was examined using the PathScan Intracellular Signaling Array. Among the tested ELF-PEMF signals, program 20 (26 Hz) showed activation of the Akt and MAPK/ERK signaling cascade and significant upregulations of collagen I, alkaline phosphatase, and osteocalcin when compared to nonstimulated cells. This study demonstrates the potential of certain ELF-PEMF signal parameters to induce osteogenic differentiation of hAMSC and provides important clues in terms of the molecular mechanisms for the stimulation of osteogenic effects by ELF-PEMF on hAMSC.
Collapse
|
21
|
Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, Shu Y, Zhu Y, Duan C, Bishop E, Lei J, Zhang W, Yang C, Wu K, Wu Y, An L, Huang S, Ji X, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, Ameer GA, Reid RR, He TC, Huang W. Thermoresponsive Citrate-Based Graphene Oxide Scaffold Enhances Bone Regeneration from BMP9-Stimulated Adipose-Derived Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2943-2955. [PMID: 30906855 PMCID: PMC6425978 DOI: 10.1021/acsbiomaterials.8b00179] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges as more than 1.6 million bone grafts are done annually in the United States. Successful bone tissue engineering needs minimally three critical constituents: osteoprogenitor cells, osteogenic factors, and osteoinductive/osteoconductive scaffolds. Osteogenic progenitors are derived from multipotent mesenchymal stem cells (MSCs), which can be prepared from numerous tissue sources, including adipose tissue. We previously showed that BMP9 is the most osteogenic BMP and induces robust bone formation of immortalized mouse adipose-derived MSCs entrapped in a citrate-based thermoresponsive hydrogel referred to as PPCNg. As graphene and its derivatives emerge as promising biomaterials, here we develop a novel thermosensitive and injectable hybrid material by combining graphene oxide (GO) with PPCNg (designated as GO-P) and characterize its ability to promote bone formation. We demonstrate that the thermoresponsive behavior of the hybrid material is maintained while effectively supporting MSC survival and proliferation. Furthermore, GO-P induces early bone-forming marker alkaline phosphatase (ALP) and potentiates BMP9-induced expression of osteogenic regulators and bone markers as well as angiogenic factor VEGF in MSCs. In vivo studies show BMP9-transduced MSCs entrapped in the GO-P scaffold form well-mineralized and highly vascularized trabecular bone. Thus, these results indicate that GO-P hybrid material may function as a new biocompatible, injectable scaffold with osteoinductive and osteoconductive activities for bone regeneration.
Collapse
Affiliation(s)
- Chen Zhao
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Nader Taheri Qazvini
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xinyi Yu
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elliot Bishop
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, Illinois 60637, United States
| | - Jiayan Lei
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated University-Town Hospital of Chongqing Medical University, 55 Daxuecheng Zhonglu, Chongqing 401331, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Immunology and Microbiology, Beijing University of Chinese Medicine, 11 N. Third Ring Road E., Beijing 100029, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Shifeng Huang
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Cheng Gong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, 8 Daxue Road, Yichang 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Wei Liu
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yixiao Feng
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, 35 Jianxin East Road, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, 139 Renmin Road, Changsha 410011, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Leonardo Oliveira
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Surgery, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, Illinois 60616, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, Illinois 60637, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Wei Huang
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
22
|
Chen C, Tang Q, Zhang Y, Yu M, Jing W, Tian W. Physioxia: a more effective approach for culturing human adipose-derived stem cells for cell transplantation. Stem Cell Res Ther 2018; 9:148. [PMID: 29793517 PMCID: PMC5968705 DOI: 10.1186/s13287-018-0891-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023] Open
Abstract
Background Although typically cultured at an atmospheric oxygen concentration (20–21%), adipose-derived stem cells (ASCs) reside under considerable low oxygen tension (physioxia) in vivo. In the present study, we explored whether and how physioxia could be a more effective strategy for culturing ASCs for transplantation. Methods After isolation, human ASCs were cultured under physioxia (2% O2) and hyperoxia (20% O2) until assayed. WST-8, Transwell, tube formation, β-galactosidase staining, and annexin V-FITC/PI assays were used to evaluate cell proliferation, migration, angiogenesis, senescence, and apoptosis, respectively. Survivability was determined by an ischemia model in vitro and nude mouse model in vivo, and the underlying metabolic alterations were investigated by fluorescence staining, flow cytometry, and real-time polymerase chain reaction. Results Compared with those in the hyperoxia group, cells in the physioxia group exhibited increased proliferation, migration, and angiogenesis, and decreased senescence and apoptosis. The increased survival rate of ASCs cultured in physioxia was found both in ischemia model in vitro and in vivo. The underlying metabolic reprogramming was also monitored and showed decreased mitochondrial mass, alkalized intracellular pH, and increased glucose uptake and glycogen synthesis. Conclusions These results suggest that physioxia is a more effective environment in which to culture ASCs for transplantation owing to the maintenance of native bioactivities without injury by hyperoxia.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
23
|
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102:3981-3994. [PMID: 29564526 PMCID: PMC5895685 DOI: 10.1007/s00253-018-8912-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| |
Collapse
|
24
|
Zhou H, Zhu J, Liu M, Wu Q, Dong N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:973-982. [PMID: 28714548 DOI: 10.1002/term.2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potency to differentiate into chondrocytes, osteocytes and adipocytes. Corin is a cardiac protease that activates the natriuretic peptides, thereby regulating blood volume and pressure. In addition to the heart, corin gene upregulation was reported in bone marrow- and adipose tissue-derived MSCs that underwent osteogenic differentiation. To date, the biological significance of corin expression in MSC differentiation remains unknown. In this study we isolated and cultured human bone marrow-derived MSCs that were capable of undergoing chondrogenic, osteogenic and adipogenic lineage differentiation. By reverse transcription polymerase chain reaction (RT-PCR) and immunostaining, we found that corin expression was upregulated when these MSCs underwent chondrogenic, osteogenic and adipogenic differentiation. The upregulation of corin expression was most significant in the cells undergoing chondrogenic lineage differentiation. Silencing corin gene expression by small hairpin RNA in the MSCs inhibited chondrogenic, but not osteogenic and adipogenic, differentiation. These results suggest a novel function of corin in MSC differentiation and chondrocyte development.
Collapse
Affiliation(s)
- Haibin Zhou
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinsong Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Remodeling the Human Adult Stem Cell Niche for Regenerative Medicine Applications. Stem Cells Int 2017; 2017:6406025. [PMID: 29090011 PMCID: PMC5635271 DOI: 10.1155/2017/6406025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
The interactions between stem cells and their surrounding microenvironment are pivotal to determine tissue homeostasis and stem cell renewal or differentiation and regeneration in vivo. Ever since they were postulated in 1978, stem cell niches have been identified and characterized in many germline and adult tissues. Comprehensive studies over the last decades helped to clarify the critical components of stem cell niches that include cellular, extracellular, biochemical, molecular, and physical regulators. This knowledge has direct impact on their inherent regenerative potential. Clinical applications demand readily available cell sources that, under controlled conditions, provide a specific therapeutic function. Thus, translational medicine aims at optimizing in vitro or in vivo the various components and complex architecture of the niche to exploit its therapeutic potential. Accordingly, the objective is to recreate the natural niche microenvironment during cell therapy process development and closely comply with the requests of regulatory authorities. In this paper, we review the most recent advances of translational medicine approaches that target the adult stem cell natural niche microenvironment for regenerative medicine applications.
Collapse
|
26
|
Brini AT, Amodeo G, Ferreira LM, Milani A, Niada S, Moschetti G, Franchi S, Borsani E, Rodella LF, Panerai AE, Sacerdote P. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep 2017; 7:9904. [PMID: 28851944 PMCID: PMC5575274 DOI: 10.1038/s41598-017-09487-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
Painful neuropathy is one of the complications of diabetes mellitus that adversely affects patients'quality of life. Pharmacological treatments are not fully satisfactory, and novel approaches needed. In a preclinical mouse model of diabetes the effect of both human mesenchymal stromal cells from adipose tissue (hASC) and their conditioned medium (hASC-CM) was evaluated. Diabetes was induced by streptozotocin. After neuropathic hypersensitivity was established, mice were intravenously injected with either 1 × 106 hASC or with CM derived from 2 × 106 hASC. Both hASC and CM (secretome) reversed mechanical, thermal allodynia and thermal hyperalgesia, with a rapid and long lasting effect, maintained up to 12 weeks after treatments. In nerves, dorsal root ganglia and spinal cord of neuropathic mice we determined high IL-1β, IL-6 and TNF-α and low IL-10 levels. Both treatments restored a correct pro/antinflammatory cytokine balance and prevented skin innervation loss. In spleens of streptozotocin-mice, both hASC and hASC-CM re-established Th1/Th2 balance that was shifted to Th1 during diabetes. Blood glucose levels were unaffected although diabetic animals regained weight, and kidney morphology was recovered by treatments. Our data show that hASC and hASC-CM treatments may be promising approaches for diabetic neuropathic pain, and suggest that cell effect is likely mediated by their secretome.
Collapse
Affiliation(s)
- Anna T Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Lorena M Ferreira
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Anna Milani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Giorgia Moschetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Luigi F Rodella
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Alberto E Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
27
|
Chen C, Tang Q, Zhang Y, Dai M, Jiang Y, Wang H, Yu M, Jing W, Tian W. Metabolic reprogramming by HIF-1 activation enhances survivability of human adipose-derived stem cells in ischaemic microenvironments. Cell Prolif 2017; 50. [PMID: 28752896 DOI: 10.1111/cpr.12363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Poor cell survival severely limits the beneficial effect of adipose-derived stem cell (ADSC)-based therapy for disease treatment and tissue regeneration, which might be caused by the attenuated level of hypoxia-inducible factor-1 (HIF-1) in these cells after having been cultured in 21% ambient oxygen in vitro for weeks. In this study, we explored the role of pre-incubation in dimethyloxalylglycine (DMOG, HIF-1 activator) in the survivability of human ADSCs in a simulated ischaemic microenvironment in vitro and in vivo. The underlying mechanism and angiogenesis were also studied. MATERIALS AND METHODS Survivability of ADSCs was determined in a simulated ischaemic model in vitro and a nude mouse model in vivo. Cell metabolism and angiogenesis were investigated by tube formation assay, flow cytometry, fluorescence staining and real-time polymerase chain reaction (RT-PCR) after DMOG treatment. RESULTS The results of the experimental groups showed significant enhancement of ADSC survivability in a simulated ischaemic microenvironment in vitro and transplanted model in vivo. Study of the underlying mechanisms suggested that the improved cell survival was regulated by HIF-1-induced metabolic reprogramming including decreased reactive oxygen species, increased intracellular pH, enhanced glucose uptake and increased glycogen synthesis. Tube formation assay revealed higher angiogenic ability in the DMOG-treated group than that in control group. CONCLUSIONS The promotion of HIF-1 level in ADSCs induced by DMOG preconditioning suggests a potential strategy for improving the outcome of cell therapy due to increased survival and angiogenic ability.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minjia Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yichen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Rodriguez J, Pratta AS, Abbassi N, Fabre H, Rodriguez F, Debard C, Adobati J, Boucher F, Mallein-Gerin F, Auxenfans C, Damour O, Mojallal A. Evaluation of Three Devices for the Isolation of the Stromal Vascular Fraction from Adipose Tissue and for ASC Culture: A Comparative Study. Stem Cells Int 2017; 2017:9289213. [PMID: 28321259 PMCID: PMC5340940 DOI: 10.1155/2017/9289213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem/stromal cells (ASCs) reside in the stromal vascular fraction (SVF) of adipose tissue (AT) and can be easily isolated. However, extraction of the SVF from lipoaspirate is a critical step in generating ASC, and semiautomated devices have been developed to enhance the efficacy and reproducibility of the outcomes and to decrease manipulation and contamination. In this study, we compared the reference method used in our lab for SVF isolation from lipoaspirate, with three medical devices: GID SVF-1™, Puregraft™, and Stem.pras®. Cell yield and their viability were evaluated as well as their phenotype with flow cytometry. Further on, we determined their proliferative potential using population doublings (PD), PD time (PDT), and clonogenicity assay (CFU-F). Finally, we checked their genetic stability using RT-qPCR for TERT mRNA assay and karyotyping as well as their multilineage potential including adipogenic, chondrogenic, and osteogenic differentiation. Our results demonstrate that all the devices allow the production of SVF cells with consistent yield and viability, in less time than the reference method. Expanded cells from the four methods showed no significant differences in terms of phenotype, proliferation capabilities, differentiation abilities, and genetic stability.
Collapse
Affiliation(s)
- Jonathan Rodriguez
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
- Lyon University, CarMeN Laboratory, INSERM U1060, 69008 Lyon, France
| | - Anne-Sophie Pratta
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
| | - Nacira Abbassi
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
| | - Hugo Fabre
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR CNRS 5305, Université Lyon 1, Lyon, France
- Laboratory for Regenerative Technologies, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Fanny Rodriguez
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
| | - Cyrille Debard
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
| | - Jacqueline Adobati
- Laboratoire Central d'Anatomie Pathologique, Hôpital Édouard Herriot, Lyon, France
| | - Fabien Boucher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Croix Rousse Hospital, Hospices Civils de Lyon, University of Lyon, UCBL1, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR CNRS 5305, Université Lyon 1, Lyon, France
| | - Céline Auxenfans
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
| | - Odile Damour
- Banque de Tissus et Cellules, Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, Pavillon I, 69437 Lyon, France
| | - Ali Mojallal
- Lyon University, CarMeN Laboratory, INSERM U1060, 69008 Lyon, France
- Department of Plastic, Reconstructive and Aesthetic Surgery, Croix Rousse Hospital, Hospices Civils de Lyon, University of Lyon, UCBL1, Lyon, France
| |
Collapse
|
29
|
Nordberg RC, Charoenpanich A, Vaughn CE, Griffith EH, Fisher MB, Cole JH, Spang JT, Loboa EG. Enhanced cellular infiltration of human adipose-derived stem cells in allograft menisci using a needle-punch method. J Orthop Surg Res 2016; 11:132. [PMID: 27793202 PMCID: PMC5084349 DOI: 10.1186/s13018-016-0467-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Background The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Methods Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Results Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. Conclusions The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, 911 Oval Drive, EB III suite 4208, Box 7115, Raleigh, NC, 27695, USA
| | - Adisri Charoenpanich
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, 911 Oval Drive, EB III suite 4208, Box 7115, Raleigh, NC, 27695, USA
| | - Christopher E Vaughn
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, 911 Oval Drive, EB III suite 4208, Box 7115, Raleigh, NC, 27695, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, 2311 Stinson Drive, Box 8203, Raleigh, NC, 27695, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, 911 Oval Drive, EB III suite 4208, Box 7115, Raleigh, NC, 27695, USA.,Department of Orthopaedics, University of North Carolina School of Medicine, 3141 Bioinformatics Building, Chapel Hill, NC, 27599, USA
| | - Jacqueline H Cole
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, 911 Oval Drive, EB III suite 4208, Box 7115, Raleigh, NC, 27695, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, 3141 Bioinformatics Building, Chapel Hill, NC, 27599, USA
| | - Elizabeth G Loboa
- College of Engineering, University of Missouri, W1051 Thomas & Neil Lafferre Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
30
|
Kagami H. Potential application of tissue engineering for the reconstruction of facial bones. Oral Dis 2016; 23:689-691. [DOI: 10.1111/odi.12581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- H Kagami
- Department of Oral and Maxillofacial Surgery; School of Dentistry; Matsumoto Dental University; Shiojiri
- Department of Advanced Medical Science; IMSUT Hospital; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
31
|
Lee GH, Park YE, Cho M, Park H, Park JY. Magnetic force-assisted self-locking metallic bead array for fabrication of diverse concave microwell geometries. LAB ON A CHIP 2016; 16:3565-3575. [PMID: 27509885 DOI: 10.1039/c6lc00661b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spheroid cell culture is very useful for further understanding cellular behavior including motility and biochemical reaction since it mimics three-dimensional (3D) in vivo organ tissue. Among previously proposed various methods for spheroid production, such as hanging drop and spinner flask, microwell is a recently developed method harnessing microtechnology to produce uniform-sized spheroids. Although soft-lithography has been popular for creating microwell arrays, a 3D spherical geometry has been regarded as difficult to fabricate using conventional methods, or often requires complex fabrication processes and expensive equipment. Here, we propose a new method for fabricating concave microwells for cell spheroid production and culture. To demonstrate this method, we fabricated a 30 × 30 microwell array in 3 × 3 cm plates, utilizing metal beads, a through-hole array, and an assembly of small magnets. The spherical metal beads were used as a mold for the microwell, naturally creating the desired 3D concave microwell geometry. One of the key ideas was to place and hold each metal bead in the designated through-hole using the small magnet array. We also performed computational simulation of the magnetostatic force to design and observe the magnetic force field in detail. In addition, to provide a practical demonstration of the proposed system in cell biology, we created and cultured adipose-derived stem cell spheroids for 14 days for chondrogenic differentiation. This method allows further variations in microwell geometry that will enhance the method's applicability as a helpful tool for various studies in cell biology, cancer research, and tissue engineering.
Collapse
Affiliation(s)
- Gi-Hun Lee
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | | | | | | | | |
Collapse
|
32
|
Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, Wang X, Tang S, Liu H, Fan J, Zhang F, Farina EM, Mohammed MM, Song D, Liao J, Huang J, Guo D, Lu M, Liu F, Liu J, Li L, Ma C, Hu X, Lee MJ, Reid RR, Ameer GA, Zhou D, He T. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res 2016; 8:3710-3730. [PMID: 27725853 PMCID: PMC5040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.
Collapse
Affiliation(s)
- Shun Lu
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Xin Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Hao Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Fugui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Evan M Farina
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Maryam M Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiayi Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Dan Guo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Minpeng Lu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jianxiang Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & TechnologyWuhan 430022, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Russell R Reid
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
- Department of Surgery, Feinberg School of MedicineChicago, IL 60616, USA
| | - Dongsheng Zhou
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
33
|
Nitkin CR, Bonfield TL. Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements. Stem Cells Transl Med 2016; 6:539-565. [PMID: 28191766 PMCID: PMC5442806 DOI: 10.5966/sctm.2015-0427] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a potentially revolutionary therapy for a wide variety of pediatric diseases, but the optimal cell-based therapeutics for such diversity have not yet been specified. The published clinical trials for pediatric pulmonary, cardiac, orthopedic, endocrine, neurologic, and hematologic diseases provide evidence that MSCs are indeed efficacious, but the significant heterogeneity in therapeutic approaches between studies raises new questions. The purpose of this review is to stimulate new preclinical and clinical trials to investigate these factors. First, we discuss recent clinical trials for pediatric diseases studying MSCs obtained from bone marrow, umbilical cord and umbilical cord blood, placenta, amniotic fluid, and adipose tissue. We then identify factors, some unique to pediatrics, which must be examined to optimize therapeutic efficacy, including route of administration, dose, timing of administration, the role of ex vivo differentiation, cell culture techniques, donor factors, host factors, and the immunologic implications of allogeneic therapy. Finally, we discuss some of the practicalities of bringing cell-based therapy into the clinic, including regulatory and manufacturing considerations. The aim of this review is to inform future studies seeking to maximize therapeutic efficacy for each disease and for each patient. Stem Cells Translational Medicine 2017;6:539-565.
Collapse
Affiliation(s)
- Christopher R. Nitkin
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Tracey L. Bonfield
- Division of Pulmonology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Nordberg RC, Zhang J, Griffith EH, Frank MW, Starly B, Loboa EG. Electrical Cell-Substrate Impedance Spectroscopy Can Monitor Age-Grouped Human Adipose Stem Cell Variability During Osteogenic Differentiation. Stem Cells Transl Med 2016; 6:502-511. [PMID: 28191763 PMCID: PMC5442814 DOI: 10.5966/sctm.2015-0404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/28/2016] [Indexed: 01/01/2023] Open
Abstract
Human adipose stem cells (hASCs) are an attractive cell source for bone tissue engineering applications. However, a critical issue to be addressed before widespread hASC clinical translation is the dramatic variability in proliferative capacity and osteogenic potential among hASCs isolated from different donors. The goal of this study was to test our hypothesis that electrical cell-substrate impedance spectroscopy (ECIS) could track complex bioimpedance patterns of hASCs throughout proliferation and osteogenic differentiation to better understand and predict variability among hASC populations. Superlots composed of hASCs from young (aged 24-36 years), middle-aged (aged 48-55 years), and elderly (aged 60-81 years) donors were seeded on gold electrode arrays. Complex impedance measurements were taken throughout proliferation and osteogenic differentiation. During osteogenic differentiation, four impedance phases were identified: increase, primary stabilization, drop phase, and secondary stabilization. Matrix deposition was first observed 48-96 hours after the impedance maximum, indicating, for the first time, that ECIS can identify morphological changes that correspond to late-stage osteogenic differentiation. The impedance maximum was observed at day 10.0 in young, day 6.1 in middle-aged, and day 1.3 in elderly hASCs, suggesting that hASCs from younger donors require a longer time to differentiate than do hASCs from older donors, but young hASCs proliferated more and accreted more calcium long-term. This is the first study to use ECIS to predict osteogenic potential of multiple hASC populations and to show that donor age may temporally control onset of osteogenesis. These findings could be critical for development of patient-specific bone tissue engineering and regenerative medicine therapies. Stem Cells Translational Medicine 2017;6:502-511.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Jianlei Zhang
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Emily H. Griffith
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew W. Frank
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Binil Starly
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G. Loboa
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- University of Missouri College of Engineering, Columbia, Missouri, USA
| |
Collapse
|
35
|
Osinga R, Di Maggio N, Todorov A, Allafi N, Barbero A, Laurent F, Schaefer DJ, Martin I, Scherberich A. Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification. Stem Cells Transl Med 2016; 5:1090-7. [PMID: 27334490 PMCID: PMC4954448 DOI: 10.5966/sctm.2015-0256] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED : Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. Unlike bone marrow-derived stromal cells (also known as bone marrow-derived mesenchymal stromal/stem cells), adipose-derived stromal cells (ASC) have so far failed to form a bone organ by ECO. The goal of the present study was to assess whether priming human ASC to a defined stage of chondrogenesis in vitro allows their autonomous ECO upon ectopic implantation. ASC were cultured either as micromass pellets or into collagen sponges in chondrogenic medium containing transforming growth factor-β3 and bone morphogenetic protein-6 for 4 weeks (early hypertrophic templates) or for two additional weeks in medium supplemented with β-glycerophosphate, l-thyroxin, and interleukin1-β to induce hypertrophic maturation (late hypertrophic templates). Constructs were implanted in vivo and analyzed after 8 weeks. In vitro, ASC deposited cartilaginous matrix positive for glycosaminoglycans, type II collagen, and Indian hedgehog. Hypertrophic maturation induced upregulation of type X collagen, bone sialoprotein, and matrix metalloproteinase13 (MMP13). In vivo, both early and late hypertrophic templates underwent cartilage remodeling, as assessed by MMP13- and tartrate-resistant acid phosphatase-positive staining, and developed bone ossicles, including bone marrow elements, although to variable degrees of efficiency. In situ hybridization for human-specific sequences and staining with a human specific anti-CD146 antibody demonstrated the direct contribution of ASC to bone and stromal tissue formation. In conclusion, despite their debated skeletal progenitor nature, human ASC can generate bone organs through ECO when suitably primed in vitro. SIGNIFICANCE Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. This study demonstrated that expanded, human adult adipose-derived stromal cells can generate ectopic bone through ECO, as previously reported for bone marrow stromal cells. This system can be used as a model in a variety of settings for mimicking ECO during development, physiology, or pathology (e.g., to investigate the role of BMPs, their receptors, and signaling pathways). The findings have also translational relevance in the field of bone regeneration, which, despite several advances in the domains of materials and surgical techniques, still faces various limitations before being introduced in the routine clinical practice.
Collapse
Affiliation(s)
- Rik Osinga
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital of Basel, Basel, Switzerland Laboratory of Tissue Engineering, Department of Surgery, University Hospital of Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Laboratory of Tissue Engineering, Department of Surgery, University Hospital of Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Atanas Todorov
- Laboratory of Tissue Engineering, Department of Surgery, University Hospital of Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nima Allafi
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Andrea Barbero
- Laboratory of Tissue Engineering, Department of Surgery, University Hospital of Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Frédéric Laurent
- Department of Biomedicine, University of Basel, Basel, Switzerland Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dirk Johannes Schaefer
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Ivan Martin
- Laboratory of Tissue Engineering, Department of Surgery, University Hospital of Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Department of Surgery, University Hospital of Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Gimble JM, Ray SP, Zanata F, Wu X, Wade J, Khoobehi K, Ferreira LM, Bunnell BA. Adipose Derived Cells and Tissues for Regenerative Medicine. ACS Biomater Sci Eng 2016; 3:1477-1482. [DOI: 10.1021/acsbiomaterials.6b00261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Stephen P. Ray
- Cancer
Treatment Center, Midwestern Regional Medical Center, Zion, Illinois 60099, United States
| | - Fabiana Zanata
- Universidade Federal São Paulo, São
Paulo 04021-001, Brazil
| | - Xiying Wu
- LaCell LLC, New Orleans, Louisiana 70112, United States
| | - James Wade
- Plastic Surgery Consultants, Baton Rouge, Louisiana 70808, United States
| | - Kamran Khoobehi
- Khoobehi and Associates, Metairie, Louisiana 70002, United States
| | | | - Bruce A. Bunnell
- Department
of Pharmacology, Tulane University School of Medicine, New Orleans Louisiana 70112, United States
- Tulane National Primate Research Center, Covington, Louisiana 70433, United States
| |
Collapse
|
37
|
Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis. Cell Transplant 2016; 25:937-50. [DOI: 10.3727/096368915x690288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hwan-Wun Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
38
|
Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, Annett G, Torrest A, Deng P, Gutierrez J, Nacey C, Pepper K, Kalomoiris S, D Anderson J, McGee J, Gruenloh W, Fury B, Bauer G, Duffy A, Tempkin T, Wheelock V, Nolta JA. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models. Mol Ther 2016; 24:965-77. [PMID: 26765769 PMCID: PMC4881765 DOI: 10.1038/mt.2016.12] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/05/2015] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.
Collapse
Affiliation(s)
- Kari Pollock
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Heather Dahlenburg
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Haley Nelson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle D Fink
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Whitney Cary
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle Hendrix
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Geralyn Annett
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Audrey Torrest
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Peter Deng
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Joshua Gutierrez
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Catherine Nacey
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Karen Pepper
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Stefanos Kalomoiris
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Johnathon D Anderson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Jeannine McGee
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - William Gruenloh
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Brian Fury
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Gerhard Bauer
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Alexandria Duffy
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Theresa Tempkin
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|