1
|
Looi AD, Palanisamy UD, Moorthy M, Radhakrishnan AK. Health Benefits of Palm Tocotrienol-Rich Fraction: A Systematic Review of Randomized Controlled Trials. Nutr Rev 2024:nuae061. [PMID: 38916919 DOI: 10.1093/nutrit/nuae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
CONTEXT Vitamin E, a well-known antioxidant with numerous positive effects on human health, encompasses tocotrienol-rich fraction (TRF), a natural variant abundant in palm oil. OBJECTIVE This systematic review analyzed findings from randomized controlled trials published until 2022 to evaluate the health impacts of palm TRF. DATA SOURCES A literature search was performed in Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, OVID Medline, SCOPUS, and Web of Science from inception until December 2022. Thirty studies involving 2646 patients, including both healthy individuals and those with underlying conditions, were identified. RESULTS This review shows palm TRF to be a promising natural supplement against inflammation and lipid peroxidation and that can significantly enhance overall health. Additionally, the study underscores the necessity for further research to ascertain the optimal dosage, formulation, and duration of supplementation, maximizing the potential health advantages. CONCLUSION This systematic review provides evidence supporting the health benefits associated with palm TRF. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020204070.
Collapse
Affiliation(s)
- Aaron Deming Looi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Sunway, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Sunway, Malaysia
| | - Mohanambal Moorthy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Sunway, Malaysia
| |
Collapse
|
2
|
Radhakrishnan AK, Ahmad B, Selvaduray KR, Abdul Hafid SR, Palanisamy UD, Zsien Zhin C. Single-centre, randomised clinical trial of the immunomodulatory mechanisms of daily supplementation of palm tocotrienol-rich fraction in healthy human volunteers following influenza vaccination. F1000Res 2024; 13:135. [PMID: 39268057 PMCID: PMC11391185 DOI: 10.12688/f1000research.137005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Vitamin E from palm oil, known as the tocotrienol-rich fraction (TRF), has been shown to have immune-enhancing activity. To date, only one dose of TRF (400 mg daily) has been tested in a clinical trial. The proposed study will evaluate the immune-enhancing activity effects of lower doses (200, 100 and 50 mg) in a clinical trial using an influenza vaccine as the immunological challenge. Methods A single-centre, randomised, parallel, double-blinded, placebo-controlled clinical trial with balance allocation involving five arms will be conducted. The healthy volunteers recruited will be randomly assigned to one of the arms, and they will be asked to take the respective supplements (400 mg, 200 mg, 100 mg, 50 mg of TRF or placebo) daily with their dinner. The volunteers will receive the influenza vaccine after four weeks. They will be asked to return to the study site four weeks later. A blood sample will be taken for the study at baseline, four and eight weeks. Primary outcome measures will be antibody levels to influenza, blood leucocyte profile and cytokine production. Secondary outcomes will be correlating plasma vitamin E levels with immune responses, plasma proteins and gene expression patterns. The findings from this study will be published in relevant peer-reviewed journals and presented at relevant national and international scientific meetings. Conclusions The recent world events have created the awareness of having a healthy and functional immune system. Nutrition plays an important role in helping the immune system to function optimally. This study will show the effects of lower doses of TRF in boosting the immune response of healthy individuals and also elucidate the mechanisms through which TRF exerts its immune-enhancing effects. Clinical trial registration Australian New Zealand Clinical Trials Registry (ANZCTR) [ ACTRN12622000844741] dated 15 June 2022. Protocol version 2.
Collapse
Affiliation(s)
- Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 47500, Malaysia
| | - Badariah Ahmad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 47500, Malaysia
| | - Kanga Rani Selvaduray
- Product Development and Advisory Services, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, 43650, Malaysia
| | - Sitti Rahma Abdul Hafid
- Product Development and Advisory Services, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, 43650, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 47500, Malaysia
| | | |
Collapse
|
3
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
5
|
Md Amin NA, Sheikh Abdul Kadir SH, Arshad AH, Abdul Aziz N, Abdul Nasir NA, Ab Latip N. Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules 2022; 27:molecules27061896. [PMID: 35335260 PMCID: PMC8955126 DOI: 10.3390/molecules27061896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin E is known as an essential vitamin, and many studies had demonstrated the importance of vitamin E throughout the reproductive process, such as miscarriage, premature birth, preeclampsia, and intrauterine growth restriction, which could be caused by a lack of vitamin E during pregnancy. Its potent antioxidant properties can counteract the oxidative stress induced by oxygen free radicals and imbalance of oxidative-antioxidant levels, hence it may play a role in maintaining the normal function of the female reproductive system. Despite the fact that vitamin E is acknowledged as the substance needed for reproduction, its beneficial effects on female fertility, gynaecological health, and diseases are still poorly understood and lacking. Therefore, the goal of this paper is to provide a summary of the known roles of vitamin E supplementation in women for gynaecological health and reproductive-related diseases, as well as its future perspective.
Collapse
Affiliation(s)
- Nur Amira Md Amin
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence:
| | - Akmal Hisyam Arshad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Norhaslinda Abdul Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
| | - Normala Ab Latip
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia;
| |
Collapse
|
6
|
Duncan RS, Hurtado DT, Hall CW, Koulen P. Differential Mechanisms of Action and Efficacy of Vitamin E Components in Antioxidant Cytoprotection of Human Retinal Pigment Epithelium. Front Pharmacol 2022; 12:798938. [PMID: 35058783 PMCID: PMC8764263 DOI: 10.3389/fphar.2021.798938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to determine if different vitamin E components exhibit similar efficacy and mechanism of action in protecting Retinal pigment epithelium (RPE) cells from oxidative damage. We hypothesized that α-tocopherol (αT) is unique among vitamin E components in its cytoprotective mechanism of action against oxidative stress in RPE cells and that it requires protein synthesis for optimal antioxidant effect. We used cell viability assays, fluorescent chemical labeling of DNA and actin and immuno-labeling of the antioxidant proteins Nrf2 and Sod2 and of the tight junction protein, ZO-1, and confocal microscopy to determine the effects of αT and γT against oxidative stress in immortalized human RPE cells (hTERT-RPE). Using the four main vitamin E components, αT, γT, δ-tocopherol (δT) and α-tocotrienol (αTr), we ascertained that they exhibit similar, but not identical, antioxidant activity as αT when used at equimolar concentrations. In addition, we determined that the exposure time of RPE cells to α-tocopherol is critical for its ability to protect against oxidative damage. Lastly, we determined that αT, but not γT, partially requires the synthesis of new proteins within a 24-h period and prior to exposure to tBHP for optimal cytoprotection. We conclude that, unlike γT and δT, αT appears to be unique in its requirement for transport and/or signaling for it to be an effective antioxidant. As a result, more focus should be paid to which vitamin E components are used for antioxidant interventions.
Collapse
Affiliation(s)
- R Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Daniel T Hurtado
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Conner W Hall
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States.,Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
7
|
Jagielski P, Łuszczki E, Wnęk D, Micek A, Bolesławska I, Piórecka B, Kawalec P. Associations of Nutritional Behavior and Gut Microbiota with the Risk of COVID-19 in Healthy Young Adults in Poland. Nutrients 2022; 14:350. [PMID: 35057534 PMCID: PMC8779092 DOI: 10.3390/nu14020350] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
The numerous consequences of the coronavirus disease 2019 (COVID-19) pandemic in healthy young people and the lack of clarity as to the long-term disease outcomes have spurred the search for risk factors for SARS-CoV-2 infection. We aimed to evaluate the associations of nutritional behaviors, gut microbiota, and physical activity with the risk of COVID-19 in healthy young nonobese people. Data on body composition, anthropometric measurements, physical activity, dietary intake, and gut microbiota were obtained from 95 adults (mean age, 34.66 ± 5.76 years). A balanced diet rich in vegetables and fruit, including nuts, wholegrain cereal products, and legumes, covers the need for vitamins and minerals. Such a diet can be an effective measure to reduce the risk of COVID-19 in nonobese healthy physically active young people with normal immune function. People with balanced diet and an average daily consumption of >500 g of vegetables and fruit and >10 g of nuts had an 86% lower risk of COVID-19 compared with those whose diet was not balanced and who consumed lower amounts of these products. It is well documented that proper nutrition, physical activity, and maintenance of normal weight facilitate good health by ensuring optimal immune function. The beneficial effects of these interventions should be strongly emphasized during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| | - Dominika Wnęk
- The Cracow’s Higher School of Health Promotion, 31-158 Krakow, Poland;
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, 31-007 Cracow, Poland;
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 42 Marcelińska Str., 60-354 Poznań, Poland;
| | - Beata Piórecka
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| | - Paweł Kawalec
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| |
Collapse
|
8
|
Toledano JM, Moreno-Fernandez J, Puche-Juarez M, Ochoa JJ, Diaz-Castro J. Implications of Vitamins in COVID-19 Prevention and Treatment through Immunomodulatory and Anti-Oxidative Mechanisms. Antioxidants (Basel) 2021; 11:antiox11010005. [PMID: 35052509 PMCID: PMC8773198 DOI: 10.3390/antiox11010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since the appearance of the coronavirus disease 2019 (COVID-19) and its announcement as a global pandemic, the search for prophylactic and therapeutic options have become a priority for governments and the scientific community. The approval of several vaccines against SARS-CoV-2 is being crucial to overcome this situation, although the victory will not be achieved while the whole population worldwide is not protected against the virus. This is why alternatives should be studied in order to successfully support the immune system before and during a possible infection. An optimal inflammatory and oxidative stress status depends on an adequate diet. Poor levels of several nutrients could be related to an impaired immune response and, therefore, an increased susceptibility to infection and serious outcomes. Vitamins exert a number of anti-microbial, immunomodulatory, anti-inflammatory, and antioxidant activities, which can be of use to fight against this and several other diseases (especially vitamin D and C). Even though they cannot be considered as a definitive therapeutic option, in part owing to the lack of solid conclusions from well-designed clinical trials, currently available evidence from similar respiratory diseases may indicate that it would be rational to deeply explore the use of vitamins during this global pandemic.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Correspondence: (J.M.-F.); (M.P.-J.); (J.J.O.)
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
- Correspondence: (J.M.-F.); (M.P.-J.); (J.J.O.)
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Correspondence: (J.M.-F.); (M.P.-J.); (J.J.O.)
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
9
|
Rahimkhani A, Haghighat S, Noorbazargan H, Mahdavi M. Improvement of hepatitis B vaccine to induce IFN-γ cytokine response: A new formulation. Microb Pathog 2021; 160:105184. [PMID: 34508828 DOI: 10.1016/j.micpath.2021.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is limited through vaccination against HBsAg formulated in the Alum adjuvant. However, this alum-formulated vaccine fails to be preventive in some cases, also known as non-responders. Recent studies have shown the immunomodulatory effect of α-tocopherol in various models. Here, we developed a new formulation for HBsAg using α-tocopherol, followed by assessment of immune responses. Experimental BALB/c mice were immunized with a commercial alum-based vaccine or the one formulated in α-tocopherol at different doses. Mice were immunized subcutaneously with 5 μg of HBsAg with different formulations three times with 2-week intervals. Specific total IgG, IgG1, and IgG2a isotypes of antibodies were measured by ELISA. Immunologic cytokines, such as IFN-γ, IL-4, IL-2, and TNF-α, were also evaluated through commercial ELISA kits. Our results showed that the new α-tocopherol-formulated vaccine had the ability to reinforce specific total IgG responses. Moreover, α-tocopherol in the HBsAg vaccine increased IFN-γ, IL-2, and TNF-α cytokines at higher concentrations; however, the vaccine suppressed IL-4 cytokine release. At a lower concentration of α-tocopherol, the IL-4 cytokine response increased without a positive effect on IFN-γ and TNF-α cytokine response. It seems that α-tocopherol can change the immune responses against HBsAg; however, the type of response depends on the dose of α-tocopherol used in the vaccine formulation.
Collapse
Affiliation(s)
- Anahita Rahimkhani
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
11
|
Hossain MF, Hasana S, Mamun AA, Uddin MS, Wahed MII, Sarker S, Behl T, Ullah I, Begum Y, Bulbul IJ, Amran MS, Rahman MH, Bin-Jumah MN, Alkahtani S, Mousa SA, Aleya L, Abdel-Daim MM. COVID-19 Outbreak: Pathogenesis, Current Therapies, and Potentials for Future Management. Front Pharmacol 2020; 11:563478. [PMID: 33178016 PMCID: PMC7596415 DOI: 10.3389/fphar.2020.563478] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
At the end of 2019, a novel coronavirus (CoV) was found at the seafood market of Hubei province in Wuhan, China, and this virus was officially named coronavirus diseases 2019 (COVID-19) by World Health Organization (WHO). COVID-19 is mainly characterized by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) and creates public health concerns as well as significant threats to the economy around the world. Unfortunately, the pathogenesis of COVID-19 is unclear and there is no effective treatment of this newly life-threatening and devastating virus. Therefore, it is crucial to search for alternative methods that alleviate or inhibit the spread of COVID-19. In this review, we try to find out the etiology, epidemiology, symptoms as well as transmissions of this novel virus. We also summarize therapeutic interventions and suggest antiviral treatments, immune-enhancing candidates, general supplements, and CoV specific treatments that control replication and reproduction of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Md. Farhad Hossain
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, South Korea
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Md. Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Mir Imam Ibne Wahed
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Sabarni Sarker
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Irfan Ullah
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University, Seoul, South Korea
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Sun H, Yang J, Lin X, Li C, He Y, Cai Z, Zhang G, Song H. De Novo High-Titer Production of Delta-Tocotrienol in Recombinant Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7710-7717. [PMID: 32580548 DOI: 10.1021/acs.jafc.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Delta-tocotrienol as a vitamin E isomer has received much attention because of its diverse biomedical applications. Microbial biosynthesis of delta-tocotrienol is a promising strategy for its economic and environmental advantages. Here, we accomplished complete biosynthesis of delta-tocotrienol in Saccharomyces cerevisiae from glucose. We first constructed and incorporated a heterologous pathway into the genome of S. cerevisiae by incorporating the genes hpd (from Pseudomonas putida KT2440), hpt (from Synechocystis sp. PCC 6803), and vte1 (from Arabidopsis thaliana) for the biosynthesis of delta-tocotrienol. We further enhanced the biosynthesis of the precursor geranylgeranyl diphosphate by overexpressing the thmg1 and ggppssa (from Sulfolobus acidocaldarius) genes, leading to a production titer of delta-tocotrienol of 1.39 ± 0.01 mg/L. Finally, we optimized the fermentation medium using the response surface methodology, enabling a high-titer production of delta-tocotrienol (3.56 ± 0.25 mg/L), ∼2.6-fold of that of the initial culture medium. Fed-batch fermentation in a 2 L fermenter was further used to enhance the production titer of delta-tocotrienol (4.10 ± 0.10 mg/L). To the best of our knowledge, this is the first report on the de novo biosynthesis of delta-tocotrienol in S. cerevisiae, and the highest titer obtained for microbial production of delta-tocotrienol.
Collapse
Affiliation(s)
- Hong Sun
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jingli Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou 570228, P. R. China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou 570228, P. R. China
| | - Yongjin He
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, P. R. China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, P. R. China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, P. R. China
| | - Hao Song
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
13
|
Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12:E1562. [PMID: 32471251 PMCID: PMC7352291 DOI: 10.3390/nu12061562] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Alex Brito
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow Medical University, Trubetskay Str. 8, 119991 Moscow, Russia
| | - Giulia Dingeo
- Independent Researcher, Val de Marne, 94999 Paris, France;
| | - Sofia Sosa Fernandez Del Campo
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA;
- Center for Health Research, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| |
Collapse
|