1
|
Riou A, Broeglin A, Grimm A. Mitochondrial transplantation in brain disorders: Achievements, methods, and challenges. Neurosci Biobehav Rev 2024; 169:105971. [PMID: 39638101 DOI: 10.1016/j.neubiorev.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial transplantation is a new treatment strategy aimed at repairing cellular damage by introducing healthy mitochondria into injured cells. The approach shows promise in protecting brain function in various neurological disorders such as traumatic brain injury/ischemia, neurodegenerative diseases, cognitive disorders, and cancer. These conditions are often characterized by mitochondrial dysfunction, leading to impaired energy production and neuronal death. The review highlights promising preclinical studies where mitochondrial transplantation has been shown to restore mitochondrial function, reduce inflammation, and improve cognitive and motor functions in several animal models. It also addresses significant challenges that must be overcome before this therapy can be clinically applied. Current efforts to overcome these challenges, including advancements in isolation techniques, cryopreservation methods, finding an appropriate mitochondria source, and potential delivery routes, are discussed. Considering the rising incidence of neurological disorders and the limited effectiveness of current treatments, this review offers a comprehensive overview of the current state of mitochondrial transplantation research and critically assesses the remaining obstacles. It provides valuable insights that could steer future studies and potentially lead to more effective treatments for various brain disorders.
Collapse
Affiliation(s)
- Aurélien Riou
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Aline Broeglin
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel 4002, Switzerland.
| |
Collapse
|
2
|
Bourebaba L, Bourebaba N, Galuppo L, Marycz K. Artificial mitochondrial transplantation (AMT) reverses aging of mesenchymal stromal cells and improves their immunomodulatory properties in LPS-induced synoviocytes inflammation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119806. [PMID: 39098401 DOI: 10.1016/j.bbamcr.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Nowadays, regenerative medicine techniques are usually based on the application of mesenchymal stromal cells (MSCs) for the repair or restoration of injured damaged tissues. However, the effectiveness of autologous therapy is limited as therapeutic potential of MSCs declines due to patient's age, health condition and prolonged in vitro cultivation as a result of decreased growth rate. For that reason, there is an urgent need to develop strategies enabling the in vitro rejuvenation of MSCs prior transplantation in order to enhance their in vivo therapeutic efficiency. In presented study, we attempted to mimic the naturally occurring mitochondrial transfer (MT) between neighbouring cells and verify whether artificial MT (AMT) could reverse MSCs aging and improve their biological properties. For that reason, mitochondria were isolated from healthy donor equine adipose-derived stromal cells (ASCs) and transferred into metabolically impaired recipient ASCs derived from equine metabolic syndrome (EMS) affected horses, which were subsequently subjected to various analytical methods in order to verify the cellular and molecular outcomes of the applied AMT. Mitochondria recipient cells were characterized by decreased apoptosis, senescence and endoplasmic reticulum stress while insulin sensitivity was enhanced. Furthermore, we observed increased mitochondrial fragmentation and associated PARKIN protein accumulation, which indicates on the elimination of dysfunctional organelles via mitophagy. AMT further promoted physioxia and regulated autophagy fluxes. Additionally, rejuvenated ASCs displayed an improved anti-inflammatory activity toward LPS-stimulated synoviocytes. The presented findings highlight AMT as a promising alternative and effective method for MSCs rejuvenation, for potential application in autologous therapies in which MSCs properties are being strongly deteriorated due to patients' condition.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Nabila Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95516, United States
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, United States.
| |
Collapse
|
3
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2024:10.1007/s12035-024-04474-0. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
4
|
Oliver BG, Huang X, Yarak R, Bai X, Wang Q, Zakarya R, Reddy KD, Donovan C, Kim RY, Morkaya J, Wang B, Lung Chan Y, Saad S, Faiz A, Reyk DV, Verkhratsky A, Yi C, Chen H. Chronic maternal exposure to low-dose PM 2.5 impacts cognitive outcomes in a sex-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 191:108971. [PMID: 39180775 DOI: 10.1016/j.envint.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
There is no safe level of air pollution for human health. Traffic-related particulate matter (PM2.5) is a major in-utero toxin, mechanisms of action of which are not fully understood. BALB/c dams were exposed to an Australian level of traffic PM2.5 (5 µg/mouse/day, intranasal, 6 weeks before mating, during gestation and lactation). Male offspring had reduced memory in adulthood, whereas memory was normal in female littermates, similar to human responses. Maternal PM2.5 exposure resulted in oxidative stress and abnormal mitochondria in male, but not female, brains. RNA-sequencing analysis showed unique sex-related changes in newborn brains. Two X-chromosome-linked histone lysine demethylases, Kdm6a and Kdm5c, demonstrated higher expression in female compared to male littermates, in addition to upregulated genes with known functions to support mitochondrial function, synapse growth and maturation, cognitive function, and neuroprotection. No significant changes in Kdm6a and Kdm5c were found in male littermates, nor other genes, albeit significantly impaired memory function after birth. In primary foetal cortical neurons, PM2.5 exposure suppressed neuron and synaptic numbers and induced oxidative stress, which was prevented by upregulation of Kdm6a or Kdm5c. Therefore, timely epigenetic adaptation by histone demethylation to open DNA for translation before birth may be the key to protecting females against prenatal PM2.5 exposure-induced neurological disorders, which fail to occur in males associated with their poor cognitive outcomes.
Collapse
Affiliation(s)
- Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Xiaomin Huang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Rochelle Yarak
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Qi Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Razia Zakarya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Karosham D Reddy
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Richard Y Kim
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - James Morkaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Sonia Saad
- Renal Group, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia
| | - Alen Faiz
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - David van Reyk
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, Leioa 48940, Bizkaia, Spain; IKERBASQUE Basque Foundation for Science, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
5
|
Yan QQ, Liu TL, Liu LL, Wei YS, Zhao YD, Yu C, Zhong ZG, Huang JL, Wu DP. Mitochondrial Treatment Improves Cognitive Impairment Induced by Lipopolysaccharide in Mice. Mol Neurobiol 2024:10.1007/s12035-024-04368-1. [PMID: 39037529 DOI: 10.1007/s12035-024-04368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Neuroinflammation has been proven to drive cognitive impairment associated with neurodegenerative diseases. It has been demonstrated that mitochondrial dysfunction is associated with cognitive impairment caused by neuroinflammation. We hypothesized that the transfer of exogenous mitochondria may be beneficial to the therapy of cognitive impairment induced by neuroinflammation. In the study, the effect of exogenous mitochondria on cognitive impairment induced by neuroinflammation was investigated. The results showed that mitochondrial treatment ameliorated the cognitive performance of lipopolysaccharide (LPS)-treated mice. Additionally, mitochondrial therapy attenuated neuronal injury and down-regulated the expression of proinflammatory cytokines, including TNF-α and pro- and cleaved IL-1β, and the expression of Iba-1 and GFAP in the hippocampus and cortex of LPS-treated mice. Additionally, mitochondrial treatment increased mitochondrial ΔΨm, ATP level, and SOD activity and attenuated MDA level and ROS production in the brains of LPS-treated mice. The study reports the beneficial effect of mitochondrial treatment against cognitive impairment of LPS-treated mice, thereby providing a potential strategy for the treatment of cognitive impairment caused by neuroinflammation.
Collapse
Affiliation(s)
- Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tian-Long Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| | - Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
6
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
7
|
Seydi E, Nambani AK, Khorasani A, Kamranfar F, Arjmand A, Pourahmad J. Mitochondrial administration alleviates lead- and cadmium-induced toxicity in rat renal cells. Cell Biol Int 2024. [PMID: 38682666 DOI: 10.1002/cbin.12165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
The role of heavy metals such as lead (Pb) and cadmium (Cd) in the etiology of many diseases has been proven. Also, these heavy metals can affect the normal mitochondrial function. Mitochondrial administration therapy is one of the methods used by researchers to help improve mitochondrial defects and diseases. The use of isolated mitochondria as a therapeutic approach has been investigated in in vivo and in vitro studies. Accordingly, in this study, the effects of mitochondrial administration on the improvement of toxicity caused by Pb and Cd in renal proximal tubular cells (RPTC) have been investigated. The results showed that treatment to Pb and Cd caused an increase in the level of free radicals, lipid peroxidation (LPO) content, mitochondrial and lysosomal membrane damage, and also a decrease in the reduced glutathione content in RPTC. In addition, reports have shown an increase in oxidized glutathione content and changes in energy (ATP) levels. Following, the results have shown the protective role of mitochondrial administration in improving the toxicity caused by Pb and Cd in RPTC. Furthermore, the mitochondrial internalization into RPT cells is mediated through actin-dependent endocytosis. So, it could be suggested that the treatment of Pb- and Cd-induced cytotoxicity in RPTC could be carried out through mitochondria administration.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Kanani Nambani
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khorasani
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Kamranfar
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Arjmand
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food and Drug, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Phua QH, Ng SY, Soh BS. Mitochondria: A Potential Rejuvenation Tool against Aging. Aging Dis 2024; 15:503-516. [PMID: 37815912 PMCID: PMC10917551 DOI: 10.14336/ad.2023.0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.
Collapse
Affiliation(s)
- Qian Hua Phua
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology), Singapore.
- National Neuroscience Institute, Singapore.
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
10
|
Huang M, Wang Y, Fang L, Liu C, Feng F, Liu L, Sun C. T cell senescence: a new perspective on immunotherapy in lung cancer. Front Immunol 2024; 15:1338680. [PMID: 38415245 PMCID: PMC10896971 DOI: 10.3389/fimmu.2024.1338680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
T cell senescence is an indication of T cell dysfunction. The ability of senescent T cells to respond to cognate antigens is reduced and they are in the late stage of differentiation and proliferation; therefore, they cannot recognize and eliminate tumor cells in a timely and effective manner, leading to the formation of the suppressive tumor microenvironment. Establishing methods to reverse T cell senescence is particularly important for immunotherapy. Aging exacerbates profound changes in the immune system, leading to increased susceptibility to chronic, infectious, and autoimmune diseases. Patients with malignant lung tumors have impaired immune function with a high risk of recurrence, metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and other immune checkpoints is promising for treating lung malignancies. However, T cell senescence can lead to low efficacy or unsuccessful treatment results in some immunotherapies. Efficiently blocking and reversing T cell senescence is a key goal of the enhancement of tumor immunotherapy. This study discusses the characteristics, mechanism, and expression of T cell senescence in malignant lung tumors and the treatment strategies.
Collapse
Affiliation(s)
- Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
11
|
Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med 2024; 56:66-85. [PMID: 38172601 PMCID: PMC10834547 DOI: 10.1038/s12276-023-01141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria have been primarily considered intracellular organelles that are responsible for generating energy for cell survival. However, accumulating evidence suggests that mitochondria are secreted into the extracellular space under physiological and pathological conditions, and these secreted mitochondria play diverse roles by regulating metabolism, the immune response, or the differentiation/maturation in target cells. Furthermore, increasing amount of research shows the therapeutic effects of local or systemic administration of mitochondria in various disease models. These findings have led to growing interest in exploring mitochondria as potential therapeutic agents. Here, we discuss the emerging roles of mitochondria as extracellularly secreted organelles to shed light on their functions beyond energy production. Additionally, we provide information on therapeutic outcomes of mitochondrial transplantation in animal models of diseases and an update on ongoing clinical trials, underscoring the potential of using mitochondria as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Wang J, Mou X, Lu H, Jiang H, Xian Y, Wei X, Huang Z, Tang S, Cen H, Dong M, Liang Y, Shi G. Exploring a novel seven-gene marker and mitochondrial gene TMEM38A for predicting cervical cancer radiotherapy sensitivity using machine learning algorithms. Front Endocrinol (Lausanne) 2024; 14:1302074. [PMID: 38327905 PMCID: PMC10847243 DOI: 10.3389/fendo.2023.1302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024] Open
Abstract
Background Radiotherapy plays a crucial role in the management of Cervical cancer (CC), as the development of resistance by cancer cells to radiotherapeutic interventions is a significant factor contributing to treatment failure in patients. However, the specific mechanisms that contribute to this resistance remain unclear. Currently, molecular targeted therapy, including mitochondrial genes, has emerged as a new approach in treating different types of cancers, gaining significant attention as an area of research in addressing the challenge of radiotherapy resistance in cancer. Methods The present study employed a rigorous screening methodology within the TCGA database to identify a cohort of patients diagnosed with CC who had received radiotherapy treatment. The control group consisted of individuals who demonstrated disease stability or progression after undergoing radiotherapy. In contrast, the treatment group consisted of patients who experienced complete or partial remission following radiotherapy. Following this, we identified and examined the differentially expressed genes (DEGs) in the two cohorts. Subsequently, we conducted additional analyses to refine the set of excluded DEGs by employing the least absolute shrinkage and selection operator regression and random forest techniques. Additionally, a comprehensive analysis was conducted in order to evaluate the potential correlation between the expression of core genes and the extent of immune cell infiltration in patients diagnosed with CC. The mitochondrial-associated genes were obtained from the MITOCARTA 3.0. Finally, the verification of increased expression of the mitochondrial gene TMEM38A in individuals with CC exhibiting sensitivity to radiotherapy was conducted using reverse transcription quantitative polymerase chain reaction and immunohistochemistry assays. Results This process ultimately led to the identification of 7 crucial genes, viz., GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2, which were strongly associated with radiotherapy sensitivity. The enrichment analysis has unveiled a significant association between these 7 crucial genes and prominent signaling pathways, such as the p53 signaling pathway, KRAS signaling pathway, and PI3K/AKT/MTOR pathway. By utilizing these 7 core genes, an unsupervised clustering analysis was conducted on patients with CC, resulting in the categorization of patients into three distinct molecular subtypes. In addition, a predictive model for the sensitivity of CC radiotherapy was developed using a neural network approach, utilizing the expression levels of these 7 core genes. Moreover, the CellMiner database was utilized to predict drugs that are closely linked to these 7 core genes, which could potentially act as crucial agents in overcoming radiotherapy resistance in CC. Conclusion To summarize, the genes GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2 were found to be closely correlated with the sensitivity of CC to radiotherapy. Notably, TMEM38A, a mitochondrial gene, exhibited the highest degree of correlation, indicating its potential as a crucial biomarker for the modulation of radiotherapy sensitivity in CC.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xue Mou
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haishan Lu
- Clinical Pathological Diagnosis & Research Centra, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuejuan Xian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xilin Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Ziqiang Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Senlin Tang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Hongsong Cen
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Yuexiu Liang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guiling Shi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
13
|
Wu DP, Wei YS, Du YX, Liu LL, Yan QQ, Zhao YD, Yu C, Liu JY, Zhong ZG, Huang JL. Ameliorative Role of Mitochondrial Therapy in Cognitive Function of Vascular Dementia Mice. J Alzheimers Dis 2024; 97:1381-1392. [PMID: 38250768 DOI: 10.3233/jad-230293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Mitochondrial dysfunction plays a vital role in the progression of vascular dementia (VaD). We hypothesized that transfer of exogenous mitochondria might be a beneficial strategy for VaD treatment. OBJECTIVE The study was aimed to investigate the role of mitochondrial therapy in cognitive function of VaD. METHODS The activity and integrity of isolated mitochondria were detected using MitoTracker and Janus Green B staining assays. After VaD mice were intravenously injected with exogenous mitochondria, Morris water maze and passive avoidance tests were used to detect cognitive function of VaD mice. Haematoxylin and eosin, Nissl, TUNEL, and Golgi staining assays were utilized to measure neuronal and synaptic injury in the hippocampus of VaD mice. Detection kits were performed to detect mitochondrial membrane potential (ΔΨ), SOD activity and the levels of ATP, ROS, and MDA in the brains of VaD mice. RESULTS The results showed that isolated mitochondria were intact and active. Mitochondrial therapy could ameliorate cognitive performance of VaD mice. Additionally, mitochondrial administration could attenuate hippocampal neuronal and synaptic injury, improve mitochondrial ΔΨ, ATP level and SOD activity, and reduce ROS and MDA levels in the brains of VaD mice. CONCLUSIONS The study reports profitable effect of mitochondrial therapy against cognitive impairment of VaD, making mitochondrial treatment become a promising therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Xuan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin-Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Wu Y, Zhou K, Liu B, Xu J, Lei L, Hu J, Cheng X, Zhong F, Wang S. Glial Activation, Mitochondrial Imbalance, and Akt/mTOR Signaling May Be Potential Mechanisms of Cognitive Impairment in Heart Failure Mice. Neurotox Res 2023; 41:589-603. [PMID: 37668877 DOI: 10.1007/s12640-023-00655-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 09/06/2023]
Abstract
Heart failure (HF) is a major health burden worldwide, with approximately half of HF patients having a comorbid cognitive impairment (CI). However, it is still unclear how CI develops in patients with HF. In the present study, a mice model of heart failure was established by ligating the left anterior descending coronary artery. Echocardiography 1 month later confirmed the decline in ejection fraction and ventricular remodeling. Cognitive function was examined by the Pavlovian fear conditioning and the Morris water maze. HF group cued fear memory, spatial memory, and learning impairment, accompanied by activation of glial cells (astrocytes, microglia, and oligodendrocytes) in the hippocampus. In addition, the mitochondrial biogenesis genes TFAM and SIRT1 decreased, and the fission gene DRP1 increased in the hippocampus. Damaged mitochondria release excessive ROS, and the ability to produce ATP decreases. Damaged swollen mitochondria with altered morphology and aberrant inner-membrane crista were observed under a transmission electron microscope. Finally, Akt/mTOR signaling was upregulated in the hippocampus of heart failure mice. These findings suggest that activation of Akt/mTOR signaling, glial activation, and mitochondrial dynamics imbalance could trigger cognitive impairment in the pathological process of heart failure mice.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Kaiyi Zhou
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Baiyang Liu
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liming Lei
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiaqi Hu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao Cheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, China.
| | - Feng Zhong
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
16
|
Sturm Á, Sharma H, Bodnár F, Aslam M, Kovács T, Németh Á, Hotzi B, Billes V, Sigmond T, Tátrai K, Egyed B, Téglás-Huszár B, Schlosser G, Charmpilas N, Ploumi C, Perczel A, Tavernarakis N, Vellai T. N6-Methyladenine Progressively Accumulates in Mitochondrial DNA during Aging. Int J Mol Sci 2023; 24:14858. [PMID: 37834309 PMCID: PMC10573865 DOI: 10.3390/ijms241914858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
N6-methyladenine (6mA) in the DNA is a conserved epigenetic mark with various cellular, physiological and developmental functions. Although the presence of 6mA was discovered a few years ago in the nuclear genome of distantly related animal taxa and just recently in mammalian mitochondrial DNA (mtDNA), accumulating evidence at present seriously questions the presence of N6-adenine methylation in these genetic systems, attributing it to methodological errors. In this paper, we present a reliable, PCR-based method to determine accurately the relative 6mA levels in the mtDNA of Caenorhabditis elegans, Drosophila melanogaster and dogs, and show that these levels gradually increase with age. Furthermore, daf-2(-)-mutant worms, which are defective for insulin/IGF-1 (insulin-like growth factor) signaling and live twice as long as the wild type, display a half rate at which 6mA progressively accumulates in the mtDNA as compared to normal values. Together, these results suggest a fundamental role for mtDNA N6-adenine methylation in aging and reveal an efficient diagnostic technique to determine age using DNA.
Collapse
Affiliation(s)
- Ádám Sturm
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
- Genetics Research Group, Eötvös Loránd Research Network-Eötvös Loránd University, 1117 Budapest, Hungary
| | - Himani Sharma
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Ferenc Bodnár
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Maryam Aslam
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Ákos Németh
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Bernadette Hotzi
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
- Genetics Research Group, Eötvös Loránd Research Network-Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Billes
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
- Genetics Research Group, Eötvös Loránd Research Network-Eötvös Loránd University, 1117 Budapest, Hungary
| | - Tímea Sigmond
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Kitti Tátrai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Balázs Egyed
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Blanka Téglás-Huszár
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
| | - Gitta Schlosser
- Momentum Ion Mobility Mass Spectrometry Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, 1117 Budapest, Hungary
| | - Nikolaos Charmpilas
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, P.O. Box 1385 Heraklion, Greece
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, P.O. Box 1385 Heraklion, Greece
| | - András Perczel
- Department of Organic Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, P.O. Box 1385 Heraklion, Greece
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; (H.S.); (B.E.)
- Genetics Research Group, Eötvös Loránd Research Network-Eötvös Loránd University, 1117 Budapest, Hungary
- Vellab Biotech Ltd., 6722 Szeged, Hungary
| |
Collapse
|
17
|
Li Y, Wang Y, Yang W, Wu Z, Ma D, Sun J, Tao H, Ye Q, Liu J, Ma Z, Qiu L, Li W, Li L, Hu M. ROS-responsive exogenous functional mitochondria can rescue neural cells post-ischemic stroke. Front Cell Dev Biol 2023; 11:1207748. [PMID: 37465011 PMCID: PMC10350566 DOI: 10.3389/fcell.2023.1207748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Background: The transfer of mitochondria from healthy mesenchymal stem cells (MSCs) to injured MSCs has been shown to have potential therapeutic benefits for neural cell post-ischemic stroke. Specifically, functional mitochondria can perform their normal functions after being internalized by stressed cells, leading to host cell survival. However, while this approach shows promise, there is still a lack of understanding regarding which neural cells can internalize functional mitochondria and the regulatory mechanisms involved. To address this gap, we investigated the ability of different neural cells to internalize exogenous functional mitochondria extracted from MSCs. Methods: Functional mitochondria (F-Mito) isolated from umbilical cord derived-MSCs (UCMSCs) were labeled with lentivirus of HBLV-mito-dsred-Null-PURO vector. The ability of stressed cells to internalize F-Mito was analyzed using a mouse (C57BL/6 J) middle cerebral artery occlusion (MCAO) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. The cell viability was measured by CCK-8 kit. Time-course of intracellular ROS levels in stressed cells were analyzed by DCFH-DA staining after OGD/R and F-Mito treatment. MitoSOX, Mitotracker and WGA labeling were used to assess the relationship between ROS levels and the uptake of F-Mito at the single-cell level. Pharmacological modulation of ROS was performed using acetylcysteine (ROS inhibitor). Results: Our findings demonstrate that neurons and endothelial cells are more effective at internalizing mitochondria than astrocytes, both in vitro and in vivo, using an ischemia-reperfusion model. Additionally, internalized F-Mito decreases host cell reactive oxygen species (ROS) levels and rescues survival. Importantly, we found that the ROS response in stressed cells after ischemia is a crucial determinant in positively mediating the internalization of F-Mito by host cells, and inhibiting the generation of ROS chemicals in host cells may decrease the internalization of F-Mito. These results offer insight into how exogenous mitochondria rescue neural cells via ROS response in an ischemic stroke model. Overall, our study provides solid evidence for the translational application of MSC-derived mitochondria as a promising treatment for ischemic stroke.
Collapse
Affiliation(s)
- Yanjiao Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Yachao Wang
- Department of Neurosurgery, The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weiqi Yang
- Department of Burn Plastic Surgery, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhen Wu
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Daiping Ma
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Jianxiu Sun
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Huixian Tao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Qinlian Ye
- Department of Neurosurgery, The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jingnan Liu
- Department of Pathophysiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, China
| |
Collapse
|
18
|
Javani G, Babri S, Farajdokht F, Ghaffari-Nasab A, Mohaddes G. Mitotherapy restores hippocampal mitochondrial function and cognitive impairment in aged male rats subjected to chronic mild stress. Biogerontology 2023; 24:257-273. [PMID: 36626036 DOI: 10.1007/s10522-022-10014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to determine the effects of mitotherapy on learning and memory and hippocampal kynurenine (Kyn) pathway, mitochondria function, and dendritic arborization and spines density in aged rats subjected to chronic mild stress. Twenty-eight male Wistar rats (22 months old( were randomly divided into Aged, Aged + Mit, Aged + Stress, and Aged + Stress + Mit groups. Aged rats in the stress groups were subjected to different stressors for 28 days. The Aged + Mit and Aged + stress + Mit groups were treated with intracerebroventricular injection (10 µl) of fresh mitochondria harvested from the young rats' brains, and other groups received 10 µl mitochondria storage buffer. Spatial and episodic-like memories were assessed via the Barnes maze and novel object recognition tests. Indoleamine 2,3-dioxygenase (IDO) expression and activity, Kyn, Tryptophan (TRY), ATP levels, and mitochondrial membrane potential (MMP) were measured in the hippocampus region. Golgi-Cox staining was also performed to assess the dendritic branching pattern and dendritic spines in the hippocampal CA1 subfield. The results showed that mitotherapy markedly improved both spatial and episodic memories in the Aged + Stress + Mit group compared to the Aged + Stress. Moreover, mitotherapy decreased IDO protein expression and activity and Kyn levels, while it increased ATP levels and improved MMP in the hippocampus of the Aged + Stress + Mit group. Besides, mitotherapy restored dendritic atrophy and loss of spine density in the hippocampal neurons of the stress-exposed aged rats. These findings provide evidence for the therapeutic effect of mitotherapy against stress-induced cognitive deterioration in aged rats by improving hippocampal mitochondrial function and modulation of the Kyn pathway.
Collapse
Affiliation(s)
- Gonja Javani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA.
| |
Collapse
|
19
|
Cui E, Tang P, Zhu X, Lv M, Wang S, Xue Y, Li C, Zhao S. Network Pharmacology Combined with an Experimental Validation Study to Reveal the Effect and Mechanism of Eucommia ulmoides Leaf Polysaccharide against Immunomodulation. Foods 2023; 12:foods12051062. [PMID: 36900578 PMCID: PMC10001223 DOI: 10.3390/foods12051062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In the present study, the immuno-enhancing effect of Eucommia ulmoides leaf polysaccharide (ELP) was investigated in immunosuppressed mice induced by cyclophosphamide (CTX). To evaluate the immune enhancement mechanism of ELP, the immunoregulation effect of ELP was evaluated in vitro and in vivo. ELP is primarily composed of arabinose (26.61%), galacturonic acid (25.1%), galactose (19.35%), rhamnose (16.13%), and a small amount of glucose (12.9%). At 1000~5000 μg·mL-1, ELP could significantly enhance the proliferation and the phagocytosis of macrophages in vitro. Additionally, ELP could protect immune organs, reduce pathological damage, and reverse the decrease in the hematological indices. Moreover, ELP significantly increased the phagocytic index, enhanced the ear swelling response, augmented the production of inflammatory cytokines, and markedly up-regulated the expression of IL-1β, IL-6, and TNF-α mRNA levels. Furthermore, ELP improved phosphorylated p38, ERK1/2, and JNK levels, suggesting that MAPKs might be involved in immunomodulatory effects. The results provide a theoretical foundation for exploring the immune modulation function of ELP as a functional food.
Collapse
|
20
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
21
|
D'Amato M, Morra F, Di Meo I, Tiranti V. Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. Int J Mol Sci 2023; 24:1969. [PMID: 36768312 PMCID: PMC9916997 DOI: 10.3390/ijms24031969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, MDs caused by homoplasmic mtDNA mutations do not yet benefit from advances in molecular approaches. An attractive method of providing dysfunctional cells and/or tissues with healthy mitochondria is mitochondrial transplantation. In this review, we discuss what is known about intercellular transfer of mitochondria and the methods used to transfer mitochondria both in vitro and in vivo, and we provide an outlook on future therapeutic applications. Overall, the transfer of healthy mitochondria containing wild-type mtDNA copies could induce a heteroplasmic shift even when homoplasmic mtDNA variants are present, with the aim of attenuating or preventing the progression of pathological clinical phenotypes. In summary, mitochondrial transplantation is a challenging but potentially ground-breaking option for the treatment of various mitochondrial pathologies, although several questions remain to be addressed before its application in mitochondrial medicine.
Collapse
Affiliation(s)
- Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Francesca Morra
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
22
|
Khan MM, Paez HG, Pitzer CR, Alway SE. The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 2023; 21:1100-1116. [PMID: 36089791 PMCID: PMC10286589 DOI: 10.2174/1570159x05666220908100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases. Impaired mitochondrial function has been linked to the pathogenesis of several human neurological disorders. Given the significant contribution of mitochondrial dysfunction in neurological disorders, there has been considerable interest in developing therapies that can attenuate mitochondrial abnormalities and proffer neuroprotective effects. Unfortunately, therapies that target specific components of mitochondria or oxidative stress pathways have exhibited limited translatability. To this end, mitochondrial transplantation therapy (MTT) presents a new paradigm of therapeutic intervention, which involves the supplementation of healthy mitochondria to replace the damaged mitochondria for the treatment of neurological disorders. Prior studies demonstrated that the supplementation of healthy donor mitochondria to damaged neurons promotes neuronal viability, activity, and neurite growth and has been shown to provide benefits for neural and extra-neural diseases. In this review, we discuss the significance of mitochondria and summarize an overview of the recent advances and development of MTT in neurodegenerative and neurovascular disorders, particularly Parkinson's disease, Alzheimer's disease, and stroke. The significance of MTT is emerging as they meet a critical need to develop a diseasemodifying intervention for neurodegenerative and neurovascular disorders.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Tennessee Institute of Regenerative Medicine, 910 Madison Avenue, Memphis, TN, 38163, USA
| |
Collapse
|
23
|
Javani G, Ghaffari-Nasab A, Farajdokht F, Mohaddes G. Chronic stress-induced apoptosis is mitigated by young mitochondria transplantation in the prefrontal cortex of aged rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:725-730. [PMID: 37275757 PMCID: PMC10237165 DOI: 10.22038/ijbms.2023.69551.15145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Apoptosis is common and often comorbid with aging and stress-related mood disorders. Evidence suggests that fresh mitochondria could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young mitochondria administration on the apoptosis process in the prefrontal cortex (PFC) of aged rats exposed to chronic stress. Materials and Methods Aged (22 months old) male rats were randomly assigned into four groups: aged control (AC), aged rats treated with young mitochondria (A+M), aged rats subjected to chronic stress for four weeks (A+St), and aged rats subjected to chronic stress and treated with young mitochondria (A+St+M). A+M and A+St+M groups received a single ICV injection (10 μl) of fresh mitochondria isolated from the brain of young rats for five minutes (2 µl/min). Finally, the levels of Malondialdehyde (MDA), Cytochrome c (Cyt c), Bax, Bcl-2, and Caspase-3 expression were investigated in the PFC. Results Young mitochondria administration reduced neuronal apoptosis in the PFC, associated with down-regulation of MDA, Bax, and Caspase-3 and up-regulation of Bcl-2. Moreover, fresh mitochondria partially improved the chronic stress-induced mitochondrial dysfunction in aged rats, as indicated by reduced cytochrome c (Cyt c) release from the mitochondria. Conclusion These results suggest mitotherapy could reverse cell viability and mitochondrial dysfunction-induced apoptosis in the PFC tissue of aged rats subjected to stressful stimuli.
Collapse
Affiliation(s)
- Gonja Javani
- Drug Applied Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
24
|
Hosseini L, Karimipour M, Seyedaghamiri F, Abolhasanpour N, Sadigh-Eteghad S, Mahmoudi J, Farhoudi M. Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice. J Stroke Cerebrovasc Dis 2022; 31:106801. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
|
25
|
Lizard G, Hammami M, Poli G. Pharmacological and Nutraceutical Activation of Rejuvenation, Geroprotection and Cytoprotection: Proofs of Concept. Cells 2022; 11:cells11233786. [PMID: 36497045 PMCID: PMC9737771 DOI: 10.3390/cells11233786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Aging is a process associated with life [...].
Collapse
Affiliation(s)
- Gérard Lizard
- Team Bio-PeroxIL ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ (EA 7270), Université de Bourgogne, Inserm, 21000 Dijon, France
- Correspondence:
| | - Mohamed Hammami
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Orbassano, 10043 Turin, Italy
| |
Collapse
|
26
|
Alexander JF, Mahalingam R, Seua AV, Wu S, Arroyo LD, Hörbelt T, Schedlowski M, Blanco E, Kavelaars A, Heijnen CJ. Targeting the Meningeal Compartment to Resolve Chemobrain and Neuropathy via Nasal Delivery of Functionalized Mitochondria. Adv Healthc Mater 2022; 11:e2102153. [PMID: 35007407 PMCID: PMC9803615 DOI: 10.1002/adhm.202102153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/03/2022] [Indexed: 01/03/2023]
Abstract
Cognitive deficits (chemobrain) and peripheral neuropathy occur in ∼75% of patients treated for cancer with chemotherapy and persist long-term in >30% of survivors. Without preventive or curative interventions and with increasing survivorship rates, the population debilitated by these neurotoxicities is rising. Platinum-based chemotherapeutics, including cisplatin, induce neuronal mitochondrial defects leading to chemobrain and neuropathic pain. This study investigates the capacity of nasally administered mesenchymal stem cell-derived mitochondria coated with dextran-triphenylphosphonium polymer (coated mitochondria) to reverse these neurotoxicities. Nasally administered coated mitochondria are rapidly detectable in macrophages in the brain meninges but do not reach the brain parenchyma. The coated mitochondria change expression of >2400 genes regulating immune, neuronal, endocrine and vascular pathways in the meninges of mice treated with cisplatin. Nasal administration of coated mitochondria reverses cisplatin-induced cognitive deficits and resolves neuropathic pain at a >55-times lower dose compared to uncoated mitochondria. Reversal of these neuropathologies is associated with resolution of cisplatin-induced deficits in myelination, synaptosomal mitochondrial integrity and neurogenesis. These findings demonstrate that nasally administered coated mitochondria promote resolution of chemobrain and peripheral neuropathy, thereby identifying a novel facile strategy for clinical application of mitochondrial donation and treating central and peripheral nervous system pathologies by targeting the brain meninges.
Collapse
Affiliation(s)
- Jenolyn F. Alexander
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States,Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Alexandre V. Seua
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas, 77030, United States
| | - Luis D. Arroyo
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Tina Hörbelt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas, 77030, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States,Corresponding Author
| |
Collapse
|
27
|
Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats. Mech Ageing Dev 2022; 202:111632. [PMID: 35065970 DOI: 10.1016/j.mad.2022.111632] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Impaired mitochondrial function and abnormalities in the tryptophan (Trp)-kynurenine (Kyn) pathway are linked to age-related mood disorders. This study investigated the effect of intracerebroventricular (ICV) injection of the mitochondria isolated from young rat brain on depression-like behaviors of aged rats subjected to chronic mild stress (CMS). Aged (22 months old) male rats were randomly assigned into four groups: Aged, Aged + Mit, Aged + CMS, and Aged + CMS + Mit. Anxiety- and depression-like behaviors were assessed using elevated plus maze (EPM), open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT). Mitochondrial membrane potential (MMP), ATP levels, indoleamine 2, 3-dioxygenase (IDO) levels, and Kyn metabolites were measured in the prefrontal cortex (PFC). Golgi Cox staining was used to investigate the neuronal morphology. Mitotherapy decreased immobility time and anhedonia in the FST; increased open arm time and entries in the EPM; decreased grooming and increased rearing, center time, and the entrance in the OFT. Mitotherapy also reduced IDO and Kyn metabolites, restored MMP and ATP production, and enhanced dendritic length and spine density in the PFC. Overall, mitotherapy improved anxiety-and depression-like behaviors in aged rats and it could be considered as a new therapeutic strategy for age-related depressive disorders.
Collapse
|
28
|
Keerthiga R, Pei DS, Fu A. Mitochondrial dysfunction, UPR mt signaling, and targeted therapy in metastasis tumor. Cell Biosci 2021; 11:186. [PMID: 34717757 PMCID: PMC8556915 DOI: 10.1186/s13578-021-00696-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
In modern research, mitochondria are considered a more crucial energy plant in cells. Mitochondrial dysfunction, including mitochondrial DNA (mtDNA) mutation and denatured protein accumulation, is a common feature of tumors. The dysfunctional mitochondria reprogram molecular metabolism and allow tumor cells to proliferate in the hostile microenvironment. One of the crucial signaling pathways of the mitochondrial dysfunction activation in the tumor cells is the retrograde signaling of mitochondria-nucleus interaction, mitochondrial unfolded protein response (UPRmt), which is initiated by accumulation of denatured protein and excess ROS production. In the process of UPRmt, various components are activitated to enhance the mitochondria-nucleus retrograde signaling to promote carcinoma progression, including hypoxia-inducible factor (HIF), activating transcription factor ATF-4, ATF-5, CHOP, AKT, AMPK. The retrograde signaling molecules of overexpression ATF-5, SIRT3, CREB, SOD1, SOD2, early growth response protein 1 (EGR1), ATF2, CCAAT/enhancer-binding protein-d, and CHOP also involved in the process. Targeted blockage of the UPRmt pathway could obviously inhibit tumor proliferation and metastasis. This review indicates the UPRmt pathways and its crucial role in targeted therapy of metastasis tumors.
Collapse
Affiliation(s)
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
29
|
Mitotherapy: Unraveling a Promising Treatment for Disorders of the Central Nervous System and Other Systemic Conditions. Cells 2021; 10:cells10071827. [PMID: 34359994 PMCID: PMC8304896 DOI: 10.3390/cells10071827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are key players of aerobic respiration and the production of adenosine triphosphate and constitute the energetic core of eukaryotic cells. Furthermore, cells rely upon mitochondria homeostasis, the disruption of which is reported in pathological processes such as liver hepatotoxicity, cancer, muscular dystrophy, chronic inflammation, as well as in neurological conditions including Alzheimer’s disease, schizophrenia, depression, ischemia and glaucoma. In addition to the well-known spontaneous cell-to-cell transfer of mitochondria, a therapeutic potential of the transplant of isolated, metabolically active mitochondria has been demonstrated in several in vitro and in vivo experimental models of disease. This review explores the striking outcomes achieved by mitotherapy thus far, and the most relevant underlying data regarding isolated mitochondria transplantation, including mechanisms of mitochondria intake, the balance between administration and therapy effectiveness, the relevance of mitochondrial source and purity and the mechanisms by which mitotherapy is gaining ground as a promising therapeutic approach.
Collapse
|
30
|
Yu Z, Hou Y, Zhou W, Zhao Z, Liu Z, Fu A. The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma. Int J Biol Sci 2021; 17:2021-2033. [PMID: 34131403 PMCID: PMC8193273 DOI: 10.7150/ijbs.59581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Today mitochondria are considered much more than a energy plant in cells. Mitochondrial transplantation therapy has been an active research area for treating mitochondria-associated diseases from animal studies to clinical trials. However, the specific mechanism involved in the anti-tumor activity of healthy mitochondria remain to be characterized. Here we investigate the signal mechanism and gender difference of mitochondrial transplantation therapy against malignant melanoma. In the study, we administrated intact mitochondria extracted from mouse livers respectively to the mice bearing malignantly subcutaneous and metastatic melanoma, and identified the signal mechanism responsible for the mitochondrial treatment through transcriptomic analysis. Meanwhile, the efficiency of female mitochondria and male mitochondria was compared in the cultured melanoma cells and transplanted melanoma in mice. The results suggested that the mitochondria significantly inhibited the tumor cell proliferation in vitro through cell cycle arrest and induction of cell apoptosis. In the melanoma-bearing mice, the mitochondria retard the tumor growth and lung migration, and the transcriptomic analysis indicated that general chromosome silencing was strongly associated with the mitochondria against melanoma after the mitochondrial transplantation on the metastasis melanoma. Moreover, the anti-tumor activity of mitochondria from female animals was more efficient in comparison to the males, and the female mitochondria could probably induce more persuasive mitochondria-nuclear communication than the mitochondria from male mice. The study identifies the anti-tumor mechanism of the mitochondrial transplantation therapy, and provides a novel insight into the effect of mitochondria from different gender.
Collapse
Affiliation(s)
| | | | | | | | | | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Zhao Z, Hou Y, Zhou W, Keerthiga R, Fu A. Mitochondrial transplantation therapy inhibit carbon tetrachloride-induced liver injury through scavenging free radicals and protecting hepatocytes. Bioeng Transl Med 2021; 6:e10209. [PMID: 34027095 PMCID: PMC8126821 DOI: 10.1002/btm2.10209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbon tetrachloride (CCl4)-induced liver injury is predominantly caused by free radicals, in which mitochondrial function of hepatocytes is impaired, accompanying with the production of ROS and decreased ATP energy supply in animals intoxicated with CCl4. Here we explored a novel therapeutic approach, mitochondrial transplantation therapy, for treating the liver injury. The results showed that mitochondria entered hepatocytes through macropinocytosis pathway, and thereby cell viability was recovered in a concentration-dependent manner. Mitochondrial therapy could increase ATP supply and reduce free radical damage. In liver injury model of mice, mitochondrial therapy significantly improved liver function and prevented tissue fibrogenesis. Transcriptomic data revealed that mitochondrial unfold protein response (UPRmt), a protective transcriptional response of mitochondria-to-nuclear retrograde signaling, would be triggered after mitochondrial administration. Then the anti-oxidant genes were up-regulated to scavenge free radicals. The mitochondrial function was rehabilitated through the transcriptional activation of respiratory chain enzyme and mitophage-associated genes. The protective response re-balanced the cellular homeostasis, and eventually enhanced stress resistance that is linked to cell survival. The efficacy of mitochondrial transplantation therapy in the animals would suggest a novel approach for treating liver injury caused by toxins.
Collapse
Affiliation(s)
- Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Yixue Hou
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Wei Zhou
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | | | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
32
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
33
|
Gaines CH, Snyder AE, Ervin RB, Farrington J, Walsh K, Schoenrock SA, Tarantino LM. Behavioral characterization of a novel Cisd2 mutant mouse. Behav Brain Res 2021; 405:113187. [PMID: 33610659 DOI: 10.1016/j.bbr.2021.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Wolfram syndrome (WFS) is a rare autosomal recessive disorder characterized by diabetes mellitus and insipidus, progressive optic atrophy and sensorineural deafness. An increased incidence of psychiatric disorders has also been reported in WFS patients. There are two subtypes of WFS. Type 1 (WFS1) is caused by mutations in the WFS1 gene and type 2 (WFS2) results from mutations in the CISD2 gene. Existing Wfs1 knockout mice exhibit many WFS1 cardinal symptoms including diabetic nephropathy, metabolic disruptions and optic atrophy. Far fewer studies have examined loss of Cisd2 function in mice. We identified B6.DDY-Cisd2m1Lmt, a mouse model with a spontaneous mutation in the Cisd2 gene. B6.DDY-Cisd2m1Lmt mice were initially identified based on the presence of audible sonic vocalizations as well as decreased body size and weight compared to unaffected wildtype littermates. Although Wfs1 knockout mice have been characterized for numerous behavioral phenotypes, similar studies have been lacking for Cisd2 mutant mice. We tested B6.DDY-Cisd2m1Lmt mice in a battery of behavioral assays that model phenotypes related to neurological and psychiatric disorders including anxiety, sensorimotor gating, stress response, social interaction and learning and memory. B6.DDY-Cisd2m1Lmt mice displayed hypoactivity across several behavioral tests, exhibited increased stress response and had deficits in spatial learning and memory and sensorimotor gating compared to wildtype littermates. Our data indicate that the B6.DDY-Cisd2m1Lmt mouse strain is a useful model to investigate potential mechanisms underlying the neurological and psychiatric symptoms observed in WFS.
Collapse
Affiliation(s)
- Christiann H Gaines
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, NC, United States
| | - Angela E Snyder
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States
| | - Robin B Ervin
- Psychiatry Department, School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Joseph Farrington
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States
| | - Kenneth Walsh
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States
| | - Sarah A Schoenrock
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, NC, United States
| | - Lisa M Tarantino
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States; Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, United States.
| |
Collapse
|
34
|
Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision. Pflugers Arch 2021; 473:713-722. [PMID: 33599804 DOI: 10.1007/s00424-021-02531-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
At normal aging, the brain exhibits signs of compromised bioenergetic and increased levels of products of interaction between reactive oxygen/nitrogen species (ROS/RNS) and brain constituents. Under normal conditions, steady-state levels of ATP and ROS/RNS fluctuate in certain ranges providing basis for stable homeostasis. However, from time to time these parameters leave a "comfort zone," and at adulthood, organisms are able to cope with these challenges efficiently, whereas at aging, efficiency of the systems maintaining homeostasis declines. That is very true for the brain due to high ATP demands which are mainly covered by mitochondrial oxidative phosphorylation. Such active oxidative metabolism gives rise to intensive ROS generation as side products. The situation is worsened by high brain level of polyunsaturated fatty acids which are substrates for ROS/RNS attack and production of lipid peroxides. In this review, organization of energetic metabolism in the brain with a focus on its interplay with ROS at aging is discussed. The working hypothesis on aging as a disbalance between oxidative stress and energy provision as a reason for brain aging is proposed. From this point of view, normal age-related physiological decline in the brain functions results from increased disbalance between decrease in capability of the brain to control constantly increased incapability to maintain ROS levels and produce ATP due to amplification of vicious cycles intensification of oxidative stress <----> impairment of energy provision.
Collapse
|
35
|
Espino De la Fuente-Muñoz C, Arias C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev Neurosci 2020; 32:203-217. [PMID: 33550783 DOI: 10.1515/revneuro-2020-0068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial activity is essential to support neural functions, and changes in the integrity and activity of the mitochondria can contribute to synaptic damage and neuronal death, especially in degenerative diseases associated with age, such as Alzheimer's and Parkinson's disease. Currently, different approaches are used to treat these conditions, and one strategy under research is mitochondrial transplantation. For years, mitochondria have been shown to be transferred between cells of different tissues. This process has allowed several attempts to develop transplantation schemes by isolating functional mitochondria and introducing them into damaged tissue in particular to counteract the harmful effects of myocardial ischemia. Recently, mitochondrial transfer between brain cells has also been reported, and thus, mitochondrial transplantation for disorders of the nervous system has begun to be investigated. In this review, we focus on the relevance of mitochondria in the nervous system, as well as some mitochondrial alterations that occur in neurodegenerative diseases associated with age. In addition, we describe studies that have performed mitochondrial transplantation in various tissues, and we emphasize the advances in mitochondrial transplantation aimed at treating diseases of the nervous system.
Collapse
Affiliation(s)
- César Espino De la Fuente-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| |
Collapse
|