1
|
Yan B, Chen H, Yan L, Yuan Q, Guo L. Cryopreserved Umbilical Cord Mesenchymal Stem Cells Show Comparable Effects to Un-Cryopreserved Cells in Treating Osteoarthritis. Cell Transplant 2025; 34:9636897241297631. [PMID: 39874109 PMCID: PMC11776000 DOI: 10.1177/09636897241297631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 01/30/2025] Open
Abstract
Non-cryo and hypothermic preservations are two available options for short-term storage of living cells. For long-term cell storage, cryopreservation is an essential procedure as it prolongs the storage time, allowing for the transport and testing of cells, as well as the establishment of cell banks. But it is unclear whether cryopreservation reduces the therapeutic effects of human umbilical cord mesenchymal stem cells (hucMSCs) on osteoarthritis (OA). To investigate this, we compared the basic biological characteristics and the anti-OA efficacy of un-cryopreserved hucMSCs (UC-MSCs) and cryopreserved hucMSCs (C-MSCs). A mono-iodoacetate-induced rat OA model was established to evaluate the anti-OA properties of UC-MSCs and C-MSCs. And the conditioned medium of UC-MSCs (UC-CM) and cell freezing medium of C-MSCs (C-CFM) were collected for the mechanism study. No significant differences were found between UC-MSCs and C-MSCs in cell viability, immunophenotype, and trilineage differentiation capacity. In vivo, UC-MSCs and C-MSCs exhibited similar cartilage-repairing effects by attenuating pain and alleviating pathological changes in OA rat joints. In vitro, C-CFM and UC-CM promoted the proliferation of chondrocytes, improved the expression of anabolism-related molecules (Col2, COL2, and SOX9), and decreased the expression of catabolism-related molecules (Adamts5, Mmp13, Il6, COL10, and MMP13). These results indicated that UC-MSCs and C-MSCs had comparable anti-OA effects, and cryopreservation did not alter the anti-OA capability of hucMSCs, which provides further support for clinical use of C-MSCs in treating OA.
Collapse
Affiliation(s)
- Bo Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Huixin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Qiang Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Le Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| |
Collapse
|
2
|
Della Rosa G, Gostynska N, Ephraim JW, Marras S, Moroni M, Tirelli N, Panuccio G, Palazzolo G. Magnesium vs. sodium alginate as precursors of calcium alginate: Mechanical differences and advantages in the development of functional neuronal networks. Carbohydr Polym 2024; 342:122375. [PMID: 39048194 DOI: 10.1016/j.carbpol.2024.122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
Calcium alginate is one of the most widely employed matrices in regenerative medicine. A downside is its heterogeneity, due to the poorly controllable character of the gelation of sodium alginate (NaAlg), i.e. the commonly used alginate salt, with calcium. Here, we have used magnesium alginate (MgAlg) as an alternative precursor of calcium alginate. MgAlg coils, more compact and thus less entangled than those of NaAlg, allow for an easier diffusion of calcium ions, whereas Mg is exchanged with calcium more slowly than Na; this allows for the formation of a material (Ca(Mg)Alg) with a more reversible creep behaviour than Ca(Na)Alg, due to a more homogeneous - albeit lower - density of elastically active cross-links. We also show that Ca(Mg)Alg supports better than Ca(Na)Alg the network development and function of embedded (rat cortical) neurons: they show greater neurite extension and branching at 7 and 21 days (Tubb3 and Map2 immunofluorescence) and better neuronal network functional maturation / more robust and longer-lasting activity, probed by calcium imaging and microelectrode array electrophysiology. Overall, our results unveil the potential of MgAlg as bioactive biomaterial for enabling the formation of functional neuron-based tissue analogues.
Collapse
Affiliation(s)
- Giulia Della Rosa
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy; University of Pavia, Department of Molecular Medicine, Pavia, Italy.
| | - Natalia Gostynska
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| | - John W Ephraim
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| | - Sergio Marras
- Istituto Italiano di Tecnologia, Materials Characterization Facility, Genova, Italy.
| | | | - Nicola Tirelli
- Istituto Italiano di Tecnologia, Laboratory for Polymers and Biomaterials, Genova, Italy.
| | - Gabriella Panuccio
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| | - Gemma Palazzolo
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| |
Collapse
|
3
|
Marquis M, Zykwinska A, Novales B, Leroux I, Schleder C, Pichon J, Cuenot S, Rouger K. Human muscle stem cell responses to mechanical stress into tunable 3D alginate matrices. Int J Biol Macromol 2024; 266:130823. [PMID: 38492703 DOI: 10.1016/j.ijbiomac.2024.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Preclinical data acquired for human muscle stem (hMuStem) cells indicate their great repair capacity in the context of muscle injury. However, their clinical potential is limited by their moderate ability to survive after transplantation. To overcome these limitations, their encapsulation within protective environment would be beneficial. In this study, tunable calcium-alginate hydrogels obtained through molding method using external or internal gelation were investigated as a new strategy for hMuStem cell encapsulation. The mechanical properties of these hydrogels were characterized in their fully hydrated state by compression experiments using Atomic Force Microscopy. Measured elastic moduli strongly depended on the gelation mode and calcium/alginate concentrations. Values ranged from 1 to 12.5 kPa and 3.9 to 25 kPa were obtained for hydrogels prepared following internal and external gelation, respectively. Also, differences in mechanical properties of hydrogels resulted from their internal organization, with an isotropic structure for internal gelation, while external mode led to anisotropic one. It was further shown that viability, morphological and myogenic differentiation characteristics of hMuStem cells incorporated within alginate hydrogels were preserved after their release. These results highlight that hMuStem cells encapsulated in calcium-alginate hydrogels maintain their functionality, thus allowing to develop muscle regeneration protocols to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Mélanie Marquis
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France.
| | - Agata Zykwinska
- Ifremer, MASAE, Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Bruno Novales
- INRAE, BIA, Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Isabelle Leroux
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Cindy Schleder
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Julien Pichon
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 44322 Nantes cedex 3, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| |
Collapse
|
4
|
Windisch J, Reinhardt O, Duin S, Schütz K, Rodriguez NJN, Liu S, Lode A, Gelinsky M. Bioinks for Space Missions: The Influence of Long-Term Storage of Alginate-Methylcellulose-Based Bioinks on Printability as well as Cell Viability and Function. Adv Healthc Mater 2023; 12:e2300436. [PMID: 37125819 PMCID: PMC11468998 DOI: 10.1002/adhm.202300436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource-consuming preparatory step already on Earth and transport a bioink cartridge "ready to use" to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS-2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.
Collapse
Affiliation(s)
- Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Olena Reinhardt
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Nuria Juliana Novoa Rodriguez
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| |
Collapse
|
5
|
Parihar A, Kumar A, Panda U, Khan R, Parihar DS, Khan R. Cryopreservation: A Comprehensive Overview, Challenges, and Future Perspectives. Adv Biol (Weinh) 2023; 7:e2200285. [PMID: 36755194 DOI: 10.1002/adbi.202200285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Cryopreservation is the most prevalent method of long-term cell preservation. Effective cell cryopreservation depends on freezing, adequate storage, and correct thawing techniques. Recent advances in cryopreservation techniques minimize the cellular damage which occurs while processing samples. This article focuses on the fundamentals of cryopreservation techniques and how they can be implemented in a variety of clinical settings. The article presents a brief description of each of the standard cryopreservation procedures, such as slow freezing and vitrification. Alongside that, the membrane permeating and nonpermeating cryoprotectants are briefly discussed, along with current advancements in the field of cryopreservation and variables influencing the cryopreservation process. The diminution of cryoinjury incurred by the cell via the resuscitation process will also be highlighted. In the end application of cryopreservation techniques in many fields, with a special emphasis on stem cell preservation techniques and current advancements presented. Furthermore, the challenges while implementing cryopreservation and the futuristic scope of the fields are illustrated herein. The content of this review sheds light on various ways to enhance the output of the cell preservation process and minimize cryoinjury while improving cell revival.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127, India
| | - Udwesh Panda
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127, India
| | - Rukhsar Khan
- Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | | | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| |
Collapse
|
6
|
Liu K, Wang L, Li D, Yan S, Li J, Yi X, Sun Y, Li Y, Zhang X, Qi F, Zheng Y, He Z, Wang D, Ma Y, Liang J, Fu Q. Extracellular Matrix-Mimetic Peptide Scaffolds Prolonged the Hypothermic Preservation of Stem Cells for Storage and Transportation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:684-696. [PMID: 36592343 DOI: 10.1021/acsami.2c20456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Encouraging advances in both regenerative medicine and tissue engineering with stem cells require a short-term preservation protocol to provide enough time for quality control or the transportation of cell products from manufacturing facilities to clinical destinations. The hypothermic preservation of stem cells under refrigerated conditions (2-8 °C) in their specific culture medium provides an alternative and low-cost method for cryopreservation or commercial preservation fluid for short-term storage. However, most stem cells are vulnerable to hypothermia, which might result in cell damage from the cooling process and the lack of extracellular matrix (ECM). Herein, we report a peptide scaffold cell-culture-medium additive for mimicking in vivo ECM to enhance the storage efficiency of mesenchymal stem cells (MSCs) under hypothermic preservation. Peptide scaffolds exhibit protective effects against hypothermic injury by maintaining the viability, proliferation, migration, and differentiation capabilities of cells. The mechanistic study showed that the peptide scaffold was conducive to maintain mitochondrial function by retaining mitochondrial respiration, mitochondrial membrane potential (ΔΨm), and mass to alleviate intracellular and mitochondrial reactive oxygen species (ROS) production. Moreover, the peptide scaffold also prolonged the survival and retained the multipotency of hematopoietic stem and progenitor cells (HSPCs) under hypothermic conditions. In conclusion, these results demonstrate a feasible and convenient preservation system for stem cells that has the potential to promote the clinical application of hematopoietic stem cell therapy.
Collapse
Affiliation(s)
- Kun Liu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lei Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Dongdong Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Shaoduo Yan
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Jiayao Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyang Yi
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Yunfeng Sun
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanhong Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Xuan Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fengying Qi
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yizhe Zheng
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zixin He
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Donggen Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Yuyuan Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiuxia Fu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Science, 27(1) Taiping Road, Beijing 100850, China
| |
Collapse
|
7
|
Kostenko A, Connon CJ, Swioklo S. Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010023. [PMID: 36671596 PMCID: PMC9854877 DOI: 10.3390/bioengineering10010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Over the last decade, progress in three dimensional (3D) bioprinting has advanced considerably. The ability to fabricate complex 3D structures containing live cells for drug discovery and tissue engineering has huge potential. To realise successful clinical translation, biologistics need to be considered. Refinements in the storage and transportation process from sites of manufacture to the clinic will enhance the success of future clinical translation. One of the most important components for successful 3D printing is the 'bioink', the cell-laden biomaterial used to create the printed structure. Hydrogels are favoured bioinks used in extrusion-based bioprinting. Alginate, a natural biopolymer, has been widely used due to its biocompatibility, tunable properties, rapid gelation, low cost, and easy modification to direct cell behaviour. Alginate has previously demonstrated the ability to preserve cell viability and function during controlled room temperature (CRT) storage and shipment. The novelty of this research lies in the development of a simple and cost-effective hermetic system whereby alginate-encapsulated cells can be stored at CRT before being reformulated into an extrudable bioink for on-demand 3D bioprinting of cell-laden constructs. To our knowledge the use of the same biomaterial (alginate) for storage and on-demand 3D bio-printing of cells has not been previously investigated. A straightforward four-step process was used where crosslinked alginate containing human adipose-derived stem cells was stored at CRT before degelation and subsequent mixing with a second alginate. The printability of the resulting bioink, using an extrusion-based bioprinter, was found to be dependent upon the concentration of the second alginate, with 4 and 5% (w/v) being optimal. Following storage at 15 °C for one week, alginate-encapsulated human adipose-derived stem cells exhibited a high viable cell recovery of 88 ± 18%. Stored cells subsequently printed within 3D lattice constructs, exhibited excellent post-print viability and even distribution. This represents a simple, adaptable method by which room temperature storage and biofabrication can be integrated for on-demand bioprinting.
Collapse
Affiliation(s)
- Anastassia Kostenko
- Atelerix Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK
- International Centre for Life, Faculty of Medicine, Bioscience Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Che J. Connon
- Atelerix Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK
- International Centre for Life, Faculty of Medicine, Bioscience Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
- Correspondence: ; Tel.: +44-(0)-191-241-8623
| | - Stephen Swioklo
- Atelerix Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK
| |
Collapse
|
8
|
Hypothermic Preservation of Adipose-Derived Mesenchymal Stromal Cells as a Viable Solution for the Storage and Distribution of Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120805. [PMID: 36551011 PMCID: PMC9774331 DOI: 10.3390/bioengineering9120805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.
Collapse
|
9
|
Heydarzadeh S, Kia SK, Boroomand S, Hedayati M. Recent Developments in Cell Shipping Methods. Biotechnol Bioeng 2022; 119:2985-3006. [PMID: 35898166 DOI: 10.1002/bit.28197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/09/2022] [Accepted: 07/17/2022] [Indexed: 11/11/2022]
Abstract
As opposed to remarkable advances in the cell therapy industry, researches reveal inexplicable difficulties associated with preserving and post-thawing cell death. Post cryopreservation apoptosis is a common occurrence that has attracted the attention of scientists to use apoptosis inhibitors. Transporting cells without compromising their survival and function is crucial for any experimental cell-based therapy. Preservation of cells allows the safe transportation of cells between distances and improves quality control testing in clinical and research applications. The vitality of transported cells is used to evaluate the efficacy of transportation strategies. For many decades, the conventional global methods of cell transfer were not only expensive but also challenging and had adverse effects. The first determination of some projects is optimizing cell survival after cryopreservation. The new generation of cryopreservation science wishes to find appropriate and alternative methods for cell transportation to ship viable cells at an ambient temperature without dry ice or in media-filled flasks. The diversity of cell therapies demands new cell shipping methodologies and cryoprotectants. In this review, we tried to summarize novel improved cryopreservation methods and alternatives to cryopreservation with safe and viable cell shipping at ambient temperature, including dry preservation, hypothermic preservation, gel-based methods, encapsulation methods, fibrin microbeads, and osmolyte solution compositions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran.,Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Kheradmand Kia
- Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, The Netherlands
| | - Seti Boroomand
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehdi Hedayati
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
12
|
Feyzmanesh S, Halvaei I, Baheiraei N. Alginate Effects on Human Sperm Parameters during Freezing and Thawing: A Prospective Study. CELL JOURNAL 2022; 24:417-423. [PMID: 36043410 PMCID: PMC9428473 DOI: 10.22074/cellj.2022.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The main goal was to evaluate the effects of alginate on human sperm parameters during cryopreservation. MATERIALS AND METHODS In this prospective study, twenty-five normozoospermic samples were divided into two groups, encapsulated with 1% alginate and the control group. The samples were then frozen by rapid freezing. Different sperm parameters including motility, normal morphology, viability, acrosome reaction, and DNA integrity, were examined before freezing and after thawing. RESULTS All sperm parameters had a significant decrease after thawing compared to before freezing. Our data showed a significant decrease in sperm motility of the alginate group but sperm viability, normal morphology, and DNA fragmentation were similar between the two groups. However, the rates of intact acrosome and native DNA were significantly lower in the control group compared to the alginate group (45.12 ± 11.1 vs. 55.25 ± 10.69 and 52.2 ± 11.92 vs. 68.12 ± 10.15, respectively, P<0.05). CONCLUSION It seems that alginate can prevent premature acrosome reaction and protect sperm DNA from denaturation during the rapid freezing process.
Collapse
Affiliation(s)
- Somayeh Feyzmanesh
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,P.O.Box: 14115-331Department of Anatomical SciencesFaculty of Medical SciencesTarbiat Modares UniversityTehranIranP.O.Box: 14115-331Tissue Engineering and Applied Cell Sciences DivisionDepartment of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
Emails: ,
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat
Modares University, Tehran, Iran,P.O.Box: 14115-331Department of Anatomical SciencesFaculty of Medical SciencesTarbiat Modares UniversityTehranIranP.O.Box: 14115-331Tissue Engineering and Applied Cell Sciences DivisionDepartment of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
Emails: ,
| |
Collapse
|
13
|
Piao Z, Park JK, Park SJ, Jeong B. Hypothermic Stem Cell Storage Using a Polypeptide Thermogel. Biomacromolecules 2021; 22:5390-5399. [PMID: 34855378 DOI: 10.1021/acs.biomac.1c01472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a polypeptide-based thermogel as a new tool for hypothermic storage of stem cells at ambient temperature (25 °C). Stem cells were suspended in the sol state (10 °C) of an aqueous poly(ethylene glycol)-poly(l-alanine) (PEG-PA) solution (4.0 wt %) in phosphate-buffered saline (PBS), which turned into a stem cell-incorporated gel by a heat-induced sol-to-gel transition. The cell harvesting procedure from the thermogels was simply performed through a gel-to-sol transition by diluting and cooling the system. More than 99% of stem cells died in PBS and Pluronic F127 thermogel (control thermogel) when the cells were stored at 25 °C for 7 days. The cell recovery rate from the PEG-PA thermogel (64%) was significantly greater than that from the commercially available HypoThermosol FRS preservation solution (HTS) (26%). Additionally, the surviving stem cells from the PEG-PA thermogel were healthier than those from HTS in terms of (1) expression of stemness biomarkers (NANOG, OCT4, and SOX2), (2) proliferation rate, and (3) differentiation potentials into osteogenic, chondrogenic, and adipogenic lineages. Membrane stabilization was suggested as a cell protection mechanism in the cytocompatible PEG-PA thermogel. The PEG-PA thermogel provides a convenient cytocompatible way for the storage and recovery of cells and thus is a promising tool for the transportation and short-term banking of cells.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
14
|
Sharma R, Kumari M, Mishra S, Chaudhary DK, Kumar A, Avni B, Tiwari S. Exosomes Secreted by Umbilical Cord Blood-Derived Mesenchymal Stem Cell Attenuate Diabetes in Mice. J Diabetes Res 2021; 2021:9534574. [PMID: 34926699 PMCID: PMC8683199 DOI: 10.1155/2021/9534574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an innovative approach in diabetes due to its capacity to modulate tissue microenvironment and regeneration of glucose-responsive insulin-producing cells. In this study, we investigated the role of MSC-derived exosomes in pancreatic regeneration and insulin secretion in mice with streptozotocin-induced diabetes. Mesenchymal stem cells (MSCs) were isolated and characterized from umbilical cord blood (UCB). Exosomes were isolated and characterized from these MSCs. Diabetes was induced in male C57Bl/6 mice by streptozotocin (STZ; 40 mg/kg body weight, i.p.) for five consecutive days. The diabetic mice were administered (i.v.) with MSC (1 × 105 umbilical cord blood MSC cells/mice/day), their derived exosomes (the MSC-Exo group that received exosomes derived from 1 × 105 MSC cells/mice/day), or the same volume of PBS. Before administration, the potency of MSCs and their exosomes was evaluated in vitro by T cell activation experiments. After day 7 of the treatments, blood samples and pancreatic tissues were collected. Histochemistry was performed to check cellular architecture and β cell regeneration. In body weight, blood glucose level, and insulin level, cell proliferation assay was done to confirm regeneration of cells after MSC and MSC-Exo treatments. Hyperglycemia was also attenuated in these mice with a concomitant increase in insulin production and an improved histological structure compared to mice in the PBS-treated group. We found increased expression of genes associated with tissue regeneration pathways, including Reg2, Reg3, and Amy2b in the pancreatic tissue of mice treated with MSC or MSC-Exo relative to PBS-treated mice. MicroRNA profiling of MSC-derived exosomes showed the presence of miRs that may facilitate pancreatic regeneration by regulating the Extl3-Reg-cyclinD1 pathway. These results demonstrate a potential therapeutic role of umbilical cord blood MSC-derived exosomes in attenuating insulin deficiency by activating pancreatic islets' regenerative abilities.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manju Kumari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Suman Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Dharmendra K. Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Alok Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
15
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
16
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
17
|
Woods WA, Chowdhury F, Tzerakis N, Adams CF, Chari DM. Developing a New Strategy for Delivery of Neural Transplant Populations Using Precursor Cell Sprays and Specialized Cell Media. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- William A. Woods
- Neural Tissue Engineering Group School of Medicine Keele University ST5 5BG UK
| | - Farhana Chowdhury
- Neural Tissue Engineering Group School of Medicine Keele University ST5 5BG UK
| | - Nikolaos Tzerakis
- Department of Neurosurgery University Hospital of North Midlands ST4 6QG UK
| | | | - Divya M. Chari
- Neural Tissue Engineering Group School of Medicine Keele University ST5 5BG UK
| |
Collapse
|
18
|
Stem cell sprays for neurological injuries: a perspective. Emerg Top Life Sci 2021; 5:519-522. [PMID: 34096585 DOI: 10.1042/etls20210113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Injuries to the brain and spinal cord have major clinical consequences with high costs for healthcare systems. Neural cell transplantation therapies have significant translational potential to promote regeneration post-injury with clinical trials commencing for various pathologies. However, there are challenges associated with current clinical approaches used for systemic or direct delivery of transplant cells to neural tissue in regenerative applications. These include risks associated with surgical microinjection into neural tissue (e.g. haemorrhage, cell clumping) and high cell loss due to systemic clearance or with cell passage through fine gauge needles into densely packed neural tissue. This article presents lines of evidence supporting the concept that cell spray delivery technology can offer significant translational benefits for neural transplantation therapy, versus current cell delivery methods. Potential benefits include rapid/homogenous cell delivery, release over large surface areas, minimal invasiveness, compatibility with neurosurgical procedures in acute injury, no predictable clinical complications and the capacity to combine cell therapies with drug/biomolecule delivery. Accordingly, we consider that the development of cell spray delivery technology represents a key goal to develop advanced cell therapies for regenerative neurology.
Collapse
|
19
|
Song WW, Qian ZG, Liu H, Chen HF, Kaplan DL, Xia XX. On-Demand Regulation of Dual Thermosensitive Protein Hydrogels. ACS Macro Lett 2021; 10:395-400. [PMID: 35549223 DOI: 10.1021/acsmacrolett.1c00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite considerable progress having been made in thermosensitive protein hydrogels, regulating their thermal transitions remains a challenge due to the intricate molecular structures and interactions of the underlying protein polymers. Here we report a genetic fusion strategy to tune the unique dual thermal transitions of the C-terminal domain (CTD) of spider major ampullate spidroin 1, and explore the regulation mechanism by biophysical characterization and molecular dynamics simulations. We found that the fusion of elastin-like polypeptides (ELPs) tuned the dual transition temperatures of CTD to a physiologically relevant window, by introducing extra hydrogen bonding at low temperatures and hydrophobic interactions at high temperatures. The resulting hydrogels constructed from the fusion proteins were demonstrated to be a promising vehicle for cell preservation and delivery. This study provides insights on the regulation of the dual thermosensitive protein hydrogels and suggests a potential application of the hydrogels for consolidated cell storage and delivery.
Collapse
Affiliation(s)
- Wen-Wen Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
20
|
Cell preservation methods and its application to studying rare disease. Mol Cell Probes 2021; 56:101694. [PMID: 33429040 DOI: 10.1016/j.mcp.2021.101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
The ability to preserve and transport human cells in a stable medium over long distances is critical to collaborative efforts and the advancement of knowledge in the study of human disease. This is particularly important in the study of rare diseases. Recently, advancements in the understanding of renal ciliopathies has been achieved via the use of patient urine-derived cells (UDCs). However, the traditional method of cryopreservation, although considered as the gold standard, can result in decreased sample viability of many cell types, including UDCs. Delays in transportation can have devastating effects upon the viability of samples, and may even result in complete destruction of cells following evaporation of dry ice or liquid nitrogen, leaving samples in cryoprotective agents, which are cytotoxic at room temperature. The loss of any patient sample in this manner is detrimental to research, however it is even more so when samples are from patients with a rare disease. In order to overcome the associated limitations of traditional practices, new methods of preservation and shipment, including cell encapsulation within hydrogels, and transport in specialised devices are continually being investigated. Here we summarise and compare traditional methods with emerging novel alternatives for the preservation and shipment of cells, and consider the effectiveness of such methods for use with UDCs to further enable the study and understanding of kidney diseases.
Collapse
|
21
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
22
|
Alió Del Barrio JL, Arnalich-Montiel F, De Miguel MP, El Zarif M, Alió JL. Corneal stroma regeneration: Preclinical studies. Exp Eye Res 2020; 202:108314. [PMID: 33164825 DOI: 10.1016/j.exer.2020.108314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Corneal grafting is one of the most common and successful forms of human tissue transplantation in the world, but the need for corneal grafting is growing and availability of human corneal donor tissue to fulfill this increasing demand is not assured worldwide. The stroma is responsible for many features of the cornea, including its strength, refractive power and transparency, so enormous efforts have been put into replicating the corneal stroma in the laboratory to find an alternative to classical corneal transplantation. Unfortunately this has not been yet accomplished due to the extreme difficulty in mimicking the highly complex ultrastructure of the corneal stroma, and none of the obtained substitutes that have been assayed has been able to replicate this complexity yet. In general, they can neither match the mechanical properties nor recreate the local nanoscale organization and thus the transparency and optical properties of a normal cornea. In this context, there is an increasing interest in cellular therapy of the corneal stroma using Induced Pluripotent Stem Cells (iPSCs) or mesenchymal stem cells (MSCs) from either ocular or extraocular sources, as they have proven to be capable of producing new collagen within the host stroma, modulate preexisting scars and enhance transparency by corneal stroma remodeling. Despite some early clinical data is already available, in the current article we will summary the available preclinical evidence about the topic corneal stroma regeneration. Both, in vitro and in vivo experiments in the animal model will be shown.
Collapse
Affiliation(s)
- Jorge L Alió Del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Arnalich-Montiel
- IRYCIS. Ophthalmology Department. Ramón y Cajal University Hospital, Madrid, Spain; Cornea Unit. Hospital Vissum Madrid (Miranza Group), Madrid, Spain
| | - María P De Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Research Institute, Madrid, Spain
| | | | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
23
|
Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, Farokhimanesh S, Mohammadi Amirabad L, Zarrintaj P, Saeb MR, Hamblin MR, Zare M, Mozafari M. Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomater Sci Eng 2020; 6:5096-5109. [DOI: 10.1021/acsbiomaterials.0c00988] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samila Farokhimanesh
- Department of Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Al-Jaibaji O, Swioklo S, Shortt A, Figueiredo FC, Connon CJ. Hypothermically Stored Adipose-Derived Mesenchymal Stromal Cell Alginate Bandages Facilitate Use of Paracrine Molecules for Corneal Wound Healing. Int J Mol Sci 2020; 21:ijms21165849. [PMID: 32823996 PMCID: PMC7461547 DOI: 10.3390/ijms21165849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (Ad-MSCs) may alleviate corneal injury through the secretion of therapeutic factors delivered at the injury site. We aimed to investigate the therapeutic factors secreted from hypothermically stored, alginate-encapsulated Ad-MSCs’ bandages in in vitro and in vivo corneal wounds. Ad-MSCs were encapsulated in 1.2% w/v alginate gels to form bandages and stored at 15 °C for 72 h before assessing cell viability and co-culture with corneal scratch wounds. Genes of interest, including HGF, TSG-6, and IGF were identified by qPCR and a human cytokine array kit used to profile the therapeutic factors secreted. In vivo, bandages were applied to adult male mice corneas following epithelial debridement. Bandages were shown to maintain Ad-MSCs viability during storage and able to indirectly improve corneal wound healing in vivo. Soluble protein concentration and paracrine factors such as TSG-6, HGF, IL-8, and MCP-1 release were greatest following hypothermic storage. In vivo, Ad-MSCs bandages-treated groups reduced immune cell infiltration when compared to untreated groups. In conclusion, bandages were shown to maintain Ad-MSCs ability to produce a cocktail of key therapeutic factors following storage and that these soluble factors can improve in vitro and in vivo corneal wound healing.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
| | - Stephen Swioklo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Atelerix Ltd., The Biosphere, Newcastle upon Tyne NE4 5BX, UK
| | - Alex Shortt
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Francisco C. Figueiredo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Che J. Connon
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Correspondence: ; Tel.: +44-(0)-191-241-8623
| |
Collapse
|
25
|
Zhang X, Cao Y, Zhao G. Hypothermic Storage of Human Umbilical Vein Endothelial Cells and Their Hydrogel Constructs. Biopreserv Biobank 2020; 18:305-310. [DOI: 10.1089/bio.2019.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Xiaozhang Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yuan Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
Paik KY, Kim KH, Park JH, Lee JI, Kim OH, Hong HE, Seo H, Choi HJ, Ahn J, Lee TY, Kim SJ. A novel antifibrotic strategy utilizing conditioned media obtained from miR-150-transfected adipose-derived stem cells: validation of an animal model of liver fibrosis. Exp Mol Med 2020; 52:438-449. [PMID: 32152450 PMCID: PMC7156430 DOI: 10.1038/s12276-020-0393-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
The limitations of stem cells have led researchers to investigate the secretome, which is the secretory materials in stem cells, since the principal mechanism of action of stem cells is mediated by the secretome. In this study, we determined the antifibrotic potential of the secretome released from miR-150-transfected adipose-derived stromal cells (ASCs). The secretome released from ASCs that were transfected with antifibrotic miR-150 was obtained (referred to as the miR-150 secretome). To validate the antifibrotic effects of the miR-150 secretome, we generated in vitro and in vivo models of liver fibrosis by treating human hepatic stellate cells (LX2 cells) with thioacetamide (TAA) and subcutaneous injection of TAA into mice, respectively. In the in vitro model, more significant reductions in the expression of fibrosis-related markers, such as TGFβ, Col1A1, and α-SMA, were observed by using the miR-150 secretome than the control secretome, specifically in TAA-treated LX2 cells. In the in vivo model, infusion of the miR-150 secretome into mice with liver fibrosis abrogated the increase in serum levels of systemic inflammatory cytokines, such as IL-6 and TNF-α, and induced increased expression of antifibrotic, proliferation, and antioxidant activity markers in the liver. Our in vitro and in vivo experiments indicate that the miR-150 secretome is superior to the naive secretome in terms of ameliorating liver fibrosis, minimizing systemic inflammatory responses, and promoting antioxidant enzyme expression. Therefore, we conclude that miR-150 transfection into ASCs has the potential to induce the release of secretory materials with enhanced antifibrotic, proliferative, and antioxidant properties. A mixture of molecules produced by genetically modified stem cells could help repair the damage associated with liver fibrosis. Fat-derived adipose stem cells (ASCs) secrete proteins and nucleic acids that can facilitate tissue regeneration, but the natural mixture of molecules secreted (the ‘secretome’) is insufficient to reverse advanced fibrosis. Researchers led by Say-June Kim of the Catholic University of Korea, Seoul, South Korea, have boosted the potency of this cell-derived treatment by engineering ASCs to produce an RNA called miR-150. This RNA inhibits biological processes that drive fibrosis. Experiments in cultured cells and a mouse model of fibrosis confirmed that miR-150 consistently improved the ASC secretome’s capacity to control liver fibrosis and minimize systemic inflammatory responses. This approach could thus offer a safe strategy for promoting tissue regeneration and preventing liver failure.
Collapse
Affiliation(s)
- Kwang Yeol Paik
- Department of Surgery, Yeouido St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Park
- Department of Surgery, Eunpeong St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Im Lee
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea.,Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Ha-Eun Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Haeyeon Seo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Yun Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Say-June Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea. .,Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Koh EY, You JE, Jung SH, Kim PH. Biological Function of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 6 for the Enhancement of Adipose-Derived Stem Cell Survival against Oxidative Stress. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.4.475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Eun-Young Koh
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Korea
| | - Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Korea
| | - Se-Hwa Jung
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Korea
| |
Collapse
|
28
|
Yang J, Gao L, Liu M, Sui X, Zhu Y, Wen C, Zhang L. Advanced Biotechnology for Cell Cryopreservation. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12209-019-00227-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCell cryopreservation has evolved as an important technology required for supporting various cell-based applications, such as stem cell therapy, tissue engineering, and assisted reproduction. Recent times have witnessed an increase in the clinical demand of these applications, requiring urgent improvements in cell cryopreservation. However, cryopreservation technology suffers from the issues of low cryopreservation efficiency and cryoprotectant (CPA) toxicity. Application of advanced biotechnology tools can significantly improve post-thaw cell survival and reduce or even eliminate the use of organic solvent CPAs, thus promoting the development of cryopreservation. Herein, based on the different cryopreservation mechanisms available, we provide an overview of the applications and achievements of various biotechnology tools used in cell cryopreservation, including trehalose delivery, hydrogel-based cell encapsulation technique, droplet-based cell printing, and nanowarming, and also discuss the associated challenges and perspectives for future development.
Collapse
|
29
|
A Novel Hepatic Anti-Fibrotic Strategy Utilizing the Secretome Released from Etanercept-Synthesizing Adipose-Derived Stem Cells. Int J Mol Sci 2019; 20:ijms20246302. [PMID: 31847135 PMCID: PMC6940971 DOI: 10.3390/ijms20246302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α)-driven inflammatory reaction plays a crucial role in the initiation of liver fibrosis. We herein attempted to design genetically engineered adipose-derived stem cells (ASCs) producing etanercept (a potent TNF-α inhibitor), and to determine the anti-fibrotic potential of the secretome released from the etanercept-synthesizing ASCs (etanercept-secretome). First, we generated the etanercept-synthesizing ASCs by transfecting the ASCs with mini-circle plasmids containing the gene insert encoding for etanercept. We subsequently collected the secretory material released from the etanercept-synthesizing ASCs and determined its anti-fibrotic effects both in vitro (in thioacetamide [TAA]-treated AML12 and LX2 cells) and in vivo (in TAA-treated mice) models of liver fibrosis. We observed that while etanercept-secretome increased the viability of the TAA-treated AML12 hepatocytes (p = 0.021), it significantly decreased the viability of the TAA-treated LX2 HSCs (p = 0.021). In the liver of mice with liver fibrosis, intravenous administration of the etanercept-secretome induced significant reduction in the expression of both fibrosis-related and inflammation-related markers compared to the control group (all Ps < 0.05). The etanercept-secretome group also showed significantly lower serum levels of liver enzymes as well as pro-inflammatory cytokines, such as TNF-α (p = 0.020) and IL-6 (p = 0.021). Histological examination of the liver showed the highest reduction in the degree of fibrosis in the entanercept-secretome group (p = 0.006). Our results suggest that the administration of etanercept-secretome improves liver fibrosis by inhibiting TNF-α-driven inflammation in the mice with liver fibrosis. Thus, blocking TNF-α-driven inflammation at the appropriate stage of liver fibrosis could be an efficient strategy to prevent fibrosis.
Collapse
|
30
|
Kim KH, Lee JI, Kim OH, Hong HE, Kwak BJ, Choi HJ, Ahn J, Lee TY, Lee SC, Kim SJ. Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells. World J Stem Cells 2019; 11:990-1004. [PMID: 31768225 PMCID: PMC6851007 DOI: 10.4252/wjsc.v11.i11.990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recently, the exclusive use of mesenchymal stem cell (MSC)-secreted molecules, called secretome, rather than cells, has been evaluated for overcoming the limitations of cell-based therapy, while maintaining its advantages. However, the use of naïve secretome may not fully satisfy the specificity of each disease. Therefore, it appears to be more advantageous to use the functionally reinforced secretome through a series of processes involving physico-chemical adjustments or genetic manipulation rather than to the use naïve secretome.
AIM To determine the therapeutic potential of the secretome released from miR-122-transfected adipose-derived stromal cells (ASCs).
METHODS We collected secretory materials released from ASCs that had been transfected with antifibrotic miR-122 (MCM) and compared their antifibrotic effects with those of the naïve secretome (CM). MCM and CM were intravenously administered to the mouse model of thioacetamide-induced liver fibrosis, and their therapeutic potentials were compared.
RESULTS MCM infusion provided higher therapeutic potential in terms of: (A) Reducing collagen content in the liver; (B) Inhibiting proinflammatory cytokines; and (C) Reducing abnormally elevated liver enzymes than the infusion of the naïve secretome. The proteomic analysis of MCM also indicated that the contents of antifibrotic proteins were significantly elevated compared to those in the naïve secretome.
CONCLUSION We could, thus, conclude that the secretome released from miR-122-transfected ASCs has higher antifibrotic and anti-inflammatory properties than the naïve secretome. Because miR-122 transfection into ASCs provides a specific way of potentiating the antifibrotic properties of ASC secretome, it could be considered as an enhanced method for reinforcing secretome effectiveness.
Collapse
Affiliation(s)
- Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, South Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Jae Im Lee
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, South Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Ha-Eun Hong
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Bong Jun Kwak
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Tae Yun Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, South Korea
| | - Say-June Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
31
|
Encapsulation of human limbus-derived stromal/mesenchymal stem cells for biological preservation and transportation in extreme Indian conditions for clinical use. Sci Rep 2019; 9:16950. [PMID: 31740778 PMCID: PMC6861256 DOI: 10.1038/s41598-019-53315-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023] Open
Abstract
Human limbus-derived stromal/mesenchymal stem cells (hLMSC) can be one of the alternatives for the treatment of corneal scars. However, reliable methods of storing and transporting hLMSC remains a serious translational bottleneck. This study aimed to address these limitations by encapsulating hLMSC in alginate beads. Encapsulated hLMSC were kept in transit in a temperature-conditioned container at room temperature (RT) or stored at 4 °C for 3–5 days, which is the likely duration for transporting cells from bench-to-bedside. Non-encapsulated cells were used as controls. Post-storage, hLMSC were released from encapsulation, and viability-assessed cells were plated. After 48 and 96-hours in culture the survival, gene-expression and phenotypic characteristics of hLMSC were assessed. During transit, the container maintained an average temperature of 18.6 ± 1.8 °C, while the average ambient temperature was 31.4 ± 1.2 °C (p = 0.001). Encapsulated hLMSC under transit at RT were recovered with a higher viability (82.5 ± 0.9% and 76.9 ± 1.9%) after 3 (p = 0.0008) and 5-day storage (p = 0.0104) respectively as compared to 4 °C (65.2 ± 1.2% and 64.5 ± 0.8% respectively). Cells at RT also showed a trend towards greater survival-rates when cultured (74.3 ± 2.9% and 67.7 ± 9.8%) than cells stored at 4 °C (54.8 ± 9.04% and 52.4 ± 8.1%) after 3 and 5-days storage (p > 0.2). Non-encapsulated cells had negligible viability at RT and 4 °C. Encapsulated hLMSC (RT and 4 °C) maintained their characteristic phenotype (ABCG2, Pax6, CD90, p63-α, CD45, CD73, CD105, Vimentin and Collagen III). The findings of this study suggest that alginate encapsulation is an effective method of hLMSC preservation offering high cell viability over prolonged durations in transit at RT, therefore, potentially expanding the scope of cell-based therapy for corneal blindness.
Collapse
|
32
|
Chen R, Li L, Feng L, Luo Y, Xu M, Leong KW, Yao R. Biomaterial-assisted scalable cell production for cell therapy. Biomaterials 2019; 230:119627. [PMID: 31767445 DOI: 10.1016/j.biomaterials.2019.119627] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Cell therapy, the treatment of diseases using living cells, offers a promising clinical approach to treating refractory diseases. The global market for cell therapy is growing rapidly, and there is an increasing demand for automated methods that can produce large quantities of high quality therapeutic cells. Biomaterials can be used during cell production to establish a biomimetic microenvironment that promotes cell adhesion and proliferation while maintaining target cell genotype and phenotype. Here we review recent progress and emerging techniques in biomaterial-assisted cell production. The increasing use of auxiliary biomaterials and automated production methods provides an opportunity to improve quality control and increase production efficiency using standardized GMP-compliant procedures.
Collapse
Affiliation(s)
- Ruoyu Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ling Li
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lu Feng
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mingen Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Freitas-Ribeiro S, Carvalho AF, Costa M, Cerqueira MT, Marques AP, Reis RL, Pirraco RP. Strategies for the hypothermic preservation of cell sheets of human adipose stem cells. PLoS One 2019; 14:e0222597. [PMID: 31613935 PMCID: PMC6793945 DOI: 10.1371/journal.pone.0222597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Cell Sheet (CS) Engineering is a regenerative medicine strategy proposed for the treatment of injured or diseased organs and tissues. In fact, several clinical trials are underway using CS-based methodologies. However, the clinical application of such cell-based methodologies poses several challenges related with the preservation of CS structure and function from the fabrication site to the bedside. Pausing cells at hypothermic temperatures has been suggested as a valuable method for short-term cell preservation. In this study, we tested the efficiency of two preservation strategies, one using culture medium supplementation with Rokepie and the other using the preservation solution Hypothermosol, in preserving human adipose stromal/stem cells (hASC) CS-like confluent cultures at 4°C, during 3 and 7 days. Both preservation strategies demonstrated excellent ability to preserve cell function during the first 3 days in hypothermia, as demonstrated by metabolic activity results and assessment of extracellular matrix integrity and differentiation potential. At the end of the 7th day of hypothermic incubation, the decrease in cell metabolic activity was more evident for all conditions. Nonetheless, hASC incubated with Rokepie and Hypothermosol retained a higher metabolic activity and extracellular matrix integrity in comparison with unsupplemented cells. Differentiation results for the later time point showed that supplementation with both Rokepie and Hypothermosol rescued adipogenic differentiation potential but only Rokepie was able to preserve hASC osteogenic potential.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Filipa Carvalho
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marina Costa
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana Teixeira Cerqueira
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Pinto Marques
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rogério Pedro Pirraco
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
34
|
Wagner SG, Mähler C, Polte I, von Poschinger J, Löwe H, Kremling A, Pflüger-Grau K. An automated and parallelised DIY-dosing unit for individual and complex feeding profiles: Construction, validation and applications. PLoS One 2019; 14:e0217268. [PMID: 31216302 PMCID: PMC6583958 DOI: 10.1371/journal.pone.0217268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Since biotechnological research becomes more and more important for industrial applications, there is an increasing need for scalable and controllable laboratory procedures. A widely used approach in biotechnological research to improve the performance of a process is to vary the growth rates in order to find the right balance between growth and the production. This can be achieved by the application of a suitable feeding strategy. During this initial bioprocess development, it is beneficial to have at hand cheap and easy setups that work in parallel (e.g. in shaking flasks). Unfortunately, there is a gap between these easy setups and defined and controllable processes, which are necessary for up-scaling to an industrial relevant volume. One prerequisite to test and evaluate different process strategies apart from batch-mode is the availability of pump systems that allow for defined feeding profiles in shaking flasks. To our knowledge, there is no suitable dosing device on the market which fulfils the requirements of being cheap, precise, programmable, and parallelizable. Commercially available dosing units are either already integrated in bioreactors and therefore inflexible, or not programmable, or expensive, or a combination of those. Here, we present a LEGO-MINDSTORMS-based syringe pump, which has the potential of being widely used in daily laboratory routine due to its low price, programmability, and parallelisability. The acquisition costs do not exceed 350 € for up to four dosing units, that are independently controllable with one EV3 block. The system covers flow rates ranging from 0.7 μL min-1 up to 210 mL min-1 with a reliable flux. One dosing unit can convey at maximum a volume of 20 mL (using all 4 units even up to 80 mL in total) over the whole process time. The design of the dosing unit enables the user to perform experiments with up to four different growth rates in parallel (each measured in triplicates) per EV3-block used. We estimate, that the LEGO-MINDSTORMS-based dosing unit with 12 syringes in parallel is reducing the costs up to 50-fold compared to a trivial version of a commercial pump system (~1500 €) which fits the same requirements. Using the pump, we set the growth rates of a E. coli HMS174/DE3 culture to values between 0.1 and 0.4 h-1 with a standard deviation of at best 0.35% and an average discrepancy of 13.2%. Additionally, we determined the energy demand of a culture for the maintenance of the pTRA-51hd plasmid by quantifying the changes in biomass yield with different growth rates set. Around 25% of total substrate taken up is used for plasmid maintenance. To present possible applications and show the flexibility of the system, we applied a constant feed to perform microencapsulation of Pseudomonas putida and an individual dosing profile for the purification of a his-tagged eGFP via IMAC. This smart and versatile dosing unit, which is ready-to-use without any prior knowledge in electronics and control, is affordable for everyone and due to its flexibility and broad application range a valuable addition to the laboratory routine.
Collapse
Affiliation(s)
- Sabine G. Wagner
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
| | - Christoph Mähler
- TU Munich, Biochemical Engineering, Faculty of Mechanical Engineering, Garching, Germany
| | - Ingmar Polte
- TU Munich, Biochemical Engineering, Faculty of Mechanical Engineering, Garching, Germany
| | - Jeremy von Poschinger
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
| | - Hannes Löwe
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
| | - Andreas Kremling
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
- * E-mail:
| | | |
Collapse
|
35
|
Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, Zeuner MT, Tomkins JE, Denecke B, Musante L, Joch B, Debacq-Chainiaux F, Holthofer H, Ray S, Huber TB, Dengjel J, De Coppi P, Widera D, Patel K. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 2019; 10:116. [PMID: 30953537 PMCID: PMC6451311 DOI: 10.1186/s13287-019-1213-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair. METHODS Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source. RESULTS Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome. CONCLUSIONS Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.
Collapse
Affiliation(s)
- Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ben Mellows
- School of Biological Sciences, University of Reading, Reading, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
- Sheard BioTech Ltd, 20-22 Wenlock Road, London, N1 7GU UK
| | | | - Oliver Kretz
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King’s College, London, UK
| | - Marie-Theres Zeuner
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - James E. Tomkins
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, Aachen, Germany
| | - Luca Musante
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Barbara Joch
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Harry Holthofer
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Steve Ray
- Micregen, Alderley Edge, Manchester, UK
| | - Tobias B. Huber
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and Centre for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Joern Dengjel
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5909524. [PMID: 30805009 PMCID: PMC6360551 DOI: 10.1155/2019/5909524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.
Collapse
|
37
|
Cao Y, Zhao G, Panhwar F, Zhang X, Chen Z, Cheng L, Zang C, Liu F, Zhao Y, He X. The Unusual Properties of Polytetrafluoroethylene Enable Massive-Volume Vitrification of Stem Cells with Low-Concentration Cryoprotectants. ADVANCED MATERIALS TECHNOLOGIES 2019; 4:1800289. [PMID: 31448319 PMCID: PMC6707752 DOI: 10.1002/admt.201800289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 05/13/2023]
Abstract
Injectable stem cell-hydrogel constructs hold great potential for regenerative medicine and cell-based therapies. However, their clinical application is still challenging due to their short shelf-life at ambient temperature and the time-consuming fabrication procedure. Banking the constructs at cryogenic temperature may offer the possibility of "off-the-shelf" availability to end-users. However, ice formation during the cryopreservation process may compromise the construct quality and cell viability. Vitrification, cooling biological samples without apparent ice formation, has been explored to resolve the challenge. However, contemporary vitrification methods are limited to very small volume (up to ~0.25 ml) and/or need highly toxic and high concentration (up to ~8 M) of permeable cryoprotectants (pCPAs). Here, we show that polytetrafluoroethylene (PTFE, best known as Teflon for making non-stick cookware) capillary is flexible and unusually stable at a cryogenic temperature. By using the PTFE capillary as a flexible cryopreservation vessel together with alginate hydrogel microencapsulation and Fe3O4 nanoparticle-mediated nanowarming to suppress ice formation, massive-volume (10 ml) vitrification of cell-alginate hydrogel constructs with a low concentration (~2.5 M) of pCPA can be achieved. This may greatly facilitate the use of stem cell-based constructs for tissue regeneration and cell based therapies in the clinic.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaozhang Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Lin Cheng
- Department of Emergency Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chuanbao Zang
- Yinfeng Cryomedicine Technology Co., LTD, Jinan, China
| | - Feng Liu
- Yinfeng Cryomedicine Technology Co., LTD, Jinan, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Ge Q, Green DW, Lee DJ, Kim HY, Piao Z, Lee JM, Jung HS. Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect. Mol Cells 2018; 41:1016-1023. [PMID: 30590908 PMCID: PMC6315316 DOI: 10.14348/molcells.2018.1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/18/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to upregulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.
Collapse
Affiliation(s)
- Qing Ge
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - David William Green
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou,
China
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul,
Korea
| |
Collapse
|
39
|
Biopolymer gels as a basis of cryoprotective medium for testicular tissue of rats. Cell Tissue Bank 2018; 19:819-826. [PMID: 30465307 DOI: 10.1007/s10561-018-9740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
Cryopreservation of testis tissue is a promising approach to save fertility in prepubertal boys under going gonadotoxic cancer therapies. The using biopolymers as a basis of cryoprotective medium can be effective for the optimization of cryopreservation protocols of immature testicular tissue. The research purpose was to determine morphological parameters and metabolic activity of seminiferous tubules of immature rat testes under exposure to cryoprotective solution (DMSO) based on collagen or fibrin gels (CG or FG) as one of the first stages of developing the cryopreservation protocol. It was found that 30-min exposure of tissue samples to CG and FG with 0.6 M DMSO did not impair the spermatogenic epithelium and metabolic activity of the cells (MTT test and total lactate dehydrogenase activity). The use of FG at the time of exposure of 45 min did not lead to significant changes in the metabolic activity in contrast to other groups. The findings could be used to substantiate and develop the effective techniques for cryopreservation of immature seminiferous tubules.
Collapse
|
40
|
Lu J, Zhu LF, Cai YM, Dong HY, Zhu L, Tan JM. Isolation and multipotential differentiation of mesenchymal stromal cell‑like progenitor cells from human bladder. Mol Med Rep 2018; 19:187-194. [PMID: 30431114 PMCID: PMC6297775 DOI: 10.3892/mmr.2018.9646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Various types of mesenchymal stromal cells (MSCs) have been used in urological tissue engineering but to date the existence of MSCs has not been reported in the human bladder. The present study provided evidence that a small number of MSC‑like cells exist in the human bladder and designated this class of cells 'human bladder‑derived MSC‑like cells' (hBSCs). It was demonstrated that hBSCs can be cultured to yield a large population. These hBSCs expressed the surface markers of MSCs and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. On induction with appropriate media in vitro, hBSCs could differentiate into bladder‑associated cell types, including urothelial, endothelial and smooth muscle cell‑like lineages. In addition, the average telomerase activity of adult hBSCs was higher compared with adult human bone marrow‑derived MSCs, but lower than that of human umbilical cord Wharton's jelly‑derived MSCs. These findings may inspire future studies on the role of hBSCs in urological tissue engineering applications and in other fields.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Ling-Feng Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Yuan-Ming Cai
- College of Basic Medical, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Hui-Yue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Ling Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Jian-Ming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
41
|
Alió del Barrio JL, Alió JL. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies. EYE AND VISION (LONDON, ENGLAND) 2018; 5:28. [PMID: 30410944 PMCID: PMC6211455 DOI: 10.1186/s40662-018-0122-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Cellular therapy of the corneal stroma, with either ocular or extraocular stem cells, has been gaining a lot of interest over the last decade. Multiple publications from different research groups are showing its potential benefits in relation to its capacity to improve or alleviate corneal scars, improve corneal transparency in metabolic diseases by enhancing the catabolism of the accumulated molecules, generate new organized collagen within the host stroma, and its immunosuppressive and immunomodulatory properties. Autologous extraocular stem cells do not require a healthy contralateral eye and they do not involve any ophthalmic procedures for their isolation. Mesenchymal stem cells have been the most widely assayed and have the best potential to differentiate into functional adult keratocytes in vivo and in vitro. While embryonic stem cells have been partially abandoned due to ethical implications, the discovery of the induced pluripotent stem cells (iPSC) has opened a new and very promising field for future research as they are pluripotent cells with the capacity to theoretically differentiate into any cell type, with the special advantage that they are obtained from adult differentiated cells. Cellular delivery into the corneal stroma has been experimentally assayed in vivo in multiple ways: systemic versus local injections with or without a carrier. Encouraging preliminary human clinical data is already available although still very limited, and further research is necessary in order to consolidate the clinical applications of this novel therapeutic line.
Collapse
Affiliation(s)
- Jorge L. Alió del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
- Vissum, Instituto Oftalmologico de Alicante, Avda de Denia s/n, 03016 Alicante, Spain
| | - Jorge L. Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum Corporación, Alicante, Spain
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
42
|
Al-Jaibaji O, Swioklo S, Gijbels K, Vaes B, Figueiredo FC, Connon CJ. Alginate encapsulated multipotent adult progenitor cells promote corneal stromal cell activation via release of soluble factors. PLoS One 2018; 13:e0202118. [PMID: 30192833 PMCID: PMC6128465 DOI: 10.1371/journal.pone.0202118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/28/2018] [Indexed: 01/26/2023] Open
Abstract
To reduce the increasing need for corneal transplantation, attempts are currently aiming to restore corneal clarity, one potent source of cells are multipotent adult progenitor cells (MAPC®). These cells release a powerful cocktail of paracrine factors that can guide wound healing and tissue regeneration. However, their role in corneal regeneration has been overlooked. Thus, we sought to explore the potential of combining the cytoprotective storage feature of alginate, with MAPC to generate a storable cell-laden gel for corneal wound healing. 72 hours following hypothermic storage, alginate encapsulation was shown to maintain MAPC viability at either 4 or 15°C. Encapsulated MAPC (2 x106 cells/mL) stored at 15°C presented the optimum temperature that allowed for cell recovery. These cells had the ability to reattach to tissue culture plastic whilst exhibiting normal phenotype and this was maintained in serum-free and xenobiotic-free medium. Furthermore, corneal stromal cells presented a significant decrease in scratch-wounds in the presence of alginate encapsulated MAPC compared to a no-cell control (p = 0.018). This study shows that immobilization of MAPC within an alginate hydrogel does not hinder their ability to affect a secondary cell population via soluble factors and that these effects are successfully retained following hypothermic storage.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stephen Swioklo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Che J. Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res 2018; 5:7. [PMID: 29502528 PMCID: PMC6389246 DOI: 10.1186/s40779-018-0154-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023] Open
Abstract
The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.
Collapse
Affiliation(s)
- Chinedu Cletus Ude
- Bio-artifical Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - Azizi Miskon
- Bio-artifical Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Pre-clinical Block, National University of Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Muhamad Bin Abu Bakar
- Bio-artifical Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Zhao G, Liu X, Zhu K, He X. Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs. Adv Healthc Mater 2017; 6:10.1002/adhm.201700988. [PMID: 29178480 PMCID: PMC5729581 DOI: 10.1002/adhm.201700988] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/30/2017] [Indexed: 01/08/2023]
Abstract
Core-shell structured stem cell microencapsulation in hydrogel has wide applications in tissue engineering, regenerative medicine, and cell-based therapies because it offers an ideal immunoisolative microenvironment for cell delivery and 3D culture. Long-term storage of such microcapsules as cell-biomaterial constructs by cryopreservation is an enabling technology for their wide distribution and ready availability for clinical transplantation. However, most of the existing studies focus on cryopreservation of single cells or cells in microcapsules without a core-shell structure (i.e., hydrogel beads). The goal of this study is to achieve cryopreservation of stem cells encapsulated in core-shell microcapsules as cell-biomaterial constructs or biocomposites. To this end, a capillary microfluidics-based core-shell alginate hydrogel encapsulation technology is developed to produce porcine adipose-derived stem cell-laden microcapsules for vitreous cryopreservation with very low concentration (2 mol L-1 ) of cell membrane penetrating cryoprotective agents (CPAs) by suppressing ice formation. This may provide a low-CPA and cost-effective approach for vitreous cryopreservation of "ready-to-use" stem cell-biomaterial constructs, facilitating their off-the-shelf availability and widespread applications.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Kaixuan Zhu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
45
|
Miotto M, Gouveia R, Abidin FZ, Figueiredo F, Connon CJ. Developing a Continuous Bioprocessing Approach to Stromal Cell Manufacture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41131-41142. [PMID: 29145726 DOI: 10.1021/acsami.7b09809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To this day, the concept of continuous bioprocessing has been applied mostly to the manufacture of molecular biologics such as proteins, growth factors, and secondary metabolites with biopharmaceutical uses. The present work now sets to explore the potential application of continuous bioprocess methods to source large numbers of human adherent cells with potential therapeutic value. To this purpose, we developed a smart multifunctional surface coating capable of controlling the attachment, proliferation, and subsequent self-detachment of human corneal stromal cells. This system allowed the maintenance of cell cultures under steady-state growth conditions, where self-detaching cells were continuously replenished by the proliferation of those remaining attached. This facilitated a closed, continuous bioprocessing platform with recovery of approximately 1% of the total adherent cells per hour, a yield rate that was maintained for 1 month. Moreover, both attached and self-detached cells were shown to retain their original phenotype. Together, these results represent the proof-of-concept for a new high-throughput, high-standard, and low-cost biomanufacturing strategy with multiple potentials and important downstream applications.
Collapse
Affiliation(s)
- Martina Miotto
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| | - Ricardo Gouveia
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| | - Fadhilah Zainal Abidin
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| | - Francisco Figueiredo
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary , Newcastle-upon-Tyne NE1 4LP, United Kingdom
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
46
|
Swioklo S, Ding P, Pacek AW, Connon CJ. Process parameters for the high-scale production of alginate-encapsulated stem cells for storage and distribution throughout the cell therapy supply chain. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Stacey GN, Connon CJ, Coopman K, Dickson AJ, Fuller B, Hunt CJ, Kemp P, Kerby J, Man J, Matejtschuk P, Moore H, Morris J, Oreffo ROC, Slater N, Ward S, Wiggins C, Zimmermann H. Preservation and stability of cell therapy products: recommendations from an expert workshop. Regen Med 2017; 12:553-564. [DOI: 10.2217/rme-2017-0073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
If the field of regenerative medicine is to deliver therapies, rapid expansion and delivery over considerable distances to large numbers of patients is needed. This will demand efficient stabilization and shipment of cell products. However, cryopreservation science is poorly understood by life-scientists in general and in recent decades only limited progress has been made in the technology of preservation and storage of cells. Rapid translation of new developments to a broader range of cell types will be vital, as will assuring a deeper knowledge of the fundamental cell biology relating to successful preservation and recovery of cell cultures. This report presents expert consensus on these and other issues which need to be addressed for more efficient delivery of cell therapies.
Collapse
Affiliation(s)
- Glyn N Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Che J Connon
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Karen Coopman
- Chemical Engineering, Loughborough University, Loughborough, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Barry Fuller
- Department of Surgery, University College London, London, UK
| | - Charles J Hunt
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Paul Kemp
- Intercytex Ltd & HairClone, Manchester, UK
| | - Julie Kerby
- Cell Therapy Manufacturing Development, Pfizer, Cambridge, UK
| | - Jennifer Man
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Paul Matejtschuk
- Standardisation Science, National Institute for Biological Standards and Control (NIBSC) a centre of the MHRA, South Mimms, Hertfordshire, UK
| | - Harry Moore
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | - Richard OC Oreffo
- Centre for Human Development, Stem Cells & Regeneration, University of Southampton, Southampton, UK
| | - Nigel Slater
- The Bioscience Engineering Group, University of Cambridge, Cambridge, UK
| | | | - Claire Wiggins
- National Health Service – Blood & Transplant, Watford, UK
| | - Heiko Zimmermann
- Fraunhofer-Institute for Biomedical Engineering, Sulzbach, Germany
- Department of Molecular & Cellular Biotechnology/Nanotechnology, Saarland University, Saarbrücken, Germany
- Department of Marine Sciences, Universidad Católica del Norte, Antafogasta/Coquimbo, Chile
| |
Collapse
|
48
|
Jiang B, Yan L, Miao Z, Li E, Wong KH, Xu RH. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials 2017; 133:275-286. [PMID: 28460350 DOI: 10.1016/j.biomaterials.2017.03.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 12/13/2022]
Abstract
Human stem cells are vulnerable to unfavorable conditions, and their transportation relies on costly and inconvenient cryopreservation. We report here that human mesenchymal stem cells (MSC) in spheroids survived ambient conditions (AC) many days longer than in monolayer. Under AC, the viability of MSC in spheroids remained >90% even after seven days, whereas MSC in monolayer mostly died fast. AC-exposed MSC spheroids, after recovery under normal monolayer culture conditions with controlled carbon dioxide and humidity contents, resumed typical morphology and proliferation, and retained differentiating and immunosuppressive capabilities. RNA-sequencing and other assays demonstrate that reduced cell metabolism and proliferation correlates to the enhanced survival of AC-exposed MSC in spheroids versus monolayer. Moreover, AC-exposed MSC, when injected as either single cells or spheroids, retained therapeutic effects in vivo in mouse colitis models. Spheroidal formation also prolonged survival and sustained pluripotency of human embryonic stem cells kept under AC. Therefore, this work offers an alternative and relatively simple method termed spheropreservation versus the conventional method cryopreservation. It shall remarkably simplify long-distance transportation of stem cells of these and probably also other types within temperature-mild areas, and facilitate therapeutic application of MSC as spheroids without further processing.
Collapse
Affiliation(s)
- Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
49
|
Wang S, Elliott GD. Synergistic Development of Biochips and Cell Preservation Methodologies: A Tale of Converging Technologies. CURRENT STEM CELL REPORTS 2017; 3:45-53. [PMID: 28966905 DOI: 10.1007/s40778-017-0074-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF THE REVIEW Over the past several decades, cryopreservation has been widely used to preserve cells during long term storage, but advances in stem cell therapies, regenerative medicine, and miniaturized cell-based diagnostics and sensors are providing new targets of opportunity for advancing preservation methodologies. The advent of microfluidics-based devices is an interesting case in which the technology has been used to improve preservation processing, but as the devices have evolved to also include cells, tissues, and simulated organs as part of the architecture, the biochip itself is a desirable target for preservation. In this review, we will focus on the synergistic co-development of preservation methods and biochip technologies, while identifying where the challenges and opportunities lie in developing methods to place on-chip biologics on the shelf, ready for use. RECENT FINDINGS Emerging studies are demonstrating that the cost of some biochips have been reduced to the extent that they will have high utility in point-of-care settings, especially in low resource environments where diagnostic capabilities are limited. Ice-free low temperature vitrification and anhydrous vitrification technologies will likely emerge as the preferred strategy for long-term preservation of bio-chips. SUMMARY The development of preservation methodologies for partially or fully assembled biochips would enable the widespread distribution of these technologies and enhance their application.
Collapse
Affiliation(s)
- Shangping Wang
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Gloria D Elliott
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
50
|
Staruch RMT, Glass GE, Rickard R, Hettiaratchy SP, Butler PEM. Injectable Pore-Forming Hydrogel Scaffolds for Complex Wound Tissue Engineering: Designing and Controlling Their Porosity and Mechanical Properties. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:183-198. [PMID: 27824295 DOI: 10.1089/ten.teb.2016.0305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic soft tissue wounds present a significant reconstructive challenge. The adoption of closed-circuit negative pressure wound therapy (NPWT) has enabled surgeons to temporize these wounds before reconstruction. Such systems use porous synthetic foam scaffolds as wound fillers at the interface between the negative pressure system and the wound bed. The idea of using a bespoke porous biomaterial that enhances wound healing, as filler for an NPWT system, is attractive as it circumvents concerns regarding reconstructive delay and the need for dressing changes that are features of the current systems. Porous foam biomaterials are mechanically robust and able to synthesize in situ. Hence, they exhibit potential to fulfill the niche for such a functionalized injectable material. Injectable scaffolds are currently in use for minimally invasive surgery, but the design parameters for large-volume expansive foams remain unclear. Potential platforms include hydrogel systems, (particularly superabsorbent, superporous, and nanocomposite systems), polyurethane-based moisture-cured foams, and high internal phase emulsion polymer systems. The aim of this review is to discuss the design parameters for such future biomaterials and review potential candidate materials for further research into this up and coming field.
Collapse
Affiliation(s)
- Robert M T Staruch
- 1 School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts
| | - Graeme E Glass
- 2 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford , Oxford, United Kingdom
| | - Rory Rickard
- 3 Academic Department of Military Surgery and Trauma , ICT Business Park, Birmingham, United Kingdom
| | | | - Peter E M Butler
- 5 Department of Surgery and Interventional Sciences, The Royal Free Hospital, University College London , London, United Kingdom
| |
Collapse
|