1
|
Zheng Y, Gong W, Wu Z, Zhang S, Wang N, Hu Z, Shou Y, Xu T, Shen Y, Li X, Jin L, Cong W, Zhu Z. FGF21 Ameliorates Fibroblasts Activation and Systemic Sclerosis by Inhibiting CK2α/GLI2 Signaling Axis. J Invest Dermatol 2025; 145:842-853.e8. [PMID: 39182559 DOI: 10.1016/j.jid.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Systemic sclerosis is a typical fibrotic disease of unknown etiology that is characterized by abnormal fibroblast activation and excessive deposition of extracellular matrix. Unfortunately, effective therapeutic approaches are lacking. FGF21 plays a key role in mediating a variety of biological activities. However, its specific function in systemic sclerosis is unclear. In this study, we found that the expression of FGF21 was significantly downregulated in fibrotic skin tissue and in TGF-β-stimulated fibroblasts. Furthermore, our studies demonstrated that treatment with recombinant FGF21 in the skin significantly alleviated bleomycin-induced and TBRI-activated fibrosis and inhibited the activation of fibroblasts, whereas skin fibrosis was exacerbated by deletion of FGF21. Mechanistically, FGF21 inhibits the activity of CK2α and promotes the degradation of GLI2. In conclusion, these results indicate that FGF21 attenuates skin fibrosis through the CK2α/GLI2 signaling pathway and therefore may be a potential therapeutic target for systemic sclerosis.
Collapse
Affiliation(s)
- Yeyi Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China; Ningbo Key Laboratory of Skin Science, Ningbo College of Health Sciences, Ningbo, People's Republic of China
| | - Wenjie Gong
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo, People's Republic of China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Siyi Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenyu Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanni Shou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingjie Shen
- School of Life Sciences, Huzhou University, Huzhou, People's Republic of China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China; Ningbo Key Laboratory of Skin Science, Ningbo College of Health Sciences, Ningbo, People's Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
2
|
Lai HC, Lee YJ, Chen PH, Tang CH, Chen LW. Adipose stromal cells increase insulin sensitivity and decrease liver gluconeogenesis in a mouse model of type 1 diabetes mellitus. Stem Cell Res Ther 2025; 16:133. [PMID: 40069851 PMCID: PMC11899698 DOI: 10.1186/s13287-025-04225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) is a serious complication of hyperglycemic emergency caused by insulin deficiency through accelerated liver gluconeogenesis and glycogenolysis. DKA is most common in type 1 diabetes (T1D). Transplantation of islet cells and pancreas is an alternative to insulin injection for treating T1D. However, this alternative is only suitable for some patients. This study investigated the effects and mechanisms of adipose stromal vascular fraction (SVF) cells on liver gluconeogenesis and insulin sensitivity in an insulin-dependent T1D animal model. METHODS SVF cells were obtained from wild-type inguinal adipose tissue and transplanted into the peritoneal cavity of type I diabetic Akita (Ins2Akita) mice. RESULTS We found that transplantation of 5 × 106 SVF cells from wild-type adipose tissue significantly downregulated proinflammatory genes of TNF-α, IL-1β, IL-33, iNOS, and DPP4 in the liver and upregulated anti-inflammatory factors IL-10 and FOXP3 in blood serum and liver tissue 7 days after injection. Moreover, we found that the expression levels of G6pc and Pck1 were significantly decreased in the Akita mice livers. Furthermore, the intraperitoneal insulin tolerance test assay showed that diabetic Akita mice significantly had increased insulin sensitivity, reduced fasting blood glucose, and restored glucose-responsive C-peptide expression compared with the control Akita group. This result was noted 14 days after administration of 5 × 106 or 1 × 107 SVF cells from wild-type adipose tissue into diabetic Akita mice. CONCLUSIONS Together, these findings suggest that adipose tissue-derived SVF cells could suppress liver inflammation, regulate liver gluconeogenesis, and improve insulin sensitivity in an animal model with T1D. Therefore, adipose SVF cells may be novel cellular therapeutic alternatives to maintain steady liver gluconeogenesis in T1D.
Collapse
Affiliation(s)
- Hsiao-Chi Lai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Kaohsiung Veterans General Hospital, No.386, Ta-Chung 1st Road, Kaohsiung, 813, Taiwan
- National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Yen-Ju Lee
- Department of Surgery, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
- Zuoying Armed Forces General Hospital, No. 553, Junxiao Road, Kaohsiung, 813, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Kaohsiung Veterans General Hospital, No.386, Ta-Chung 1st Road, Kaohsiung, 813, Taiwan
- National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Chia-Hua Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Kaohsiung Veterans General Hospital, No.386, Ta-Chung 1st Road, Kaohsiung, 813, Taiwan
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Kaohsiung Veterans General Hospital, No.386, Ta-Chung 1st Road, Kaohsiung, 813, Taiwan.
- National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
- National Sun Yat-Sen University, No.70, Lien-Hai Road, Kaohsiung, 804, Taiwan.
| |
Collapse
|
3
|
Christidis G, Küppers F, Karatayli SC, Karatayli E, Weber SN, Lammert F, Krawczyk M. Skin advanced glycation end-products as indicators of the metabolic profile in diabetes mellitus: correlations with glycemic control, liver phenotypes and metabolic biomarkers. BMC Endocr Disord 2024; 24:31. [PMID: 38443880 PMCID: PMC10913560 DOI: 10.1186/s12902-024-01558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION The production of advanced glycation end-products (AGEs) is a key pathomechanism related to the complications of diabetes mellitus. The measurement of HbA1c as one of the AGEs is widely used in the clinic, but also other proteins undergo glycation in the course of diabetes. Here, we measure skin AGEs (SAGEs) in patients with diabetes type 1 (DM1) and type 2 (DM2) and correlate them with metabolic markers as well as non-invasively measured liver fibrosis and steatosis. PATIENTS AND METHODS In this cross-sectional study, a total of 64 patients with either DM1 or DM2 and 28 healthy controls were recruited. SAGEs were measured using autofluorescence (AGE Reader). Liver fibrosis and steatosis were quantified using transient elastography, which determines liver stiffness measurement (LSM) and controlled attenuation parameter (CAP). FGF19, FGF21 and GDF-15 were measured in blood samples using ELISA. RESULTS SAGEs were elevated in both groups of patients with diabetes as compared to healthy controls (both p < 0.001) and were higher in patients with DM2 in comparison to DM1 (p = 0.006). SAGEs correlated positively with HbA1c (r = 0.404, p < 0.001), CAP (r = 0.260, p = 0.016) and LSM (r = 0.356, p < 0.001), and negatively with insulin growth factor binding protein 3 (p < 0.001). We also detected a positive correlation between GDF15 and SAGEs (r = 0.469, p < 0.001). CONCLUSIONS SAGEs are significantly elevated in patients with both DM types 1 and 2 and correlate with metabolic markers, including HbA1c and GDF15. They might also help to detect patients with advanced liver injury in the setting of diabetes.
Collapse
Affiliation(s)
- Grigorios Christidis
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
- Endokrinologikum Ulm, Ulm, Germany
| | - Frederic Küppers
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Senem Ceren Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
- Hannover Medical School (MHH), Hannover, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany.
- Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Yan J, Xie J, Xu S, Guo Y, Ji K, Li C, Gao H, Zhao L. Fibroblast growth factor 21 protects the liver from apoptosis in a type 1 diabetes mouse model via regulating L-lactate homeostasis. Biomed Pharmacother 2023; 168:115737. [PMID: 37862975 DOI: 10.1016/j.biopha.2023.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is a hepatokine with pleiotropic effects on glucose and lipid metabolic homeostasis. Here, we aimed to elucidate the mechanisms underlying the protective effects of FGF21 on L-lactate homeostasis and liver lesions in a type 1 diabetes mellitus (T1DM) mice model. METHODS Six-week-old male C57BL/6 mice were divided into control, T1DM, and FGF21 groups. We also examined hepatic apoptotic signaling and functional indices in wild-type and hydroxycarboxylic acid receptor 1 (HCA1) knockout mice with T1DM or long-term L-lactate exposure. After preincubation of high glucose- or L-lactate treated hepatic AML12 cells, L-lactate uptake, apoptosis, and monocarboxylic acid transporter 2 (MCT2) expression were investigated. RESULTS In a mouse model of T1DM, hepatic FGF21 expression was downregulated by approximately 1.5-fold at 13 weeks after the hyperglycemic insult. In vivo administration of exogenous FGF21 (2 mg/kg) to diabetic or L-lactate-infused mice significantly prevented hepatic oxidative stress and apoptosis by activating extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways. HCA1-KO mice were less susceptible to diabetes- and L-lactate-induced hepatic apoptosis and dysfunction. In addition, inhibition of PI3K-mTOR activity revealed that FGF21 prevented L-lactate-induced Cori cycle alterations and hepatic apoptosis by upregulating MCT2 protein translation. CONCLUSIONS/INTERPRETATION These results demonstrate that L-lactate homeostasis may be a therapeutic target for T1DM-related hepatic dysfunction. The protective effects of FGF21 on hepatic damage were associated with its ability to ameliorate MCT2-dependent Cori cycle alterations and prevent HCA1-mediated inhibition of ERK1/2, p38 MAPK, and AMPK signaling.
Collapse
Affiliation(s)
- Jiapin Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiaojiao Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
5
|
Bahijri S, Eldakhakhny B, Enani S, Ajabnoor G, Al-Mowallad AS, Alsheikh L, Alhozali A, Alamoudi AA, Borai A, Tuomilehto J. Fibroblast Growth Factor 21: A More Effective Biomarker Than Free Fatty Acids and Other Insulin Sensitivity Measures for Predicting Non-alcoholic Fatty Liver Disease in Saudi Arabian Type 2 Diabetes Patients. Cureus 2023; 15:e50524. [PMID: 38222178 PMCID: PMC10787595 DOI: 10.7759/cureus.50524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is more prevalent among individuals with type 2 diabetes (T2DM), elevating their risk of cardiovascular diseases (CVDs) and premature mortality. There is a need to modify treatment strategies to prevent or delay these adverse outcomes. Currently, there are no sensitive or specific biomarkers for predicting NAFLD in Saudi T2DM patients. Therefore, we aimed to explore the possibility of using fibroblast growth factor 21 (FGF-21), free fatty acids (FFAs), homeostatic model assessment for insulin resistance (HOMA-IR), and quantitative insulin sensitivity check index (QUICKI) as possible markers. Methodology In this study, a total of 67 T2DM patients were recruited. NAFLD was detected by ultrasonography in 28 patients. Plasma glucose, FFAs, FGF-21, and serum insulin were measured in fasting blood samples. HOMA-IR and QUICKI were calculated. The means of the two groups with and without NAFLD were statistically compared. The receiver operating characteristics (ROC) curve and the area under the curve (AUC) were used to assess the ability to identify NAFLD. Results The mean levels of FGF-21 and HOMA-IR were significantly higher and that of QUICKI was significantly lower in patients with NAFLD than in those without (p < 0.001, p = 0.023, and p = 0.018, respectively). FGF-21 had the highest AUC to identify NAFLD (AUC = 0.981, 95% confidence interval = 0.954-1, P < 0.001). The AUCs for HOMA-IR, QUICKI, and FFA were <0.7. The highest sensitivity, specificity, positive likelihood ratio, and the lowest negative likelihood ratio were found when FGF-21 was used to predict NAFLD. Conclusions FGF-21 may be used as a biomarker to predict NAFLD in people with T2DM due to its high sensitivity and specificity compared to the other markers.
Collapse
Affiliation(s)
- Suhad Bahijri
- Department of Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
- Saudi Diabetes Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, SAU
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, SAU
| | - Basmah Eldakhakhny
- Department of Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
- Saudi Diabetes Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, SAU
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, SAU
| | - Sumia Enani
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, SAU
- Saudi Diabetes Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, SAU
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, SAU
| | - Ghada Ajabnoor
- Department of Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
- Saudi Diabetes Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, SAU
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, SAU
| | - Alaa S Al-Mowallad
- Department of Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Lubna Alsheikh
- Department of Biochemistry, King Abdulaziz University, Jeddah, SAU
| | - Amani Alhozali
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Aliaa A Alamoudi
- Department of Clinical Biochemistry, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
- Saudi Diabetes Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, SAU
| | - Anwar Borai
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Saudi Diabetes Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, SAU
| | - Jaakko Tuomilehto
- Department of Public Health, University of Helsinki, Helsinki, FIN
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, FIN
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
7
|
Dehghan M, Ghorbani F, Najafi S, Ravaei N, Karimian M, Kalhor K, Movafagh A, Mohsen Aghaei Zarch S. Progress toward molecular therapy for diabetes mellitus: A focus on targeting inflammatory factors. Diabetes Res Clin Pract 2022; 189:109945. [PMID: 35690269 DOI: 10.1016/j.diabres.2022.109945] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Diabetes mellitus (DM) has been the most prevalent global metabolic disease, turning into a serious risk for human health. Several researches have recorded a role for inflammation and immunity in the pathogenesis of both in T1DM and in T2DM. Lots of chemical agents are available to control and to cure diabetic patients, which are not always sufficient for euglycemia maintenance and late stage diabetic complications avoidance. Therefore, newborn therapeutic methods to refine clinical outcomes in DM are required. Nucleic-acid-based therapy also known as gene expression level regulator within the target cells has been calculated to be promising in various diseases. Thus, pronounced attempts have been dedicated to develop new targeted molecular therapy aimed at improving insulin resistance in DM. This review mainly focuses on recent progress in DM molecular therapy and whether, has potential efficacy against inflammatory mediators involved in DM.
Collapse
Affiliation(s)
- Mohadesse Dehghan
- Department of Microbiology, Faculity of Life Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fateme Ghorbani
- Department of Biology, Islamic Azad University, Tonekabon Branch, Mazandran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Ravaei
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Tehran, Iran
| | - Maede Karimian
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
9
|
Physiological and pathophysiological role of endocrine fibroblast growth factors. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The endocrine subfamily of fibroblast growth factors (FGF) includes three factors: FGF19, FGF21, FGF23. They act on distal tissues through FGF receptors (FGFRs). The FGFR activation requires two cofactors: α- and β-Klotho, which are structurally related single-pass transmembrane proteins. The endocrine FGFs regulate various metabolic processes involved in the regulation of glucose and lipid metabolism as well as bile acid circulation, vitamin D modulation, and phosphate homeostasis. The FGF-FGFR dysregulation is widely implicated in the pathogenesis of various disorders. Significant alterations in plasma FGF concentration are associated with the most prevalent chronic diseases, including dyslipidemia, type 2 diabetes, cardiovascular diseases, obesity, non-alcoholic fatty liver disease, diseases of the biliary tract, chronic kidney disease, inflammatory bowel disease, osteomalacia, various malignancies, and depression. Therefore, the endocrine FGFs may serve as disease predictors or biomarkers, as well as potential therapeutic targets. Currently, numerous analogues and inhibitors of endocrine FGFs are under development for treatment of various disorders, and recently, a human monoclonal antibody against FGF23 has been approved for treatment of X-linked hypophosphatemia. The aim of this review is to summarize the current data on physiological and pathophysiological actions of the endocrine FGF subfamily and recent research concerning the therapeutic potential of the endocrine FGF pathways.
Collapse
|
10
|
Zheng S, Wu J, Xiang S, Zang Y, Kong D, Wei X, Sun W, Li W. An fgf21-like gene from swamp eel (Monopterus albus): Recombinant expression and its potential roles in glucose and lipid homeostasis. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111170. [PMID: 35189343 DOI: 10.1016/j.cbpa.2022.111170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays important roles in the regulation of glucose and lipid metabolism and energy balance in mammals. In this study, the full-length cDNA of swamp eel fgf21 was cloned. Sequence analysis showed that swamp eel FGF21 displayed high similarity with FGF21 of other vertebrates. Subsequently, a prokaryotic expression vector for swamp eel fgf21 was constructed, and recombinant FGF21 (rFGF21) was successfully induced and purified. To investigate the potential roles of swamp eel FGF21 in glucose and lipid metabolism, we examined the effects of rFGF21 on regulation of glucose and lipid homeostasis in type 1 diabetes mellitus (T1DM) mice as well as swamp eels under glucose stress. In T1DM mice, the levels of blood glucose, serum triglyceride (TG), liver TG, serum total cholesterol (TC), and liver TC were significantly downregulated after repeated daily injection of rFGF21 for 15 days. In addition, liver pathological section analysis indicated that rFGF21 alleviated the degree of damage to liver cells in T1DM mice. Furthermore, rFGF21 significantly upregulated the mRNA expression levels of peroxisome proliferators-activated receptor alpha (Pparα), β-Klotho, fibroblast growth factor receptor 1 (Fgfr1), phosphoenolpyruvate carboxykinase (Pepck), glucose transporter 1 (Glut1), and glucose transporter 4 (Glut4) in T1DM mouse livers. Moreover, in swamp eels, rFGF21 significantly decreased blood glucose and liver TC levels under glucose stress and upregulated the mRNA expression levels of fgf21, pparα, β-klotho, and fgfr1 in liver tissue. These results suggested that FGF21 plays important roles in the regulation of glucose and lipid homeostasis in swamp eel.
Collapse
Affiliation(s)
- Shuting Zheng
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Shenghan Xiang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yuwei Zang
- College of Life Sciences, Hainan University, Haikou 570228, China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Xiping Wei
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China; Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
11
|
Taniguchi H, Nirengi S, Ishihara K, Sakane N. Association of serum fibroblast growth factor 21 with diabetic complications and insulin dose in patients with type 1 diabetes mellitus. PLoS One 2022; 17:e0263774. [PMID: 35192641 PMCID: PMC8863253 DOI: 10.1371/journal.pone.0263774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Fibroblast growth factor (FGF) 21 is an important regulator of glycemic control, but the association between circulating FGF21 and diabetic complications is poorly understood. Moreover, basal FGF21 secretion, especially in response to insulin dose, in patients with type 1 diabetes mellitus (T1DM), has not been well examined. Therefore, this study aimed to determine the association of circulating FGF21 levels with diabetic complications and insulin dosage in middle-aged and elderly patients with T1DM. Materials and methods A total of 127 middle-aged and elderly patients with T1DM, including 68 patients with diabetic complications, and 106 non-diabetic individuals were analyzed in this cross-sectional study. Information on demographic characteristics and T1DM was extracted from their electronic medical records. Serum FGF21 levels were determined using ELISA. Results Serum FGF21 levels were significantly lower in T1DM patients (75.2 [37.4–135.1] pg/mL) than in non-diabetic participants (151.6 [92.0–224.6] pg/mL; P < 0.001). No diabetic complications were associated with serum FGF21 concentrations. Both basal and bolus insulin doses were significantly and positively correlated with serum FGF21 levels (P < 0.05). Stepwise multiple regression analysis showed that FGF21 level was associated with age and body mass index (P < 0.05), while the basal insulin dose was an independent positive predictor of serum FGF21 levels (β = 0.197, P = 0.032). Conclusions Circulating FGF21 levels are reduced in patients with T1DM; however, they are not associated with diabetic complications. In addition, aging, obesity, and insulin dosage are positive determinants of circulating FGF21.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Kengo Ishihara
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- * E-mail:
| |
Collapse
|
12
|
Stevioside ameliorates hyperglycemia and glucose intolerance, in a diet-induced obese zebrafish model, through epigenetic, oxidative stress and inflammatory regulation. Obes Res Clin Pract 2022; 16:23-29. [PMID: 35031270 DOI: 10.1016/j.orcp.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is an independent risk factor for type 2 diabetes and epigenetic regulatory mechanisms affect obesity-related mechanisms. Due to weight gain concern in society, artificial sweeteners with no nutritional value have been increasingly consumed. Stevia is a sweet natural glycoside and a calorie-free sweetner extracted from the leaves of Stevia rebaudiana Bertoni and used as a substitute for artificial sweetners. This study evaluates the effects of stevioside on glucose tolerance, epigenetic and metabolic regulators of insulin resistance, oxidant-antioxidant status and tissue histology in a diet-induced obese (DIO) zebrafish model. After 15 days of overfeeding body weight, and fasting blood glucose, lipid peroxidation and nitric oxide levels and the expressions of fbf21, lepa, ll21, tnfα were elevated, where as there was impaired glucose tolerance and lower superoxide dismutase and glutathione S-transferase activities, dnmt3a expression which is an epigenetic tool of insulin resistance. Beneficial effects of stevioside were observed on glucose tolerance, oxidative stress and inflammatory mediators linking obesity to insulin resistance and its epigenetic regulation, in DIO model.
Collapse
|
13
|
Weng HC, Lu XY, Xu YP, Wang YH, Wang D, Feng YL, Chi Z, Yan XQ, Lu CS, Wang HW. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Mol Med 2021; 27:147. [PMID: 34773993 PMCID: PMC8590333 DOI: 10.1186/s10020-021-00408-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/31/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Patients with salt-sensitive hypertension are often accompanied with severe renal damage and accelerate to end-stage renal disease, which currently lacks effective treatment. Fibroblast growth factor 21 (FGF21) has been shown to suppress nephropathy in both type 1 and type 2 diabetes mice. Here, we aimed to investigate the therapeutic effect of FGF21 in salt-sensitive hypertension-induced nephropathy. METHODS Changes of FGF21 expression in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive mice were detected. The influence of FGF21 knockout in mice on DOCA-salt-induced nephropathy were determined. Recombinant human FGF21 (rhFGF21) was intraperitoneally injected into DOCA-salt-induced nephropathy mice, and then the inflammatory factors, oxidative stress levels and kidney injury-related indicators were observed. In vitro, human renal tubular epithelial cells (HK-2) were challenged by palmitate acid (PA) with or without FGF21, and then changes in inflammation and oxidative stress indicators were tested. RESULTS We observed significant elevation in circulating levels and renal expression of FGF21 in DOCA-salt-induced hypertensive mice. We found that deletion of FGF21 in mice aggravated DOCA-salt-induced nephropathy. Supplementation with rhFGF21 reversed DOCA-salt-induced kidney injury. Mechanically, rhFGF21 induced AMPK activation in DOCA-salt-treated mice and PA-stimulated HK-2 cells, which inhibited NF-κB-regulated inflammation and Nrf2-mediated oxidative stress and thus, is important for rhFGF21 protection against DOCA-salt-induced nephropathy. CONCLUSION These findings indicated that rhFGF21 could be a promising pharmacological strategy for the treatment of salt-sensitive hypertension-induced nephropathy.
Collapse
Affiliation(s)
- Hua-Chun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 200000, China
| | - Xin-Yu Lu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Peng Xu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Hong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Yi-Ling Feng
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Zhang Chi
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Qing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
14
|
Song Y, Zhang W, Zhang J, You Z, Hu T, Shao G, Zhang Z, Xu Z, Yu X. TWIST2 inhibits EMT and induces oxidative stress in lung cancer cells by regulating the FGF21-mediated AMPK/mTOR pathway. Exp Cell Res 2021; 405:112661. [PMID: 34044016 DOI: 10.1016/j.yexcr.2021.112661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 12/25/2022]
Abstract
Twist related protein 2 (TWIST2) plays an important role in bone development, tumorigenesis, tumour progression and epithelial mesenchymal transition (EMT). At present, there are few reports about the role of TWIST2 in lung cancer, which need to be further explored. Therefore, the purpose of this study is to explore the role and molecular mechanism of TWIST2 in the occurrence and development of lung cancer. The expression of TWIST2 in tissues of patients and cell lines was measured using RT-qPCR and western blotting. MTT and CCK8 assays were used to detect cell proliferation and viability. Western blotting was used to measure the expression of EMT-related proteins, including E-cadherin, N-cadherin, Vimentin and Slug. The results revealed that TWIST2 is lowly expressed in the tissues of lung cancer patients and cell lines. Further studies found that overexpression of TWIST2 significantly induced apoptosis and promoted the expression of E-cadherin, as well as inhibiting the expression of N-cadherin, Vimentin and Slug. More importantly, TWIST2 induced oxidative stress in lung cancer cells. In addition, TWIST2 regulated the FGF21 and AMPK/mTOR signalling pathway, which is involved in the molecular mechanism of the gene in lung cancer cells. We suggest that the mechanism of TWIST2 inhibition of the progression of lung cancer is by regulating the FGF21-mediated AMPK/mTOR signalling pathway.
Collapse
Affiliation(s)
- Yingjian Song
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China
| | - Wei Zhang
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China
| | - Jiuxu Zhang
- Department of Cardio-Thoracic Surgery, The People's Hospital of Hai Yang City, Yantai, 264000, Shandong, People's Republic of China
| | - Zhaolei You
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China
| | - Tao Hu
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China
| | - Guangyuan Shao
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China
| | - Zheng Zhang
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China
| | - Zhicheng Xu
- Department of Cardio-Thoracic Surgery, The People's Hospital of Hai Yang City, Yantai, 264000, Shandong, People's Republic of China.
| | - Xiaofeng Yu
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, People's Republic of China.
| |
Collapse
|
15
|
López-Soldado I, Guinovart JJ, Duran J. Increasing hepatic glycogen moderates the diabetic phenotype in insulin-deficient Akita mice. J Biol Chem 2021; 296:100498. [PMID: 33667544 PMCID: PMC8027280 DOI: 10.1016/j.jbc.2021.100498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic glycogen metabolism is impaired in diabetes. We previously demonstrated that strategies to increase liver glycogen content in a high-fat-diet mouse model of obesity and insulin resistance led to a reduction in food intake and ameliorated obesity and glucose tolerance. These effects were accompanied by a decrease in insulin levels, but whether this decrease contributed to the phenotype observed in this animal was unclear. Here we sought to evaluate this aspect directly, by examining the long-term effects of increasing liver glycogen in an animal model of insulin-deficient and monogenic diabetes, namely the Akita mouse, which is characterized by reduced insulin production. We crossed Akita mice with animals overexpressing protein targeting to glycogen (PTG) in the liver to generate Akita mice with increased liver glycogen content (Akita-PTGOE). Akita-PTGOE animals showed lower glycemia, lower food intake, and decreased water consumption and urine output compared with Akita mice. Furthermore, Akita-PTGOE mice showed a restoration of the hepatic energy state and a normalization of gluconeogenesis and glycolysis back to nondiabetic levels. Moreover, hepatic lipogenesis, which is reduced in Akita mice, was reverted in Akita-PTGOE animals. These results demonstrate that strategies to increase liver glycogen content lead to the long-term reduction of the diabetic phenotype, independently of circulating insulin.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
16
|
Johansson KS, Sonne DP, Knop FK, Christensen MB. What is on the horizon for type 2 diabetes pharmacotherapy? – An overview of the antidiabetic drug development pipeline. Expert Opin Drug Discov 2020; 15:1253-1265. [DOI: 10.1080/17460441.2020.1791078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karl Sebastian Johansson
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Peick Sonne
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Tarhani F, Heidari G, Nezami A. Evaluation of α-klotho level in insulin dependent diabetes mellitus (IDDM) children. J Pediatr Endocrinol Metab 2020; 33:761-765. [PMID: 32469333 DOI: 10.1515/jpem-2019-0591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
Abstract
Objectives Reduced levels of α-Klotho is associated with the pathogenesis of various diseases including diabetes. In type I diabetes, decrease in Klotho leads to apoptosis of β-cells of pancreases. The aim of this study was to evaluate the levels of α-Klotho in type I diabetic pediatric patients. Methods In this cross-sectional single centered study, 46 patients presenting type I diabetes mellitus (case group) and 78 control group under the age of 12, referred to our clinic were included in our study. Serum levels of soluble Klotho were measured by sandwich ELISA in case and control groups. Statistical analysis was conducted for the data recorded via questionnaire. Results Mean age of the patients in the case and control group was 7.65 ± 3.09 and 7 ± 2.37, respectively. Type I diabetes patients had a significant reduction in the levels of serum Klotho, as compared to controls (p<0.001). However, gender and age-based comparison between patient and control group was not significant. Conclusions This study reports a significant decrease in the serum levels of α-Klotho in type 1 diabetic patients. Low levels of Klotho can be associated with diabetic nephropathy and other comorbidities in these patients.
Collapse
Affiliation(s)
- Fariba Tarhani
- Department of Pediatric, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghobad Heidari
- Department of Pediatric, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Nezami
- Department of Pediatric, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
18
|
Yaghoobi G, Shokoohi-Rad S, Jafarzadeh H, Abdollahi E. Serum Fibroblast Growth Factor 21 in Patients with and without Pterygia. J Ophthalmic Vis Res 2020; 15:38-44. [PMID: 32095207 PMCID: PMC7001032 DOI: 10.18502/jovr.v15i1.5940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Pterygium is a common fibro-vascular-related eye disease. The fibroblast growth factor 21 (FGF21) helps reduce neovascularization. Previous studies have shown that the serum level of FGF21 correlates with vascular eye diseases such as diabetic retinopathy and retinopathy of prematurity. In this study, the serum FGF21 is compared in patients with and without pterygium. Methods This descriptive-analytical cross-sectional study examines individuals with pterygium who visited the Ophthalmology Clinic of Khatam-al-Anbia Hospital in Mashhad, Iran, during 2017–2018. Control subjects were selected from healthy people without pterygium disease. Patients with a history of acute illness, chronic liver and kidney disease, diabetes, cancer, malnutrition and drug use, women who were pregnant or breastfeeding, and subjects who were taking anticonvulsants or glucocorticoids were excluded as these may affect insulin and glycosuria levels. Sixty people (30 in each group) were chosen using the convenient sampling method. Intravenous blood samples were taken from all patients. After preparing the patients, the freeze was checked using the enzyme-linked immunosorbent assay (ELISA) method after samples had been taken. Data were analyzed by SPSS using an independent t-test, Mann–Whitney, Chi-square, Kruskal–Wallis, and Kolmogorov–Smirnov tests (α = 0.05). Results The serum FGF21 levels were 319.09 ± 246.93 pg/ml and 608.88 ± 449.81 pg/ml (P = 0.005) in the pterygium group and control subjects, respectively. The average serum FGF21 was 281.55 ± 40.74 pg/ml in males and 361.375 ± 10.298 pg/ml in females in the pterygium group. The difference was not statistically significant (P = 0.19) Conclusion Our study showed that FGF21 levels were lower in patients with pterygium than the control subjects to a statistically significant level.
Collapse
Affiliation(s)
- Gholamhosein Yaghoobi
- Ophthalmology Department, Birjand University of Medical Sciences, Valiasr Hospital, Birjand, Iran
| | - Saeed Shokoohi-Rad
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Jafarzadeh
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
19
|
Jiao X, Zhang D, Hong Q, Yan L, Han Q, Shao F, Cai G, Chen X, Zhu H. Netrin-1 works with UNC5B to regulate angiogenesis in diabetic kidney disease. Front Med 2019; 14:293-304. [PMID: 31884526 DOI: 10.1007/s11684-019-0715-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Netrin-1, an axon guidance factor, and its receptor UNC5B play important roles in axonal development and angiogenesis. This study examined netrin-1 and UNC5B expression in kidneys with diabetic kidney disease (DKD) and investigated their roles in angiogenesis. Netrin-1 and UNC5B were upregulated in streptozotocininduced DKD Wistar rats, and their expression was compared with that in healthy controls. However, exogenous netrin-1 in UNC5B-depleted human renal glomerular endothelial cells (HRGECs) inhibited cell migration and tubulogenesis. This effect was likely associated with SRC pathway deactivation. Netrin-1 treatment also eliminated the pro-angiogenic effects of exogenous VEGF-165 on UNC5B-silenced HRGECs. These results indicate that UNC5B antagonizes netrin-1 and that UNC5B upregulation contributes partly to enhancing angiogenesis in DKD. Therefore, introducing exogenous netrin-1 and depleting endogenous UNC5B are potential strategies for reducing the incidence of early angiogenesis and mitigating kidney injury in DKD.
Collapse
Affiliation(s)
- Xiaojing Jiao
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Dong Zhang
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Qiuxia Han
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China.
| | - Guangyan Cai
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, 100853, China.
| |
Collapse
|
20
|
Shen X, Zhang Y, Zhang X, Yao Y, Zheng Y, Cui X, Liu C, Wang Q, Li JZ. Long non-coding RNA Bhmt-AS attenuates hepatic gluconeogenesis via modulation of Bhmt expression. Biochem Biophys Res Commun 2019; 516:215-221. [PMID: 31208716 DOI: 10.1016/j.bbrc.2019.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 01/16/2023]
Abstract
Dysregulation of gluconeogenesis contributes to the pathogenesis of metabolic disease, such as type-2 diabetes. The role of long non-coding RNAs (lncRNAs) in the pathogenesis of diabetes has recently received increased attention. In the present study, we identified a novel lncRNA, betaine-homocysteine methyltransferase-antisense (Bhmt-AS), and examined its expression patterns under pathophysiological conditions. Our results revealed that the expression of Bhmt-AS was significantly increased in the livers of fasted and db/db mice and was induced by gluconeogenic hormonal stimuli. The Bhmt-AS was also shown to be a concordant regulator of Bhmt expression. Functionally, depletion of Bhmt-AS suppressed hepatic glucose production both in vivo and in vitro. Adenovirus-mediated hepatic knockdown of Bhmt-AS improved pyruvate tolerance, glucose tolerance, and insulin sensitivity. Furthermore, overexpression of Bhmt restored the decreased glucose production caused by knockdown of Bhmt-AS in primary hepatocytes. Taken together, we uncovered a novel antisense lncRNA (Bhmt-AS) that is co-expressed with Bhmt and concordantly and specifically regulates Bhmt expression both in vitro and in vivo to regulate hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Xuan Shen
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yajun Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yiwei Yao
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yujie Zheng
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Hospital, China; Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Chang Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
21
|
Ojaghi M, Soleimanifar F, Kazemi A, Ghollasi M, Soleimani M, Nasoohi N, Enderami SE. Electrospun poly‐
l
‐lactic acid/polyvinyl alcohol nanofibers improved insulin‐producing cell differentiation potential of human adipose‐derived mesenchymal stem cells. J Cell Biochem 2018; 120:9917-9926. [DOI: 10.1002/jcb.28274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Ojaghi
- Department of Molecular and Cellular Sciences Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences Karaj Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology Faculty of Biological Science, Kharazmi University Tehran Iran
| | - Masoud Soleimani
- Department of Hematology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Nikoo Nasoohi
- Department of Molecular and Cellular Sciences Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | | |
Collapse
|