1
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
2
|
Zhuang T, Li W, Yang L, Wang Z, Ding L, Zhou M. Gut Microbiota: Novel Therapeutic Target of Ginsenosides for the Treatment of Obesity and Its Complications. Front Pharmacol 2021; 12:731288. [PMID: 34512356 PMCID: PMC8429618 DOI: 10.3389/fphar.2021.731288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, generally characterized by excessive lipid accumulation, is a metabolic threat worldwide due to its rapid growth in global prevalence. Ginsenosides are crucial components derived from natural plants that can confer metabolic benefits for obese patients. Considering the low bioavailability and degradable properties of ginsenosides in vivo, it should be admitted that the mechanism of ginsenosides on anti-obesity contribution is still obscure. Recently, studies have indicated that ginsenoside intervention has beneficial metabolic effects on obesity and its complications because it allows for the correction of gut microbiota dysbiosis and regulates the secretion of related endogenous metabolites. In this review, we summarize the role of gut microbiota in the pathogenetic process of obesity, and explore the mechanism of ginsenosides for ameliorating obesity, which can modulate the composition of gut microbiota by improving the metabolism of intestinal endogenous substances and alleviating the level of inflammation. Ginsenosides are expected to become a promising anti-obesity medical intervention in the foreseeable clinical settings.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res 2020; 45:380-389. [PMID: 34025131 PMCID: PMC8134847 DOI: 10.1016/j.jgr.2020.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.
Collapse
Key Words
- ACC, Acetyl-Coenzyme A carboxylase
- ADP, adenosine diphosphate
- AG, American ginseng extract
- AGE, advanced glycation end product
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- AST, aspartate aminotransferase
- Akt, protein kinase B
- BMI, body mass index
- C/EBPα, CCAAT/enhancer-binding protein alpha
- COX-2, cyclooxygenase-2
- CPT, current perception threshold
- CPT-1, carnitine palmitoyl transferase 1
- CRP, C-reactive protein
- CVD, Cardiovascular disease
- DBP, diastolic blood pressure
- DEN, diethyl nitrosamine
- EAT, epididymis adipose tissue
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- FAS, Fatty acid synthase
- FFA, free fatty acid
- FR, fine root concentration
- FS, fractional shortening
- GBHT, ginseng-plus-Bai-Hu-Tang
- GLUT, glucose transporter type
- GPx, glutathione peroxidase
- GS, ginsenoside
- GST, glutathione S-transferase
- GST-P, glutathione S-transferase placental form
- GTT, glucose tolerance test
- HCC, hepatocellular carcinoma
- HCEF-RG, hypotensive components-enriched fraction of red ginseng
- HDL, high-density lipoprotein
- HFD, High fat diet
- HOMA-IR, homeostasis model assessment of insulin resistance index
- HbA1c, glycosylated hemoglobin
- I.P., intraperitoneal injection
- IL, interleukin
- IR, insulin resistance
- ITT, insulin tolerance test
- Insulin resistance
- KRG, Korean Red Ginseng
- LDL, low-density lipoprotein
- LPL, lipoprotein lipase
- Lex, lower extremities
- MDA, malondialdehyde
- MMP, Matrix metallopeptidases
- MS, Metabolic syndrome
- Metabolic syndrome
- NAFLD, Non-alcoholic fatty liver disease
- NF-кB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK cell, Natural killer cell
- NMDA-NR1, N-methyl-D-aspartate NR1
- NO, nitric oxide
- NRF1, Nuclear respiratory factor 1
- Non-alcoholic fatty liver disease
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OLETF rat, Otsuka Long-Evans Tokushima fatty rat
- PCG-1α, PPAR-γ coactivator-1α
- PI3K, phosphoinositide 3-kinase
- PPAR, peroxisome proliferator-activated receptors
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Panax ginseng
- REKRG, Rg3-enriched KRG
- ROS, Reactive oxygen species
- Rg3-KGE, Rg3-enriched KRG extract
- SBP, systolic blood pressure
- SCD, Stearoyl-Coenzyme A desaturase
- SHR, spontaneously hypertensive rat
- SREBP-1C, Sterol regulatory element-binding protein 1
- STAT5, Signal transducer and activator of transcription 5
- STZ, streptozotocin
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglyceride
- TNF, tumor necrosis factor
- UCP, Mitochondrial uncoupling proteins
- VLDL, very low-density lipoprotein
- iNOS, inducible nitric oxide synthase
- t-BHP, tert-butyl hyperoxide
- tGST, total glutathione
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seul Ki Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hotaik Sung
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
5
|
Jeong E, Lim Y, Kim KJ, Ki HH, Lee D, Suh J, So SH, Kwon O, Kim JY. A Systems Biological Approach to Understanding the Mechanisms Underlying the Therapeutic Potential of Red Ginseng Supplements against Metabolic Diseases. Molecules 2020; 25:E1967. [PMID: 32340247 PMCID: PMC7221703 DOI: 10.3390/molecules25081967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
Red ginseng has been widely used in health-promoting supplements in Asia and is becoming increasingly popular in Western countries. However, its therapeutic mechanisms against most diseases have not been clearly elucidated. The aim of the present study was to provide the biological mechanisms of red ginseng against various metabolic diseases. We used a systems biological approach to comprehensively identify the component-target and target-pathway networks in order to explore the mechanisms underlying the therapeutic potential of red ginseng against metabolic diseases. Of the 23 components of red ginseng with target, 5 components were linked with 37 target molecules. Systematic analysis of the constructed networks revealed that these 37 targets were mainly involved in 9 signaling pathways relating to immune cell differentiation and vascular health. These results successfully explained the mechanisms underlying the efficiency of red ginseng for metabolic diseases, such as menopausal symptoms in women, blood circulation, diabetes mellitus, and hyperlipidemia.
Collapse
Affiliation(s)
- Eunseon Jeong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (O.K.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Hyeon-Hui Ki
- Bio-Synergy Research Center, Daejeon 34141, Korea; (H.-H.K.); (D.L.)
| | - Doheon Lee
- Bio-Synergy Research Center, Daejeon 34141, Korea; (H.-H.K.); (D.L.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jaehyun Suh
- R&D Headquarter, Korea Ginseng Corporation, Daejeon 34128, Korea; (J.S.); (S.-H.S.)
| | - Seung-Ho So
- R&D Headquarter, Korea Ginseng Corporation, Daejeon 34128, Korea; (J.S.); (S.-H.S.)
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (O.K.)
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
6
|
Review of Ginseng Anti-Diabetic Studies. Molecules 2019; 24:molecules24244501. [PMID: 31835292 PMCID: PMC6943541 DOI: 10.3390/molecules24244501] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide. Ginsenosides, also known as saponins or triterpenoids, are thought to be responsible for the beneficial effects of ginseng. In this review, we summarize recent publications on anti-diabetic studies of ginseng extracts and ginsenosides in cells, animals, and humans. It seems that the anti-diabetic effect of ginseng is positive for type 2 diabetic patients but has no significant impact on prediabetes or healthy adults. Regulation of insulin secretion, glucose uptake, anti-oxidative stress, and anti-inflammatory pathways may be the mechanisms involved with ginseng's anti-diabetic effects. Taken together, this summary provides evidence for the anti-diabetes effects of ginseng extracts and ginsenosides as well as the underlying mechanisms of their impact on diabetes.
Collapse
|
7
|
Karmazyn M, Gan XT. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence 1. Can J Physiol Pharmacol 2018; 97:265-276. [PMID: 30395481 DOI: 10.1139/cjpp-2018-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.
Collapse
|
8
|
Abstract
Although ginseng has been shown to have an antiobesity effect, antiobesity-related mechanisms are complex and have not been completely elucidated. In the present study, we evaluated ginseng’s effects on food intake, the digestion, and absorption systems, as well as liver, adipose tissue, and skeletal muscle in order to identify the mechanisms involved. A review of previous in vitro and in vivo studies revealed that ginseng and ginsenosides can increase energy expenditure by stimulating the adenosine monophosphate-activated kinase pathway and can reduce energy intake. Moreover, in high fat diet-induced obese and diabetic individuals, ginseng has shown a two-way adjustment effect on adipogenesis. Nevertheless, most of the previous studies into antiobesity effects of ginseng have been animal based, and there is a paucity of evidence supporting the suggestion that ginseng can exert an antiobesity effect in humans.
Collapse
|
9
|
Safety Analysis of Panax Ginseng in Randomized Clinical Trials: A Systematic Review. MEDICINES 2015; 2:106-126. [PMID: 28930204 PMCID: PMC5533164 DOI: 10.3390/medicines2020106] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/01/2022]
Abstract
Background:Panax ginseng C.A. Meyer is one of the most frequently used herbs in the world. The roots of Panax ginseng have been used as a traditional tonic and medicine for thousands of years in Korea and China. Today, ginseng root is used as a dietary supplement and complementary medicine and for adjuvant therapeutics worldwide. The efficacy of ginseng has been studied in a wide range of basic research and clinical studies. However, it has been reported that the results from clinical studies are conflicting, and they depend on the parameters of the protocol design including the conditions of the participants and the types of ginseng used such as red ginseng, white ginseng, fermented ginseng and cultured ginseng. Meanwhile, in addition to clinical efficacy, the safety of ginseng is a highly important matter for customers. With globally increasing demand for Panax ginseng as a dietary supplement or complementary medicine, it is necessary to provide information on its safe use to customers to improve their health conditions. Although the safety of Panax ginseng in pre-clinical studies is well known, the evaluation of safety in clinical studies has so far been insufficient. This systematic review was conducted to assess the safety of ginseng in randomized controlled clinical trials (RCT) over the last 10 years. We chose the last 10 years because many clinical trials have been conducted in the past 10 years, and it will help to understand the recent trends in RCTs of ginseng. Methods: Articles on ginseng studies were searched with keywords in MEDLINE and four other Korean online database sites. Studies with ginseng as a monopreparation were selected while studies with single administration, preparations combined with other herbs or drug combinations were excluded from the selected studies. Data from the selected studies meeting the criteria were extracted and reviewed in terms of study design, condition and number of participants, type of ginseng, dosage, duration, main results, adverse events and adverse reactions. Results: Forty-four studies met the selection criteria. These studies covered the efficacy of ginseng in areas such as cardiovascular function, glucose metabolism, sexual function, anti-oxidation, anti-fatigue and psychomotor function. Twenty-nine studies showed positive results while fifteen studies showed no effect. Sixteen studies reported adverse events while five studies had no adverse events. Twenty-three studies did not mention any adverse events. The main adverse events of ginseng reported were general symptoms such as hot flushes, insomnia and dyspepsia with no significant difference in frequency and symptoms between the ginseng and placebo groups. The symptoms were mild and temporary with no serious or severe adverse events. Conclusion:Panax ginseng showed a very safe profile in a limited number of RCTs with a small number of participants with various conditions ranging from healthy participants to patients with symptoms. However, to increase the usefulness and lower the health risk of Panax ginseng to customers, clinical trials on a larger scale and with a higher standard are necessary to define its efficacy and safety as a dietary supplement or complementary medicine.
Collapse
|
10
|
Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women. J Ginseng Res 2014; 38:106-15. [PMID: 24748834 PMCID: PMC3986624 DOI: 10.1016/j.jgr.2013.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/26/2022] Open
Abstract
Background Gut microbiota is regarded as one of the major factors involved in the control of body weight. The antiobesity effects of ginseng and its main constituents have been demonstrated, but the effects on gut microbiota are still unknown. Methods To investigate the effect of ginseng on gut microbiota, 10 obese middle-aged Korean women took Panax ginseng extracts for 8 wk and assessment of body composition parameters, metabolic biomarkers, and gut microbiota composition was performed using 16S rRNA gene-based pyrosequencing at baseline and at 8 wk. Significant changes were observed in body weight and body mass index; however, slight changes were observed in gut microbiota. We divided the participants into two groups, the effective and the ineffective weight loss groups, depending on weight loss effect, in order to determine whether the antiobesity effect was influenced by the composition of gut microbiota, and the composition of gut microbiota was compared between the two groups. Results Prior to ginseng intake, significant differences of gut microbiota were observed between both at phyla and genera and the gut microbiota of the effective and ineffective weight loss groups was segregated on a principal coordinate analysis plot. Conclusion Results of this study indicate that ginseng exerted a weight loss effect and slight effects on gut microbiota in all participants. In addition, its antiobesity effects differed depending on the composition of gut microbiota prior to ginseng intake.
Collapse
|
11
|
The efficacy of red ginseng in type 1 and type 2 diabetes in animals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:593181. [PMID: 24319479 PMCID: PMC3844252 DOI: 10.1155/2013/593181] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/08/2013] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus (DM) is one of the most modern chronic metabolic diseases in the world. Moreover, DM is one of the major causes of modern neurological diseases. In the present study, the therapeutic actions of Korean red ginseng were evaluated in type 1 and type 2 diabetic mouse models using auditory electrophysiological measurement. The comprehensive results from auditory brainstem response (ABR), auditory middle latency response (AMLR), and transient evoked otoacoustic emission (TEOAE) demonstrate auditory functional damage caused by type 1 or 2 DM. Korean red ginseng improved the hearing threshold shift, delayed latencies and signal intensity decrease in type 2 diabetic mice. Type 1 diabetic mice showed a partial improvement in decreasing amplitude and signal intensity, not significantly. We suggest that the Korean red ginseng has a more potent efficacy in hearing loss in insulin resistance type 2 diabetes than in type 1 diabetes.
Collapse
|