1
|
Shan H, Gao L, Zhao S, Dou Z, Pan Y. Bone marrow mesenchymal stem cells with PTBP1 knockdown protect against cerebral ischemia-reperfusion injury by inhibiting ferroptosis via the JNK/P38 pathway in rats. Neuroscience 2024; 560:130-142. [PMID: 39306318 DOI: 10.1016/j.neuroscience.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Over the years, the neuroprotective potential of bone marrow mesenchymal stem cells (BMSCs) in acute ischemic stroke has attracted significant attention. However, BMSCs face challenges like short metabolic cycles and low survival rates post-transplant. Polypyrimidine tract-binding protein 1 (PTBP1) is an immunomodulatory RNA-binding protein that regulates the cell cycle and increases cell viability. This study investigated the protective effects and underlying mechanism of PTBP1 knockdown in BMSCs (PTBP1KD-BMSCs) following ischemia-reperfusion injury (IRI) in neurons. BMSCs were isolated from Sprague-Dawley rat femurs and characterized through flow cytometry and differentiation induction. PTBP1 knockdown inhibited BMSCs proliferation. Co-culture with PTBP1KD-BMSCs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while increasing glutathione (GSH) production in oxygen and glucose deprivation/reperfusion-induced PC12 cells. Transcriptome sequencing analysis of PC12 cells suggested that the protective effect of PTBP1KD-BMSCs against injury may involve ferroptosis. Furthermore, western blotting showed upregulation of glutathione synthetase (GSS), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in PTBP1KD-BMSCs, known negative regulators of ferroptosis. Moreover, PTBP1KD-BMSCs inhibited p38MAPK and JNK activation. In addition, PTBP1KD-BMSCs transplantation into middle cerebral artery occlusion/reperfusion (MCAO/R) rats reduced cerebral infarction volume and improved neurological function. Immunofluorescence analysis confirmed the upregulation of GSS expression in neurons of the ischemic cortex, while immunohistochemistry indicated a downregulation of p-P38. These result suggest that PTBP1KD-BMSCs can alleviate neuronal IRI by reducing oxidative stress, inhibiting ferroptosis, and modulating the MAPK pathway, providing a theoretical basis for potential treatment strategies for cerebral IRI.
Collapse
Affiliation(s)
- Hailei Shan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China; Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Limin Gao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Shuang Zhao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Zhijie Dou
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China.
| | - Yujun Pan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
2
|
Chiu IJ, Ajay AK, Chen CH, Jadhav S, Zhao L, Cao M, Ding Y, Shah KM, Shah SI, Hsiao LL. Suppression of aldehyde dehydrogenase 2 in kidney proximal tubules contributes to kidney fibrosis through Transforming Growth Factor-β signaling. Kidney Int 2024:S0085-2538(24)00699-9. [PMID: 39393529 DOI: 10.1016/j.kint.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Chronic kidney disease (CKD) is an increasingly prevalent disorder that poses a significant global health and socioeconomic burden. East Asian countries such as China, Taiwan, Japan, and South Korea have a higher incidence and prevalence of kidney failure when compared to Western nations, and the reasons for this discrepancy remain unclear. Aldehyde dehydrogenase 2 (ALDH2) is an essential detoxifying enzyme for exogenous and endogenous aldehyde metabolism in mitochondria. Inactivating mutations at E504K and E487K are found in 35-45% of East Asian populations and has been linked to a higher risk of various disorders, including cardiovascular diseases and cancer. However, little is known about the role of ALDH2 in CKD. Here, we characterized the expression pattern of ALDH2 in normal and CKD human and mouse kidneys and demonstrated that ALDH2 expression was significantly reduced, and that the protein level was inversely correlated with the degree of CKD and fibrosis. Further, we treated ALDH2∗2 knock-in mice, a loss of ALDH2 function model, with aristolochic acid and found that these mice showed enhanced fibrosis. Moreover, ALDH2 deficiency was associated with kidney fibrosis involving epithelial cell differentiation process in vivo and in vitro. However, ALDH2 overexpression protected proximal tubule epithelial cells from transforming growth factor-β-induced dedifferentiation or partial epithelial-mesenchymal transdifferentiation in vitro. Thus, our findings yield important clinical information regarding the development and progression of CKD involving ALDH2, especially among East Asian populations.
Collapse
Affiliation(s)
- I-Jen Chiu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California, USA
| | - Shreyas Jadhav
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zhao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Minghua Cao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Discovery Biology, Merck & Co, Inc., Rahway, New Jersey, USA
| | - Kavya M Shah
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; Department of Statistics, Harvard University, Cambridge, Massachusetts
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Qi S, Fu J, Li Y, Fei C, Zhang J, Sui L, Zhou S, Li J, Zhao Y, Wu D. Electrochemical response mechanism of DNA damaged cells: DNA damage repair and purine metabolism activation. Bioelectrochemistry 2024; 161:108832. [PMID: 39395363 DOI: 10.1016/j.bioelechem.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
In modern society, due to the sharp increase in pollutants that cause DNA damage, there is a growing demand for innovative detection techniques and biomarkers. In this paper, the electrochemical behavior of HepG2 cells exposed to CdCl2 was investigated, and the electrochemical response mechanism of DNA damage was identified by exploring the correlation between the DNA damage response and purine metabolism. Western blot analysis revealed that the expression levels of ATM and Ku70 increased at 0.3 μM CdCl2, indicating a DNA damage response and activation of DNA repair processes. Simultaneously, elevated expression levels of PRPP aminotransferase, HPRT, and XOD were observed, leading to an increase in intracellular purine levels and electrochemical signals. The expression of Ku70 peaked at 0.5 μM CdCl2, indicating the highest DNA repair activity. The expression profiles of these purine metabolism proteins mirrored those of Ku70, suggesting a strong correlation between the activation of purine metabolism and DNA damage repair. Consistently, intracellular purine levels exhibited a similar trend, leading to corresponding changes in electrochemical signals. In summary, electrochemical using intracellular purines as biomarkers has the potential to emerge as a novel method for detecting early DNA damage.
Collapse
Affiliation(s)
- Shulan Qi
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jiaqi Fu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yue Li
- Related Diseases College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Chaoqun Fei
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiahuan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Liyuan Sui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| | - Yanli Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
4
|
Xiang C, Chen L, Zhu S, Chen Y, Huang H, Yang C, Chi Y, Wang Y, Lei Y, Cai X. CRLF1 bridges AKT and mTORC2 through SIN1 to inhibit pyroptosis and enhance chemo-resistance in ovarian cancer. Cell Death Dis 2024; 15:662. [PMID: 39256356 PMCID: PMC11387770 DOI: 10.1038/s41419-024-07035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Ovarian cancer, the second most leading cause of gynecologic cancer mortality worldwide, is challenged by chemotherapy resistance, presenting a significant hurdle. Pyroptosis, an inflammation-linked programmed cell death mediated by gasdermins, has been shown to impact chemoresistance when dysregulated. However, the mechanisms connecting pyroptosis to chemotherapy resistance in ovarian cancer are unclear. We found that cytokine receptor-like factor 1 (CRLF1) is a novel component of mTORC2, enhancing AKT Ser473 phosphorylation through strengthening the interaction between AKT and stress-activated protein kinase interacting protein 1 (SIN1), which in turn inhibits the mitogen-activated protein kinase kinase kinase 5 (ASK1)-JNK-caspase-3-gasdermin E pyroptotic pathway and ultimately confers chemoresistance. High CRLF1-expressing tumors showed sensitivity to AKT inhibition but tolerance to cisplatin. Remarkably, overexpression of binding-defective CRLF1 variants impaired AKT-SIN1 interaction, promoting pyroptosis and chemosensitization. Thus, CRLF1 critically regulates chemoresistance in ovarian cancer by modulating AKT/SIN1-dependent pyroptosis. Binding-defective CRLF1 variants could be developed as tumor-specific polypeptide drugs to enhance chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Cong Xiang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Shilei Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Chen
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Haodong Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Chunmao Yang
- Department of Gynecology, Southwest Hospital, Chongqing, China
| | - Yugang Chi
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Yanzhou Wang
- Department of Gynecology, Southwest Hospital, Chongqing, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiongwei Cai
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China.
| |
Collapse
|
5
|
Ray B, Rungratanawanich W, LeFort KR, Chidambaram SB, Song BJ. Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) Protects against Binge Alcohol-Mediated Gut and Brain Injury. Cells 2024; 13:927. [PMID: 38891060 PMCID: PMC11171926 DOI: 10.3390/cells13110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type (WT) mice were gavaged with binge alcohol (4 g/kg/dose, three doses) or dextrose (control) at 12 h intervals. Tissues and sera were collected 1 h after the last ethanol dose and evaluated by histological and biochemical analyses of the gut and hippocampus and their extracts. For the mechanistic study, mouse neuroblast Neuro2A cells were exposed to ethanol with or without an Aldh2 inhibitor (Daidzin). Binge alcohol decreased intestinal tight/adherens junction proteins but increased oxidative stress-mediated post-translational modifications (PTMs) and enterocyte apoptosis, leading to elevated gut leakiness and endotoxemia in Aldh2-KO mice compared to corresponding WT mice. Alcohol-exposed Aldh2-KO mice also showed higher levels of hippocampal brain injury, oxidative stress-related PTMs, and neuronal apoptosis than the WT mice. Additionally, alcohol exposure reduced Neuro2A cell viability with elevated oxidative stress-related PTMs and apoptosis, all of which were exacerbated by Aldh2 inhibition. Our results show for the first time that ALDH2 plays a protective role in binge alcohol-induced brain injury partly through the gut-brain axis, suggesting that ALDH2 is a potential target for attenuating alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Bipul Ray
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, and Center for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, India;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| |
Collapse
|
6
|
Yao Z, Jiang J, Ju Y, Luo Y. Aging-related genes revealed Neuroinflammatory mechanisms in ischemic stroke by bioinformatics. Heliyon 2023; 9:e21071. [PMID: 37954339 PMCID: PMC10637918 DOI: 10.1016/j.heliyon.2023.e21071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Ischemic stroke (IS) is a leading cause of disability, morbidity, and mortality globally. Aging affects immune function and contributes to poor outcomes of IS in elderly individuals. However, little is known about how aging-related genes (ARGs) are involved in IS. In this study, the relationship between ARGs and IS immune microenvironment biomarkers was explored by bioinformatics. Two IS microarray datasets (GSE22255, GSE16561) from human blood samples were analyzed and 502 ARGs were identified, from which 29 differentially expressed ARGs were selected. Functional analysis revealed that 7 of these ARGs (IL1B, FOS, JUN, CXCL5, PTGS2, TNFAIP3 and TLR4) were involved in five top enriched pathways (IL-17 signaling pathway, TNF signaling pathway, Rheumatoid arthritis, NF-kappa B signaling pathway and Pertussis) related to immune responses and inflammation. Five hub DE-ARGs (IL2RB, FOS, IL7R, ALDH2 and BIRC2) were identified using machine learning algorithms, and their association with immune-related characteristics was confirmed by additional tests. Single-cell sequencing dataset GSE129788 was retrieved to analyze aging molecular-related features, which was in accordance with microarray datasets. Clustering analysis revealed two subtypes of IS, which were distinguished by their differential expression of genes related to the NF-kappa B signaling pathway. These findings highlight the importance of ARGs in regulating immune responses in IS and suggest potential prevention and treatment strategies as well as guidelines for future research.
Collapse
Affiliation(s)
- Zhengyu Yao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin Jiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yaxin Ju
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Qu Y, Liu Y, Zhang H. ALDH2 activation attenuates oxygen-glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol 2023; 25:3203-3216. [PMID: 37103763 DOI: 10.1007/s12094-023-03190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE It is previously reported that aldehyde dehydrogenase 2 family member (ALDH2) shows neuroprotective effects in cerebral ischemia/reperfusion injury. However, whether the protective effects are through mediating the programmed cell death is yet to be fully elucidated. METHODS In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in HT22 cells and mouse cortical neurons. Subsequently, ALDH2 expression were assessed by qRT-PCR and western blot. The methylation status was examined by methylation-specific PCR (MS-PCR). Then, ALDH2 expression was promoted and suppressed to explore the role of ALDH2 in OGD/R-treated cells. CCK-8 assay was applied to detect cell viability, and flow cytometry was applied to evaluate cell apoptosis. Western blot was applied to detect the apoptosis-related proteins (Caspase 3, Bcl-2 and Bax), necroptosis-related proteins (RIP3 and MLKL), pyroptosis-related proteins (NLRP3 and GSDMD), ferroptosis-related protein (ACSL4 and GPX4), and autophagy-related proteins (LC3B, and p62). IL-1β and IL-18 production was evaluated by ELISA assay. Reactive oxygen species production and Fe2+ content were evaluated by the corresponding detection kit. RESULTS In OGD/R-treated cells, ALDH2 expression was decreased, which was due to the hypermethylation of ALDH2 in the promoter region. ALDH2 overexpression improved cell viability and ALDH2 knockdown suppressed cell viability in OGD/R-treated cells. We also found that ALDH2 overexpression attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy, while ALDH2 knockdown facilitated the OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. CONCLUSIONS Collectively, our results implied that ALDH2 attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy to promote cell viability in HT22 cells and mouse cortical neurons.
Collapse
Affiliation(s)
- Yun Qu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yuanyuan Liu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Huilong Zhang
- Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 Yudong Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
8
|
Wang Q, Zhang Z, Gao X. Effects of ophthalmic surface anesthetic alcaine on the proliferation and apoptosis of human corneal endothelial cells through HIF-1α regulation. Cell Tissue Bank 2023; 24:561-570. [PMID: 36572744 DOI: 10.1007/s10561-022-10057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/22/2022] [Indexed: 12/27/2022]
Abstract
The corneal endothelium is a monolayer, which mediates solute and water flux across the posterior corneal surface. Alcaine's main component proparacaine is paramount in human corneal endothelium (HCE) cell regulation. This study explored the mechanism of alcaine in regulating HCE cells. HCE cell morphology under gradient concentrations was observed by an optical microscope. Cell proliferation and viability were detected by MTT assay to determine the half inhibitory concentration (IC 50). Cell apoptosis rate, HIF-1α mRNA expression, and HIF-1α, p/t-JNK and Caspase-3 protein levels were detected by flow cytometry, RT-qPCR, and Western blot. After treatment with alcaine at 0.625-5 g/L concentration range for 24 h, HCE cells showed cytoplasmic vacuolation, cell shrinkage, separation from culture matrix, and eventual death. Alcaine treated-HCE cell proliferation was decreased in a dose-dependent manner. The IC 50 of alcaine was 1.26 g/L. After alcaine treatment, HCE cell apoptosis rate was promoted and HIF-1α levels in HCE cells were stimulated. Knockdown of HIF-1α partially annulled the effects of alcaine on inhibiting HCE cell proliferation and facilitating apoptosis. Alcaine might activate the JNK/caspase-3 pathway by increasing HIF-1α. The inhibition of the JNK/caspase-3 pathway partially abrogated the effects of alcaine on inhibiting HCE cell proliferation and promoting apoptosis. Alcaine might affect HCE cell proliferation and apoptosis by upregulating HIF-1α and activating the JNK/caspase-3 pathway.
Collapse
Affiliation(s)
- Quan Wang
- Department of Anesthesiology, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Road, Heping District, Tianjin, 300022, China
| | - Zhao Zhang
- Department of Anesthesiology, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Road, Heping District, Tianjin, 300022, China
| | - Xuesong Gao
- Department of Anesthesiology, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Road, Heping District, Tianjin, 300022, China.
| |
Collapse
|
9
|
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product "hydroxynonenal" for Alzheimer's disease. Front Aging Neurosci 2023; 15:1211141. [PMID: 37693644 PMCID: PMC10486274 DOI: 10.3389/fnagi.2023.1211141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the "calpain-cathepsin hypothesis" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer's disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer's disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer's disease, the strength of the "amyloid cascade hypothesis" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer's disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer's disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
10
|
Zhang J, Guo Y, Zhao X, Pang J, Pan C, Wang J, Wei S, Yu X, Zhang C, Chen Y, Yin H, Xu F. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol 2023; 20:495-509. [PMID: 36781974 DOI: 10.1038/s41569-023-00839-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in the detoxification of alcohol-derived acetaldehyde and endogenous aldehydes. The inactivating ALDH2 rs671 polymorphism, present in up to 8% of the global population and in up to 50% of the East Asian population, is associated with increased risk of cardiovascular conditions such as coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary arterial hypertension, heart failure and drug-induced cardiotoxicity. Although numerous studies have attributed an accumulation of aldehydes (secondary to alcohol consumption, ischaemia or elevated oxidative stress) to an increased risk of cardiovascular disease (CVD), this accumulation alone does not explain the emerging protective role of ALDH2 rs671 against ageing-related cardiac dysfunction and the development of aortic aneurysm or dissection. ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways. In this Review, we summarize the basic biology and the clinical relevance of the enzymatic and non-enzymatic, tissue-specific roles of ALDH2 in CVD, and discuss the future directions in the research and development of therapeutic strategies targeting ALDH2. A thorough understanding of the complex roles of ALDH2 in CVD will improve the diagnosis, management and prognosis of patients with CVD who harbour the ALDH2 rs671 polymorphism.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Yunyun Guo
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiangkai Zhao
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Chang Pan
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiali Wang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Shujian Wei
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Shandong, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| | - Huiyong Yin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| |
Collapse
|
11
|
Ling M, Huang C, Hua T, Li H, Xiao W, Lu Z, Jia D, Zhou W, Zhang L, Yang M. Acetaldehyde dehydrogenase 2 activation attenuates sepsis-induced brain injury through NLRP3 inflammasome regulation. Brain Res Bull 2023; 194:128-138. [PMID: 36720319 DOI: 10.1016/j.brainresbull.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Acetaldehyde dehydrogenase 2 (ALDH2) plays an important part in neuroprotection; however, its effect on sepsis-induced brain injury is nuclear. Our aim is to investigate the potential effect and mechanism of ALDH2 in this condition. METHODS We established an animal model using cecal ligation and perforation (CLP). Twenty-four rats were divided into sham group (n = 6), CLP group (n = 6), CLP + Alda-1 group (n = 6) and CLP + Cyanamide (CYA) group (n = 6). Vital signs were monitored, and arterial blood gas analysis, hippocampal histological staining and ALDH2 activity analysis were conducted. Western blot analysis and enzyme-linked immunosorbent assays were also carried out. Lipopolysaccharide (LPS)-treated HT22 cells were employed as an in vitro model of sepsis-induced brain injury, with and without pretreatment with Alda-1 or CYA, to further examine the potential mechanisms. Real-time quantitative polymerase chain reaction and western blot were used to determine the levels of pyrin domain-containing 3 (NLRP3) inflammasome. RESULTS We found hippocampal cell injury in the CLP group (p < 0.05), with decreased ALDH2 activity (p < 0.05) and suspected overexpression of NLRP3/caspase-1 axis (p < 0.05). In the group pretreated with Alda-1, there were increased ALDH2 activity (p < 0.05), decreased hippocampal cell damage (p < 0.05), and reduced protein levels of NLRP3, apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), cleaved caspase-1 and Gasdermin D (GSDMD) (p < 0.05). The levels of interleukin 18 (IL-18) and interleukin 1β (IL-1β) were also reduced (p < 0.05). In the group pretreated with CYA, ALDH2 activity was further declined, the cell injury grade increased, and the elevated levels of pyroptosis-related proteins aggravated (p < 0.05). LPS treatment decreased the cell viability and ALDH2 activity of the HT22 cells (p < 0.05), along with increased mRNA levels of the NLRP3 inflammasome, as well as IL-1β and IL-18 (p < 0.05). Western blot further revealed elevated levels of NLRP3, ASC, cleaved caspase-1 and GSDMD (p < 0.05). In the LPS+Alda-1 group, there were increased cell viability (p < 0.05), elevated ALDH2 activity (p < 0.05), and reduced levels of NLRP3 inflammasome and pyroptosis-related proteins (p < 0.05). In the CYA+LPS group, cell viability and ALDH2 activity were further declined (p < 0.05), while levels of NLRP3 /caspase-1 axis were increased (p < 0.05). CONCLUSIONS The activation of ALDH2 can attenuate sepsis-induced brain injury, hypothetically through regulation of the NLRP3/caspase-1 signaling pathway. Therefore, ALDH2 could potentially be considered as a new therapeutic target for the treatment of sepsis-induced brain injury.
Collapse
Affiliation(s)
- Meng Ling
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; Department of Intensive Care Unit, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province 230031, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Chunxia Huang
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province 230601, China; Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Tianfeng Hua
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Hui Li
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Wenyan Xiao
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Zongqing Lu
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Di Jia
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Wuming Zhou
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| | - Linlin Zhang
- Department of Intensive Care Unit, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province 230031, China.
| | - Min Yang
- The 2nd Department of Intensive Care Unit, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Hospital of Anhui Medical University, Hefei, Anhui Province 230601, China.
| |
Collapse
|
12
|
Zhang S, Zhang X, Wang X, Li C, He C, Luo T, Ge P. Maltol inhibits oxygen glucose deprivation‑induced chromatinolysis in SH‑SY5Y cells by maintaining pyruvate level. Mol Med Rep 2023; 27:75. [PMID: 36799163 PMCID: PMC9950851 DOI: 10.3892/mmr.2023.12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Maltol, a chemical isolated from ginseng root, has shown treatment effects on several pathological processes including osteoarthritis, diabetic peripheral neuropathy and liver fibrosis. Nevertheless, its effect on ischemia‑induced neuron death remains elusive. In the present study, the treatment effect of maltol on ischemia‑induced neuron damage was investigated by using oxygen and glucose deprivation (OGD) model in SH‑SY5Y cells. In vitro studies revealed that maltol protected SH‑SY5Y cells against OGD‑induced chromatinolysis by inhibiting two reactive oxygen species (ROS)‑regulated pathways. One was DNA double‑strand breaks and the other was nuclear translocation of apoptosis inducing factor. Mechanistically, maltol not only inhibited OGD‑induced depletion of glutathione and cysteine by maintaining cystine/glutamate antiporter (xCT) level, but also abrogated OGD‑induced catalase downregulation. Meanwhile, maltol also alleviated OGD‑induced inactivation of mTOR by attenuating OGD‑induced depletion of adenosine triphosphate and pyruvate and downregulation of pyruvate kinase M2, indicating that maltol inhibited the glycolysis dysfunction caused by OGD. Considering that activated mammalian target of the rapamycin (mTOR) could lead to enhanced xCT expression and decreased catalase degradation by autophagy, these findings indicated that maltol attenuated OGD‑induced ROS via inhibition of mTOR inactivation by maintaining pyruvate level. Taken together, it was demonstrated that maltol prevented OGD‑induced chromatinolysis in SH‑SY5Y cells via inhibiting pyruvate depletion.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyue Zhang
- Department of Public Health, New York University, New York, NY 10016, USA
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chuan He
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Department of Neurology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Pengfei Ge, Department of Neurosurgery, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
13
|
Yuan Y, Tan H, Chen H, Zhang J, Shi F, Wang M, Zhang G, Wang H, Dong R. Peroxiredoxin 1 alleviates oxygen-glucose deprivation/ reoxygenation injury in N2a cells via suppressing the JNK/caspase-3 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1305-1312. [PMID: 37886002 PMCID: PMC10598809 DOI: 10.22038/ijbms.2023.71390.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 10/28/2023]
Abstract
Objectives Cerebral ischemia/reperfusion (I/R) injury inevitably aggravates the initial cerebral tissue damage following a stroke. Peroxiredoxin 1 (Prdx1) is a representative protein of the endogenous antioxidant enzyme family that regulates several reactive oxygen species (ROS)-dependent signaling pathways, whereas the JNK/caspase-3 proapoptotic pathway has a prominent role during cerebral I/R injury. This study aimed to examine the potential mechanism of Prdx1 in Neuro 2A (N2a) cells following oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Materials and Methods N2a cells were exposed to OGD/R to simulate cerebral I/R injury. Prdx1 siRNA transfection and the JNK inhibitor (SP600125) were used to interfere with their relative expressions. CCK-8 assay, flow cytometry, and lactate dehydrogenase (LDH) assay were employed to determine the viability and apoptosis of N2a cells. The intracellular ROS content was assessed using ROS Assay Kit. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were conducted to detect the expression levels of Prdx1, JNK, phosphorylated JNK (p-JNK), and cleaved caspase-3. Results Firstly, Prdx1, p-JNK, and cleaved caspase-3 expression were significantly induced in OGD/R-exposed N2a cells. Secondly, the knockdown of Prdx1 inhibited cell viability and increased apoptosis rate, expression of p-JNK, and cleaved caspase-3 expression. Thirdly, SP600125 inhibited the JNK/caspase-3 signaling pathway and mitigated cell injury following OGD/R. Finally, SP600125 partially reversed Prdx1 down-regulation-mediated cleaved caspase-3 activation and OGD/R damage in N2a cells. Conclusion Prdx1 alleviates the injury to N2a cells induced by OGD/R via suppressing JNK/caspase-3 pathway, showing promise as a potential therapeutic for cerebral I/R injury.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hongchen Tan
- Malvern College Qingdao, Qingdao, Shandong, China
| | - Huailong Chen
- Department of Anesthesiology, Qingdao Eight People’s Hospital, Qingdao, Shandong, China
| | - Jiawen Zhang
- Department of Anesthesiology, Qingdao Clinical College Affiliated to Nanjing Medical University, Qingdao, Shandong, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Gaofeng Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Haipeng Wang
- Department of Anesthesiology, Weifang No.2 People’s Hospital, Weifang, Shandong, China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
14
|
M1 Microglia Induced Neuronal Injury on Ischemic Stroke via Mitochondrial Crosstalk between Microglia and Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4335272. [PMID: 36478988 PMCID: PMC9722306 DOI: 10.1155/2022/4335272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Among the middle-aged and senile populations, ischemic stroke (IS) is a frequently occurring acute condition of the cerebrovascular system. Traditionally, it is recognized that when stroke occurs, microglia are activated into M1 phenotype and release cytotoxic cytokines, reactive oxygen species, proteases, and other factors, thus exacerbating the injury by further destroying or killing nearby neurons. In the latest research, the crucial role of the intercellular mitochondrial crosstalk on the stroke management has been demonstrated. Therefore, we tried to clarify mitochondrial crosstalk between microglia and neurons, and evaluated M1 microglial mitochondria-mediated neurological performance in transient middle cerebral artery occlusion (tMCAO) rats. We found that when microglia was activated into the proinflammatory M1 type after stroke, mitochondrial fission process was accelerated, and damaged mitochondria were released, further transferred to neurons and fused with neuronal mitochondria. As a result, the function of neuronal mitochondria was damaged by decreasing adenosine triphosphate (ATP), mitochondria membrane potential, and increasing excessive reactive oxygen species (ROS), thus inducing mitochondria-mediated neuronal death and finally aggravating ischemia injury. Taken together, it provides a novel neuroglial crosstalk mechanism at the mitochondrial level.
Collapse
|
15
|
Li S, Li J, Zhao Z, Xiao S, Shen X, Li X, Zu X, Li X, Shen Y. Delavatine A attenuates OGD/R-caused PC12 cell injury and apoptosis through suppressing the MKK7/JNK signaling pathway. Biol Pharm Bull 2022; 45:1743-1753. [PMID: 36130913 DOI: 10.1248/bpb.b22-00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delavatine A (DA) is an unusual isoquinoline alkaloid with a novel skeleton isolated from Chinese folk medicine Incarvillea delavayi. Studies conducted in our lab have demonstrated that DA has potential anti-inflammatory activity in LPS-treated BV-2 cells. DA, however, has not been studied for its protective effect on neuronal cells yet. Thus, to explore whether DA can protect neurons, oxygen and glucose deprivation/reperfusion (OGD/R)-injured PC12 cell and middle cerebral artery occlusion/reperfusion (MCAO/R) rat model were used to assess the protective efficacy of DA against OGD/R damaged PC12 cells and MCAO/R injured rats. Our results demonstrated that DA pretreatment (0.31-2.5 μM) dose-dependently increased cell survival and mitochondrial membrane potential (MMP), whereas it lowered the leakage of lactate dehydrogenase (LDH), intracellular cumulation of Ca2+, and overproduction of reactive oxygen species (ROS), and inhibited the apoptosis rate in OGD/R-injured PC12 cells. Western blot demonstrated that DA pretreatment lowered the expression of apoptotic proteins and repressed the activation of the MKK7/JNK pathway. It was also found that the neuroprotective efficacy of DA was significantly reversed by co-treatment with the JNK agonist anisomycin, suggesting that DA reduced PC12 cell injury and apoptosis by suppressing the MKK7/JNK pathway. Furthermore, DA oral administration greatly alleviated the neurological dysfunction and reduced the infarct volume of MCAO/R rats. Taken together, DA could ameliorate OGD/R-caused PC12 cell injury and improve brain ischemia/reperfusion (I/R) damage in MCAO/R rats, and its neuroprotection might be attributed to suppressing the MKK7/JNK signaling pathway.
Collapse
Affiliation(s)
- Shanshan Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University.,Department of Phytochemistry, School of Pharmacy, Naval Medical University
| | - Jiayu Li
- School of Pharmacy, Fujian University of Traditional Chinese Medicine
| | - Ziwei Zhao
- College of Nursing Health Sciences, Yunnan Open University
| | - Sijia Xiao
- Department of Phytochemistry, School of Pharmacy, Naval Medical University
| | - Xiuping Shen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University
| | - Xu Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University
| | - Xianpeng Zu
- Department of Phytochemistry, School of Pharmacy, Naval Medical University
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University
| | - Yunheng Shen
- Department of Phytochemistry, School of Pharmacy, Naval Medical University
| |
Collapse
|
16
|
Khan H, Kaur Grewal A, Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 2022; 66:54-66. [DOI: 10.1016/j.mito.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
|
17
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
18
|
Song L, Wu Q, Fu X, Wang W, Dai Z, Gu Y, Zhuo Y, Fang S, Zhao W, Wang X, Wang Q, Fang J. In Silico Identification and Mechanism Exploration of Active Ingredients against Stroke from An-Gong-Niu-Huang-Wan (AGNHW) Formula. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5218993. [PMID: 35432729 PMCID: PMC9006076 DOI: 10.1155/2022/5218993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
An-Gong-Niu-Huang-Wan (AGNHW) is a well-known formula for treating cerebrovascular diseases, with roles including clearing away heat, detoxification, and wake-up consciousness. In recent years, AGNHW has been commonly used for the treatment of ischemic stroke, but the mechanism by which AGNHW relieves stroke has not been clearly elucidated. In the current study, we developed a multiple systems pharmacology-based framework to identify the potential antistroke ingredients in AGNHW and explore the underlying mechanisms of action (MOA) of AGNHW against stroke from a holistic perspective. Specifically, we performed a network-based method to identify the potential antistroke ingredients in AGNHW by integrating the drug-target network and stroke-associated genes. Furthermore, the oxygen-glucose deprivation/reoxygenation (OGD/R) model was used to validate the anti-inflammatory effects of the key ingredients by determining the levels of inflammatory cytokines, including interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. The antiapoptotic effects of the key ingredients were also confirmed in vitro. Integrated pathway analysis of AGNHW revealed that it might regulate three biological signaling pathways, including IL-17, TNF, and PI3K-AKT, to play a protective role in stroke. Moreover, 30 key antistroke ingredients in AGNHW were identified via network-based in silico prediction and were confirmed to have known neuroprotective effects. After drug-like property evaluation and pharmacological validation in vitro, scutellarein (SCU) and caprylic acid (CA) were selected for further antistroke investigation. Finally, systems pharmacology-based analysis of CA and SCU indicated that they might exert antistroke effects via the apoptotic signaling pathway and inflammatory response, which was further validated in an in vitro stroke model. Overall, the current study proposes an integrative systems pharmacology approach to identify antistroke ingredients and demonstrate the underlying pharmacological MOA of AGNHW in stroke, which provides an alternative strategy to investigate novel traditional Chinese medicine formulas for complex diseases.
Collapse
Affiliation(s)
- Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510404, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou 570100, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wentao Wang
- School of Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou 570100, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoyun Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510404, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
19
|
Tsai YT, Huang HC, Kao ST, Chang TT, Cheng CY. Neuroprotective Effects of Alpinia oxyphylla Miq against Mitochondria-Related Apoptosis by the Interactions between Upregulated p38 MAPK Signaling and Downregulated JNK Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2057-2083. [DOI: 10.1142/s0192415x22500884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis in the penumbra region is the major cell death mechanism occurring during ischemia–reperfusion injury’s early phase. Here, we evaluated how the Alpinia oxyphylla Miq (AOM) affects mitochondria-related apoptosis 3 days after transient middle cerebral artery occlusion (MCAo) and examined the mechanisms underlying the regulation of MAPK-mediated mitochondria-related apoptotic signaling in the peri-infarct cortex in rats. The rats were administered the AOM extract intraperitoneally at doses of 0.2[Formula: see text]g/kg (AOM-0.2[Formula: see text]g), 0.4[Formula: see text]g/kg (AOM-0.4[Formula: see text]g), or 0.8[Formula: see text]g/kg (AOM-0.8[Formula: see text]g) at MCAo initiation. The AOM-0.4[Formula: see text]g and AOM-0.8[Formula: see text]g significantly ameliorated apoptotic cell death and considerably downregulated cytochrome c (cyto c) and cleaved caspase-3 immunoreactivity 3 days after reperfusion. Simultaneously, they significantly downregulated cytosolic p-JNK/JNK, cathepsin B/actin, cyto c/actin, Smac/DIABLO/actin, cleaved caspase-3/actin, and AIF/actin and mitochondrial p53/HSP60 and Bax/HSP60 fractions but upregulated cytosolic p-p38 MAPK/p38 MAPK, p-p90RSK/actin, p-Bad/Bad, p-CREB/actin, and XIAP/actin and cytosolic and mitochondrial Bcl-2/Bax and Bcl-xL/Bax fractions in the peri-infarct cortex. Pretreatment with SB203580 — a p38 MAPK inhibitor — completely abrogated the effects of AOM-0.8[Formula: see text]g on the aforementioned protein expression, whereas treatment with SP600125 — a JNK inhibitor — exerted protective effects similar to those of AOM-0.8[Formula: see text]g. Treatment with 0.4 or 0.8[Formula: see text]g/kg AOM has neuroprotective effects against mitochondria-related apoptosis by suppressing cyto c, Smac/DIABLO, and AIF release from the mitochondria to cytosol. The anti-mitochondria related apoptotic effects of the AOM extract are attributable to the interactions between upregulated p38 MAPK/p90RSK-mediated p-Bad and CREB signaling and downregulated JNK/cathepsin B-mediated Bax and p53 signaling in the peri-infarct cortex 3 days after transient MCAo.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Tung-Ti Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan
| |
Collapse
|
20
|
Renuka Sanotra M, Huang WC, Silver S, Lin CY, Chang TC, Nguyen DPQ, Lee CK, Kao SH, Chang-Cheng Shieh J, Lin YF. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer's disease. Clin Biochem 2021; 101:26-34. [PMID: 34933007 DOI: 10.1016/j.clinbiochem.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hyperglycemia leads to lipid peroxidation, producing 4-hydroxynonenal (HNE) adducts which correlate with the production of amyloid-beta (Aβ), one of the hallmarks of Alzheimer's disease (AD). This study is to investigate the interactions of Aβ, HNE adducts and responding autoantibodies during the pathogenesis from hyperglycemia to AD. METHODS A total of 239 Taiwanese serum samples from a healthy control group and patients with hyperglycemia, and AD with and without hyperglycemia were analyzed. Aβ was immunoprecipitated from randomly pooled serum in each group and immunoblotted. Synthetic Aβ1-16 and Aβ17-28 peptides were modified with HNE in vitro and verified with LC-MS/MS. The levels of Aβ, HNE adducts, and autoantibody isotypes IgG and IgM against either native or HNE-modified Aβ were determined with ELISA. The diagnostic power of potential biomarkers was evaluated. RESULTS Increased fasting glucose and decreased high-density-lipoprotein cholesterol in AD groups indicated abnormal metabolism in the pathogenesis progression from hyperglycemia to AD. Indeed, serum Aβ, HNE adducts and most of the autoantibodies recognizing either native or HNE-modified Aβ were increased in the diseased groups. However, HNE adducts had better diagnostic performances than Aβ for both hyperglycemia and AD. Additionally, HNE-Aβ peptide levels were increased, and the responding autoantibodies (most notably IgM) were decreased in hyperglycemic AD group compared to the hyperglycemia only group, suggesting an immunity disturbance in the pathogenesis progression from hyperglycemia to AD. CONCLUSION Hyperglycemia increases the level of HNE adducts which may be neutralized by responding autoantibodies. Depletion of these autoantibodies promotes AD-like pathogenesis. Thus, levels of a patient's HNE adducts and associated responding autoantibodies are potential biomarkers for AD with diabetes.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Simon Silver
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
21
|
Zeng Z, Liu Y, Wen Q, Li Y, Yu J, Xu Q, Wan W, He Y, Ma C, Huang Y, Yang H, Jiang O, Li F. Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages. Drug Deliv 2021; 28:943-956. [PMID: 33988472 PMCID: PMC8128207 DOI: 10.1080/10717544.2021.1921076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
This study aimed to develop an effective therapy against M2 macrophages and to investigate the effects of imidazole and mannose modified carboxymethyl chitosan-nanoparticles (MIC-NPs) on tumor growth and antitumor immune responses. MIC-NPs were constructed and analyzed through 1H NMR, nano-laser particle size analyzer, and transmission electron microscopy. The nanoparticles were mainly distributed in 75-85 nm, and zeta potential was 1.5 mV. Cytotoxicity studies in vitro and in vivo indicated that MIC-NPs were safe. The targeting effect of MIC-NPs on M2 macrophages was observed through fluorescence microscope and microplate system. The results demonstrated the uptake of a large amount of FITC-loaded MIC-NPs by M2. Cell growth inhibition experiments showed that MIC-NPs significantly inhibited M2 through cell apoptosis. The evaluation of anti-tumor activity in vivo showed that MIC-NPs could accumulate in the tumor site to exert an anti-tumor effect. Flow cytometry showed that the proportion of M2 macrophages at the tumor site in the experimental group was significantly lower than that in the control group, while the Treg cells and cytotoxic T cells (CTL) were found to be increased. PCR detection showed that the cDNA of FIZZ, MR, TGF-β, and arginase, closely related to M2 macrophages, in the experimental group, was significantly lower than that in the control group, but there was no significant difference in the cDNA of Treg cell characteristic Foxp3 between the two groups. These results suggest that MIC-NPs are expected to provide a new and effective treatment for tumor.
Collapse
Affiliation(s)
- Zheng Zeng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Liu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yixian Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Qiang Xu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Wenwu Wan
- Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Yu He
- Department of Oncology, The Fourth People's Hospital of Neijiang, Neijiang, China
| | - Chen Ma
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yan Huang
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Helin Yang
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Ou Jiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Chen C, Huang Y, Xia P, Zhang F, Li L, Wang E, Guo Q, Ye Z. Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis. Eur J Histochem 2021; 65:3224. [PMID: 34587716 PMCID: PMC8490947 DOI: 10.4081/ejh.2021.3224] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes are exposed to a higher risk of perioperative stroke than non-diabetics mainly due to persistent hyperglycemia. LncRNA Meg3 has been considered as an important mediator in regulating ischemic stroke. However, the functional and regulatory roles of Meg3 in diabetic brain ischemic injury remain unclear. In this study, rat brain microvascular endothelial cells (RBMVECs) were exposed to 6 h of oxygen and glucose deprivation (OGD), and subsequent reperfusion via incubating cells with glucose of various high concentrations for 24 h to imitate in vitro diabetic brain ischemic injury. It was shown that the marker events of ferroptosis and increased Meg3 expression occurred after the injury induced by OGD combined with hyperglycemia. However, all ferroptotic events were reversed with the treatment of Meg3-siRNA. Moreover, in this in vitro model, p53 was also characterized as a downstream target of Meg3. Furthermore, p53 knockdown protected RBMVECs against OGD + hyperglycemic reperfusion-induced ferroptosis, while the overexpression of p53 exerted opposite effects, implying that p53 served as a positive regulator of ferroptosis. Additionally, the overexpression or knockdown of p53 significantly modulated GPX4 expression in RBMVECs exposed to the injury induced by OGD combined with hyperglycemic treatment. Furthermore, GPX4 expression was suppressed again after the reintroduction of p53 into cells silenced by Meg3. Finally, chromatin immunoprecipitation assay uncovered that p53 was bound to GPX4 promoter. Altogether, these data revealed that, by modulating GPX4 transcription and expression, the Meg3-p53 signaling pathway mediated the ferroptosis of RBMVECs upon injury induced by OGD combined with hyperglycemic reperfusion.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province.
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province.
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| |
Collapse
|
23
|
Wang Z, Xia P, Hu J, Huang Y, Zhang F, Li L, Wang E, Guo Q, Ye Z. LncRNA MEG3 Alleviates Diabetic Cognitive Impairments by Reducing Mitochondrial-Derived Apoptosis through Promotion of FUNDC1-Related Mitophagy via Rac1-ROS Axis. ACS Chem Neurosci 2021; 12:2280-2307. [PMID: 33843209 DOI: 10.1021/acschemneuro.0c00682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction and elevated ROS generation are predominant contributors of neuronal death that is responsible for the diabetes-related cognitive impairments. Emerging evidence has demonstrated that long noncoding RNA-MEG3 can serve as an important regulator in the pathogenesis of diabetes. However, the underlying mechanisms remain to be further clarified. Here, it was observed that MEG3 was significantly down-regulated in STZ (streptozotocin)-induced diabetic rats. MEG3 overexpression noticeably improved diabetes-induced cognitive dysfunctions, accompanied by the abatement of Rac1 activation and ROS production, as well as the inhibition of mitochondria-associated apoptosis. Furthermore, either MEG3 overexpression or Rac1 inhibition promoted FUNDC1 dephosphorylation and suppressed oxidative stress and neuro-inflammation. Similarly, in vitro studies confirmed that hyperglycemia also down-regulated MEG3 expression in PC12 cells. MEG3 reintroduction protected PC12 cells against hyperglycemia-triggered neurotoxicity by improving mitochondrial fitness and repressing mitochondria-mediated apoptosis. Moreover, these neuroprotective effects of MEG3 relied on FUNDC1-related mitophagy, since silencing of FUNDC1 abolished these beneficial outcomes. Additionally, MEG3 rescued HG-induced neurotoxicity was involved in inhibiting Rac1 expression via interaction with Rac1 3'UTR. Conversely, knockdown of MEG3 showed opposite effects. NSC23766, a specific inhibitor of Rac1, fully abolished harmful effects of MEG3 depletion. Consistently, knockdown of Rac1 potentiated FUNDC1-associated mitophagy. Meanwhile, colocalization of Rac1 and FUNDC1 was found in mitochondria under hyperglycemia, which was interrupted by MEG3 overexpression. Furthermore, silencing of Rac1 promoted PGAM5 expression, and FUNDC1 strongly interacted with LC3 in Rac1-deleted cells. Altogether, our findings suggested that the Rac1/ROS axis may be a downstream signaling pathway for MEG3-induced neuroprotection, which was involved in FUNDC1-associated mitophagy.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou 570311, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Jie Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| |
Collapse
|
24
|
Xu QL, Wu J. Effects of Txk‑mediated activation of NF‑κB signaling pathway on neurological deficit and oxidative stress after ischemia‑reperfusion in rats. Mol Med Rep 2021; 24:524. [PMID: 34036382 PMCID: PMC8160475 DOI: 10.3892/mmr.2021.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is an extremely mortal cerebrovascular disease, and neuroinflammation and oxidative stress emerge as important traits of ischemic stroke. However, as an inflammation‑associated factor, Txk tyrosine kinases (Txk) has been poorly studied in neuroscience research. The aim of the present study was to investigate the role of Txk after ischemia‑reperfusion (I/R) in vivo and in vitro, observe the association between Txk knockdown and neurological deficit and oxidative stress, and to explore whether the process was mediated by the activation of nuclear factor (NF)‑κB signaling pathway. Middle cerebral artery occlusion (MCAO), oxygen and glucose deprivation/reperfusion (OGD/R) model and western blotting have been used to simulate the I/R injury to analyze the expression, and to approximate the localization of Txk, respectively. Brain infarct volume, neurological score, brain water content, apoptosis and oxidative stress assays in vivo and apoptosis, cellular viability, the LDH release and oxidative stress assays in vitro were observed using a Txk‑knockdown lentivirus. Finally, NF‑κB overexpression lentivirus was applied to discuss whether the role of Txk following I/R was regulated by the NF‑κB signaling pathway. The results show that the Txk expression peaked at 24 h after MCAO and 6 h after OGD/R, respectively. Txk molecules gradually entered the nucleus after MCAO and OGD/R. The Txk‑knockdown lentivirus resulted in decreased brain infarct volume, neurological score, brain water content, apoptosis and oxidative stress after MCAO in vivo. Besides, Txk knockdown decreased apoptosis, LDH release, oxidative stress, and increased cellular viability, after ODG in vitro. Finally, NF‑κB overexpression reversed the process of neurological deficit and oxidative stress after Txk regulation in vivo and vitro. Overall, the present study suggests that Txk potentially regulates apoptosis, neurological deficit, and oxidative stress after I/R, by entering the nucleus. NF‑κB maybe the downstream target factor of Txk.
Collapse
Affiliation(s)
- Qian-Lan Xu
- Department of Rehabilitation, Dongyang People's Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Jie Wu
- Department of Child Rehabilitation, Yiwu Maternal and Child Health Care Hospital, Yiwu, Zhejiang 322000, P.R. China
| |
Collapse
|
25
|
Liu F, Dong YY, Lei G, Zhou Y, Liu P, Dang YH. HINT1 Is Involved in the Chronic Mild Stress Elicited Oxidative Stress and Apoptosis Through the PKC ε/ALDH-2/4HNE Pathway in Prefrontal Cortex of Rats. Front Behav Neurosci 2021; 15:690344. [PMID: 34177485 PMCID: PMC8219906 DOI: 10.3389/fnbeh.2021.690344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) is a severe, highly heterogeneous, and life-threatening psychiatric disease which affects up to 21% of the population worldwide. A new hypothesis suggests that the mitochondrial dysfunction causing oxidative stress (OS) and dysregulation of apoptosis in brain might be one of the key pathophysiological factors in MDD. Histidine triad nucleotide binding protein 1 (HINT1), which was first supposed to be protein kinase C (PKC) inhibitor, has been gradually demonstrated to be involved in diverse neuropsychiatric diseases. It still remains elusive that how HINT1 involves in depression. The present study utilized a rat model exposed to chronic mild stress (CMS) to explore the involvement of HINT1 in depression. Face validity, construct validity and predictive validity of CMS model were comprehensive evaluated in this study. Behavioral tests including sucrose preference test, open field test, and elevated plus maze and forced swimming test revealed that stressed rats displayed elevated level of anxiety and depression compared with the controls. CMS rats showed a significant decrease of superoxide dismutase, and a marked increase malondialdehyde levels in prefrontal cortex (PFC). We also found the CMS rats had elevated expression of HINT1, decreased levels of phosphorylated-PKC ε and aldehyde dehydrogenase-two (ALDH-2), and accumulated 4-hydroxynonenal (4HNE) in PFC. Moreover, CMS increased the levels of cleaved caspase-3 and Bax, and decreased the level of Bcl-2 in PFC. The alterations in behavior and molecule were prevented by antidepressant venlafaxine. These results demonstrated that HINT1 was involved in the CMS elicited OS and apoptosis in PFC, probably through the PKC ε/ALDH-2/4HNE pathway. The results suggest that the suppression of HINT1 might have potential as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ying-Ying Dong
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Zhou
- Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
26
|
Ren Z, Hu Y, Guo D, Guan Z, Chen L, He J, Yu W. Increased miR‑187‑3p expression after cerebral ischemia/reperfusion induces apoptosis via initiation of endoplasmic reticulum stress. Neurosci Lett 2021; 759:135947. [PMID: 34015413 DOI: 10.1016/j.neulet.2021.135947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Ischemia/reperfusion (I/R) injury induces activation of the endoplasmic reticulum stress (ERS) pathway, accompanied by an increase in apoptosis. Multiple microRNAs (miRNAs/miRs) are dysregulated during I/R and contribute to I/R-induced injury. miRNAs act as suppressors of gene expression and negatively regulate gene expression by targeting the protein-coding sequence (CDS) of specific target mRNAs. Seipin is an endoplasmic reticulum protein that has recently been associated with ERS. We previously reported that seipin is the target gene of miR‑187‑3p. Therefore, we explored the involvement of miR-187-3p in I/R-induced ERS via the regulation of seipin. A rat MCAO/R model was established by 1 h of occlusion and 24 h reperfusion. Neurological deficits and infarction area were examined. PC12 cells were exposed to oxygen‑glucose deprivation/reoxygenation (OGD/R) to model I/R. Expression levels of miR-187-3p and proteins related to ERS and apoptosis were measured using RT-PCR, western blotting, immunofluorescence, and immunohistochemistry, respectively. TUNEL staining was used to assay apoptosis. MCAO/R-induced morphological changes were analyzed with Nissl staining and Hematoxylin-eosin staining. I/R-induced ERS was closely associated with an increase in miR-1873p and a decrease in seipin expression. miR-187-3p agomir further activated the ERS pathway and promoted apoptosis but decreased seipin expression levels; these effects were reversed by miR-187-3p antagomir. Moreover, seipin knockdown aggravated ERS in PC12 cells after OGD/R, and this change was rescued by seipin overexpression. miR-187-3p antagomir did not suppress ERS and apoptosis in seipin knockdown PC12 cells after OGD/R. Our findings demonstrate that the inhibition of miR‑187‑3p attenuated I/R‑induced cerebral injury by regulating seipin-mediated ERS.
Collapse
Affiliation(s)
- Zhenkui Ren
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China; Laboratory Department of People's Hospital of Southwest Guizhou Autonomous Prefecture, Xingyi, Guizhou, 562400, China
| | - Yumei Hu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Dongfen Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China; Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Ling Chen
- Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550002, China; Department of Immunology, Guizhou Medical University, Guiyang, 550004, China.
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
27
|
Wu R, Yun Q, Zhang J, Bao J. RETRACTED: Long non-coding RNA GAS5 retards neural functional recovery in cerebral ischemic stroke through modulation of the microRNA-455-5p/PTEN axis. Brain Res Bull 2021; 167:80-88. [PMID: 33309710 DOI: 10.1016/j.brainresbull.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1C and 4B+J, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China.
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| |
Collapse
|
28
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
29
|
Does the Act of Copulation per se, without Considering Seminal Deposition, Change the Expression of Genes in the Porcine Female Genital Tract? Int J Mol Sci 2020; 21:ijms21155477. [PMID: 32751869 PMCID: PMC7432858 DOI: 10.3390/ijms21155477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Semen—through its specific sperm and seminal plasma (SP) constituents—induces changes of gene expression in the internal genital tract of pigs, particularly in the functional sperm reservoir at the utero-tubal junction (UTJ). Although seminal effects are similarly elicited by artificial insemination (AI), major changes in gene expression are registered after natural mating, a fact suggesting the act of copulation induces per se changes in genes that AI does not affect. The present study explored which pathways were solely influenced by copulation, affecting the differential expression of genes (DEGs) of the pre/peri-ovulatory genital tract (cervix, distal uterus, proximal uterus and UTJ) of estrus sows, 24 h after various procedures were performed to compare natural mating with AI of semen (control 1), sperm-free SP harvested from the sperm-peak fraction (control 2), sperm-free SP harvested from the whole ejaculate (control 3) or saline-extender BTS (control 4), using a microarray chip (GeneChip® porcine gene 1.0 st array). Genes related to neuroendocrine responses (ADRA1, ADRA2, GABRB2, CACNB2), smooth muscle contractility (WNT7A), angiogenesis and vascular remodeling (poFUT1, NTN4) were, among others, overrepresented with distal and proximal uterine segments exhibiting the highest number of DEGs. The findings provide novel evidence that relevant transcriptomic changes in the porcine female reproductive tract occur in direct response to the specific act of copulation, being semen-independent.
Collapse
|