1
|
Lv X, Deng H, Li C, Gao W, Zhang Y, Gao Y, Zhao B, Shi C, Gao J, Liu Z. Pad2 deletion induces anxiety‑like behaviors and memory deficits in mice. Brain Res Bull 2025; 224:111327. [PMID: 40185419 DOI: 10.1016/j.brainresbull.2025.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Citrullination, the deimination of peptidylarginine residues into peptidylcitrulline catalyzed by the peptidylarginine deiminase (PADs), has been confirmed as a unique form of posttranslational modification of proteins. Among the five isoforms of PADs, PAD2 is a main PAD enzyme expressed in central nervous system (CNS). Previous studies reported that citrullinated proteins catalyzed by PAD2 was increasingly associated with neurological disorders such as Alzheimer's disease, prion disease and Multiple Sclerosis. However, the physiological role of PAD2 in the CNS are still poorly elucidated. Here we reported that Pad2 knockout (KO) mice exhibited significantly increased anxiety level and impaired memory capacity. Furthermore, Western Blot analysis, immunohistochemistry and proteomics revealed alterations in synaptic-related proteins and dendritic spines in hippocampus of Pad2 KO animals. These findings indicated that Pad2 plays an important function in the CNS, which is implicated in the regulation of emotion and cognitive capacity.
Collapse
Affiliation(s)
- Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China; Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Wenzhi Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China; Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China; Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Forth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China.
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi 710065, China; Xi'an Key Laboratory of Toxicology and Biological Effect, Xi'an, Shaanxi 710065, China.
| |
Collapse
|
2
|
Yan R, Zhang L, Chen Y, Zheng Y, Xu P, Xu Z. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol Dis 2025; 209:106880. [PMID: 40118219 DOI: 10.1016/j.nbd.2025.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025] Open
Abstract
According to the criteria established by the International League Against Epilepsy (ILAE), epilepsy is defined as a disorder characterized by at least two unprovoked seizures occurring more than 24 h apart. Its pathogenesis is closely related to various physiological and pathological factors. Advances in high-throughput metagenomic sequencing have increasingly highlighted the role of gut microbiota dysbiosis in epilepsy. Short-chain fatty acids (SCFAs), the major metabolites of the gut microbiota and key regulators of the gut-brain axis, support physiological homeostasis through multiple mechanisms. Recent studies have indicated that SCFAs not only regulate seizures by maintaining intestinal barrier integrity and modulating intestinal immune responses, but also affect the structure and function of the blood-brain barrier (BBB) and regulate neuroinflammation. This review, based on current literatures, explores the relationship between SCFAs and epilepsy, emphasizing how SCFAs affect epilepsy by modulating the intestinal barrier and BBB. In-depth studies on SCFAs may reveal their therapeutic potential and inform the development of gut microbiota-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Rong Yan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi, China.
| |
Collapse
|
3
|
He Y, Ouyang K, Yang H, Wang L, Zhang Q, Li D, Li L. The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110126. [PMID: 39824299 DOI: 10.1016/j.fsi.2025.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.1, 1, 10 μg/L for 30 days. Histomorphological evaluation revealed thrombus formation and vacuolization in the brains of zebrafish exposed to 10 μg/L MC-LR. Additionally, this exposure led to elevated MDA levels and decreased T-SOD, CAT and GSH levels in the brain, indicating oxidative stress. MC-LR exposure also significantly increased TNF-α and IL-1β contents and altered transcriptional levels of genes associated with the NOD/NFκB pathway (nod1, nod2, tak2, ripk2, ikbkb, nfkbiaa and nfkb2), implicating that MC-LR induced neuroinflammation. Concurrently, disruptions in neurotransmitter systems were observed, manifested by reductions in ACH, DA, 5-HT contents, an increase in Glu, and changes in related genes (ache, chran7a, dat, drd2b, 5htt, htr1aa, glsa and grin2aa). Partial least squares path modeling (PLS-PM) analysis showed that the oxidative stress and antioxidant defenses directly affected the cholinergic and glutamatergic systems and inflammatory response, as well as indirectly influenced the dopaminergic system via inflammation. Thus, our results suggested that oxidative stress may be a potential mechanism underlying the neuroinflammation and disruption of neurotransmitter systems induced by MC-LR. Furthermore, BMD modeling indicated that the BMDL values for ACH, T-SOD and MDA were all greater than 1 μg/L, suggesting that long-term exposure to MC-LR concentrations below 1 μg/L pose a relatively low risk of neurotoxicity. The lowest BMDL for MDA also implies that oxidative stress is a primary concern in the brain, making MDA a preferred biomarker for MC-LR exposure.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
4
|
Rosenn EH, Korlansky M, Benyaminpour S, Munarova V, Fox E, Shah D, Durham A, Less N, Pasinetti GM. Antibody immunotherapies for personalized opioid addiction treatment. J Pharmacol Exp Ther 2025; 392:103522. [PMID: 40112764 DOI: 10.1016/j.jpet.2025.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Approved therapies for managing opioid addiction involve intensive treatment regimens which remain both costly and ineffective. As pharmaceutical interventions have achieved variable success treating substance use disorders (SUD), alternative therapeutics must be considered. Antidrug antibodies induced by vaccination or introduced as monoclonal antibody formulations can neutralize or destroy opioids in circulation before they reach their central nervous system targets or act as enzymes to deactivate opioid receptors, preventing the physiologic and psychoactive effects of the substance. A lack of "reward" for those suffering from SUD has been shown to result in cessation of use and promote long-term abstinence. Decreased antibody production costs and the advent of novel gene therapies that stimulate in vivo production of monoclonal antibodies have renewed interest in this strategy. Furthermore, advances in understanding of SUD immunopathogenesis have revealed distinct mechanisms of neuroimmune dysregulation underlying the disorder. Beyond assisting with cessation of drug use, antibody therapies could treat or reverse pathophysiologic hallmarks that contribute to addiction and which could be the cause of chronic cognitive defects resulting from drug use. In this review, we synthesize key current literature regarding the efficacy of immunotherapies in managing opioid addiction and SUD. We will explore the neuropharmacology underlying these treatments by relating evidence from studies on the use of antibody therapeutics to counteract various drug behaviors and by drawing parallels to the similar immunopathology observed in neurodegenerative disorders. Finally, we will discuss the implications of novel immunization technologies and the application of computational methods in developing personalized addiction treatments. SIGNIFICANCE STATEMENT: Significant new evidence contributing to our understanding of substance use disorders has recently emerged leading to a paradigm shift concerning the role of immunology in the neuropathogenesis of opioid use disorder. Concurrently, immunotherapeutic technologies such as antibody therapeutics have advanced the capabilities regarding applications that take advantage of these key principles. This article reviews key antibody-based treatments being studied and highlights directions for further research that may contribute to the management of opioid use disorder.
Collapse
Affiliation(s)
- Eric H Rosenn
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | | | | | - Violet Munarova
- College of Osteopathic Medicine, Touro University, New York, New York
| | - Eryn Fox
- Department of Allergy and Immunology, Montefiore Medical Center-Albert Einstein College of Medicine, Bronx, New York, New York
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicole Less
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York.
| |
Collapse
|
5
|
López-Tofiño Y, López-Gómez L, Martín-Ruíz M, Uranga JA, Nurgali K, Vera G, Abalo R. Effects of Repeated Cisplatin and Monosodium Glutamate on Visceral Sensitivity in Rats. Cells 2024; 14:26. [PMID: 39791727 PMCID: PMC11719532 DOI: 10.3390/cells14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Cisplatin, a chemotherapeutic drug, is known for causing gastrointestinal disorders and neuropathic pain, but its impact on visceral sensitivity is unclear. Monosodium glutamate (MSG) has been shown to improve gastrointestinal dysmotility and neuropathic pain induced by cisplatin in rats. This study aimed to determine if repeated cisplatin treatment alters visceral sensitivity and whether dietary MSG can prevent these changes. Male Wistar HAN rats were treated with saline or cisplatin (2 mg/kg/week, ip) for 5 weeks, and visceral sensitivity to intracolonic mechanical stimulation was recorded after the final cisplatin administration (week 5) and one-week post-treatment (week 6). In a second cohort, rats treated with cisplatin or saline also received MSG (4 g/L) in their drinking water, and visceral sensitivity was evaluated on week 6. Finally, the untouched distal colon was obtained from a third cohort of animals one week after treatment to assess immunocyte infiltration. Cisplatin significantly increased colonic mechanical sensitivity on week 6 but not on week 5. MSG did not prevent cisplatin-induced visceral hypersensitivity on week 6 and even exacerbated it. On week 6, compared with the control, cisplatin (with or without MSG) did not modify the colonic infiltration of eosinophils, macrophages, neutrophils, or mast cells. Although MSG seems to be useful in ameliorating some of the adverse effects of cisplatin, such as gastrointestinal motility disturbances or neuropathic pain, it does not alleviate visceral pain.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (L.L.-G.); (M.M.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (L.L.-G.); (M.M.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Marta Martín-Ruíz
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (L.L.-G.); (M.M.-R.); (J.A.U.)
| | - Jose Antonio Uranga
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (L.L.-G.); (M.M.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia;
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (L.L.-G.); (M.M.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (L.L.-G.); (M.M.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
6
|
Adil M, Jiba U, Khan A, Shahrukh M, Hasan N, Ahmad FJ. Advancements in ischemic stroke management: Transition from traditional to nanotechnological approaches. J Drug Deliv Sci Technol 2024; 102:106318. [DOI: 10.1016/j.jddst.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
AboTaleb HA, Alturkistani HA, Abd El-Aziz GS, Hindi EA, Halawani MM, Al-Thepyani MA, Alghamdi BS. The Antinociceptive Effects and Sex-Specific Neurotransmitter Modulation of Metformin in a Mouse Model of Fibromyalgia. Cells 2024; 13:1986. [PMID: 39682734 PMCID: PMC11640190 DOI: 10.3390/cells13231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Fibromyalgia (FM) is a chronic and debilitating condition characterized by diffuse pain, often associated with symptoms such as fatigue, cognitive disturbances, and mood disorders. Metformin, an oral hypoglycemic agent, has recently gained attention for its potential benefits beyond glucose regulation. It has shown promise in alleviating neuropathic and inflammatory pain, suggesting that it could offer a novel approach to managing chronic pain conditions like FM. This study aimed to further explore metformin's analgesic potential by evaluating its effects in an experimental FM model induced by reserpine in both male and female mice. After the administration of 200 mg/kg metformin to male and female mice, the FM-related symptoms were assessed, including mechanical allodynia, thermal hyperalgesia, and depressive-like behaviors. A histological examination of the thalamus, hippocampus, and spinal cord was conducted using haematoxylin and eosin staining. The neurotransmitter and proinflammatory cytokines levels were measured in the brains and spinal cords. Our results have shown that metformin treatment for seven days significantly reversed these FM-like symptoms, reducing pain sensitivity and improving mood-related behaviors in both the male and female mice. Additionally, metformin exhibited neuroprotective effects, mitigating reserpine-induced damage in the hippocampus, thalamus, and spinal cord. It also significantly lowered the levels of the proinflammatory cytokine interleukin 1-beta (IL-1β) in the brain and spinal cord. Notably, metformin modulated the neurotransmitter levels differently between the sexes, decreasing glutamate and increasing serotonin and norepinephrine in the male mice, but not in the females. These findings underscore metformin's potential as an alternative therapy for FM, with sex-specific differences suggesting distinct mechanisms of action.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
| | - Hani A. Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Emad A. Hindi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Mervat M. Halawani
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Mona Ali Al-Thepyani
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
| |
Collapse
|
8
|
Li X, Zhu K, Zhen Y. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning. Brief Bioinform 2024; 26:bbae614. [PMID: 39581870 PMCID: PMC11586126 DOI: 10.1093/bib/bbae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Molecular convergence in convergently evolved lineages provides valuable insights into the shared genetic basis of converged phenotypes. However, most methods are limited to coding regions, overlooking the potential contribution of regulatory regions. We focused on the independently evolved vocal learning ability in multiple avian lineages, and developed a whole-genome-alignment-free approach to identify genome-wide Convergently Lost Ancestral Conserved fragments (CLACs) in these lineages, encompassing noncoding regions. We discovered 2711 CLACs that are overrepresented in noncoding regions. Proximal genes of these CLACs exhibit significant enrichment in neurological pathways, including glutamate receptor signaling pathway and axon guidance pathway. Moreover, their expression is highly enriched in brain tissues associated with speech formation. Notably, several have known functions in speech and language learning, including ROBO family, SLIT2, GRIN1, and GRIN2B. Additionally, we found significantly enriched motifs in noncoding CLACs, which match binding motifs of transcriptional factors involved in neurogenesis and gene expression regulation in brain. Furthermore, we discovered 19 candidate genes that harbor CLACs in both human and multiple avian vocal learning lineages, suggesting their potential contribution to the independent evolution of vocal learning in both birds and humans.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
9
|
Ding C, Gong Q, Wan S. Mediation effect of plasma metabolites on the relationship between immune cells and the risk of prostatitis: A study by bidirectional 2-sample and Bayesian-weighted Mendelian randomization. Medicine (Baltimore) 2024; 103:e40024. [PMID: 39465812 PMCID: PMC11479442 DOI: 10.1097/md.0000000000040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
According to the findings of multiple observational studies, immune disorder was a risk factor for prostatitis. However, it remained unknown whether there was a direct causal relationship between immune cells and prostatitis or whether this relationship was mediated by plasma metabolites. Based on the pooled data of a genome-wide association study (GWAS), a genetic variant was used to predict the effects of 731 immunophenotypes on the risk of prostatitis and determine whether the effects were mediated by 1400 metabolites. The bidirectional 2-sample Mendelian randomization (MR) method was adopted to uncover the causal relationship between immunophenotypes and prostatitis. Subsequently, a 2-step MR method was employed to evaluate whether the metabolites mediated this causal relationship and quantify the mediating effects and the corresponding ratios. In addition, the Bayesian-weighted Mendelian randomization (BWMR) method was employed to verify the results. Among the 731 immunophenotypes analyzed, 16 had causal relationships with the risk of prostatitis, including 11 with positive correlations (P < .05, beta > 0) and 5 with negative correlations (P < .05, beta < 0). The MR analysis screened out 9 metabolites related to the risk of prostatitis. The X - 24344 levels mediated the causal relationship between CD3 on CD39+ activated Treg and prostatitis (mediation effect: 0.01; ratio: 9.82%). Both histidine betaine (hercynine) levels and the proline-to-glutamate ratio mediated the causal relationship between CD14-CD16+ monocyte absolute count and prostatitis, with the mediation effects of -0.016 (14.20%) and -0.008 (7.24%), respectively. The glutamine degradant levels mediated the causal relationship between HLA DR+ CD4+ %T cells and prostatitis, with a mediation effect of -0.012, accounting for 8.07% of the total. The present study indicated that the immune cell subsets predicted based on gene expression profiles were potentially beneficial or harmful risk factors of prostatitis, and plasma metabolites may serve as the mediating factors of the relationship. The study thus shed light on deciphering the immunologic mechanism of prostatitis.
Collapse
Affiliation(s)
- Chao Ding
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Quanhua Gong
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Shui Wan
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| |
Collapse
|
10
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
11
|
Koh EJ, Heo SY, Park A, Lee YJ, Choi WY, Heo SJ. Serum-Free Medium Supplemented with Haematococcus pluvialis Extracts for the Growth of Human MRC-5 Fibroblasts. Foods 2024; 13:3012. [PMID: 39335941 PMCID: PMC11431700 DOI: 10.3390/foods13183012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Experiments are increasingly performed in vitro; therefore, cell culture technology is essential for scientific progress. Fetal bovine serum (FBS) is a key cell culture supplement providing growth factors, amino acids, and hormones. However, FBS is not readily available on the market, has contamination risks, and has ethical concerns. This study aimed to investigate Haematococcus pluvialis extracts (HE) as a potential substitute for FBS. Therefore, we assessed the effects of HE on cell maintenance, growth, and cycle progression in human lung fibroblasts (MRC-5). Cell progression and monosaccharide, fatty acid, and free amino acid compositions were analyzed using cell cycle analysis, bio-liquid chromatography, gas chromatography, and high-performance liquid chromatography, respectively. The results of nutritional profiles showed that the extracts contained essential amino acids required for synthesizing non-essential amino acids and other metabolic intermediates. Furthermore, most of the components present in HE were consistent with those found in FBS. HE enhanced cell viability and regulated cell cycle phases. Additionally, the interaction between growth factor cocktails and HE significantly improved cell viability, promoted cell cycle progression, and activated key cell cycle regulators, such as cyclin A and cyclin-dependent kinases 1 (CDK1). Our findings suggest that HE have considerable potential to substitute FBS in MRC-5 cell cultures and have functional and ethical advantages.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Woon-Yong Choi
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
Wang XP, Yan D, Jin XP, Zhang WY, Shi T, Wang X, Song W, Xiong X, Guo D, Chen S. The role of amino acid metabolism alterations in acute ischemic stroke: From mechanism to application. Pharmacol Res 2024; 207:107313. [PMID: 39025169 DOI: 10.1016/j.phrs.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Dan Yan
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, China
| | - Xia-Ping Jin
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wen-Yan Zhang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Tao Shi
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wenjuan Song
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xing Xiong
- Traditional Chinese Medical Hospital of Xiaoshan, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 311200, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Sheng Chen
- First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311200, China.
| |
Collapse
|
13
|
Jiang R, Li L, Wang B, Liu L, Liu L, Xian X, Li W. Ceftriaxone Modulates Ubiquitination of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid Receptors to Improve Long-Term Potentiation Impairment Induced by Exogenous β-Amyloid in a Glutamate Transporter-1 Dependent Manner. Mol Neurobiol 2024; 61:7181-7194. [PMID: 38374316 DOI: 10.1007/s12035-024-04037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are crucial for properties of synaptic plasticity, such as long-term potentiation (LTP). LTP impairment can occur early in the onset of Alzheimer's disease (AD). The downregulation or decreased abundance of AMPAR expression in the postsynaptic membrane is closely associated with LTP impairment. Ceftriaxone (Cef) can improve LTP impairment in the early stages of AD in a mouse model. The purpose of this study was to explore the mechanism underlying this process from the aspects of AMPAR expression and ubiquitination degree. In this study, we found that β-amyloid (Aβ) treatment induced hippocampal LTP impairment and AMPAR downregulation and ubiquitination. Cef pretreatment ameliorated Aβ-induced hippocampal LTP impairment, reduced AMPAR ubiquitination, and increased AMPAR expression, especially in the plasma membrane, in Aβ-treated mice. Administration of USP46 siRNA and DHK (a specific blocker of glutamate transporter-1) significantly inhibited the above effects of Cef, suggesting a role for anti-AMPAR ubiquitination and upregulation of glutamate transporter-1 (GLT-1) in the Cef-induced improvements mentioned above. The above findings demonstrate that pretreatment with Cef effectively mitigated Aβ-induced impairment of hippocampal LTP by suppressing the ubiquitination process of AMPARs in a GLT-1-dependent manner. These results provide novel insights into the underlying mechanisms elucidating the anti-AD by Cef.
Collapse
Affiliation(s)
- Rui Jiang
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
- School of Nursing, Hebei Medical University, 309 Jianhua South Street, Shijiazhuang, 050000, People's Republic of China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Bu Wang
- Department of Emergency Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Lizhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Lirong Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Xiaohui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| | - Wenbin Li
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
14
|
Mumtaz SM, Khan MA, Jamal A, Hattiwale SH, Parvez S. Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments. Life Sci 2024; 351:122777. [PMID: 38851419 DOI: 10.1016/j.lfs.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.
Collapse
Affiliation(s)
- Sayed Md Mumtaz
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
16
|
Mozafari R, Khodagholi F, Kaveh N, Zibaii ME, Kalivas P, Haghparast A. Blockade of mGluR5 in nucleus accumbens modulates calcium sensor proteins, facilitates extinction, and attenuates reinstated morphine place preference in rats. J Psychiatr Res 2024; 176:23-32. [PMID: 38833749 DOI: 10.1016/j.jpsychires.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Numerous findings confirm that the metabotropic glutamate receptors (mGluRs) are involved in the conditioned place preference (CPP) induced by morphine. Here we focused on the role of mGluR5 in the nucleus accumbens (NAc) as a main site of glutamate action on the rewarding effects of morphine. Firstly, we investigated the effects of intra-NAc administrating mGluR5 antagonist 3-((2-Methyl-1,3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP; 1, 3, and 10 μg/μl saline) on the extinction and the reinstatement phase of morphine CPP. Moreover, to determine the downstream signaling cascades of mGluR5 in morphine CPP, the protein levels of stromal interaction molecules (STIM1 and 2) in the NAc and hippocampus (HPC) were measured by western blotting. The behavioral data indicated that the mGluR5 blockade by MTEP at the high doses of 3 and 10 μg facilitated the extinction of morphine-induced CPP and attenuated the reinstatement to morphine in extinguished rats. Molecular results showed that the morphine led to increased levels of STIM proteins in the HPC and increased the level of STIM1 without affecting STIM2 in the NAc. Furthermore, intra-NAc microinjection of MTEP (10 μg) in the reinstatement phase decreased STIM1 in the NAc and HPC and reduced the STIM2 in the HPC. Collectively, our data show that morphine could facilitate brain reward function in part by increasing glutamate-mediated transmission through activation of mGluR5 and modulation of STIM proteins. Therefore, these results highlight the therapeutic potential of mGluR5 antagonists in morphine use disorder.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Kaveh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Mack CM, Tsui-Bowen A, Smith AR, Jensen KF, Kodavanti PRS, Moser VC, Mundy WR, Shafer TJ, Herr DW. Identification of neural-relevant toxcast high-throughput assay intended gene targets: Applicability to neurotoxicity and neurotoxicant putative molecular initiating events. Neurotoxicology 2024; 103:256-265. [PMID: 38977203 DOI: 10.1016/j.neuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. Assay gene function (GeneCards, NCBI-PUBMED) was used to categorize gene target neural relevance (1 = neural, 2 = neural development, 3 = general cellular process, 3 A = cellular process critical during neural development, 4 = unlikely significance). Of 481 unique gene targets, 80 = category 1 (16.6 %); 16 = category 2 (3.3 %); 303 = category 3 (63.0 %); 97 = category 3 A (20.2 %); 82 = category 4 (17.0 %). A representative list of neurotoxicants (548) was researched (ex. PUBMED, PubChem) for neurotoxicity associated MIEs/Key Events (KEs). MIEs were identified for 375 compounds, whereas only KEs for 173. ToxCast gene targets associated with MIEs were primarily neurotransmitter (ex. dopaminergic, GABA)receptors and ion channels (calcium, sodium, potassium). Conversely, numerous MIEs associated with neurotoxicity were absent. Oxidative stress (OS) mechanisms were 79.1 % of KEs. In summary, 40 % of ToxCast assay gene targets are relevant to neurotoxicity mechanisms. Additional receptor and ion channel subtypes and increased OS pathway coverage are identified for potential future assay inclusion to provide more complete coverage of neural and developmental neural targets in assessing neurotoxicity.
Collapse
Affiliation(s)
- Cina M Mack
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | - Alicia R Smith
- Oak Ridge Institute for Science Education, Oak Ridge, TN 37830, USA.
| | - Karl F Jensen
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Virginia C Moser
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William R Mundy
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
18
|
Li C, Jiang M, Chen Z, Hu Q, Liu Z, Wang J, Yin X, Wang J, Wu M. The neuroprotective effects of normobaric oxygen therapy after stroke. CNS Neurosci Ther 2024; 30:e14858. [PMID: 39009510 PMCID: PMC11250159 DOI: 10.1111/cns.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Stroke, including ischemic and hemorrhagic stroke, is a severe and prevalent acute cerebrovascular disease. The development of hypoxia following stroke can trigger a cascade of pathological events, including mitochondrial dysfunction, energy deficiency, oxidative stress, neuroinflammation, and excitotoxicity, all of which are often associated with unfavorable prognosis. Nonetheless, a noninvasive intervention, referred to as normobaric hyperoxia (NBO), is known to have neuroprotective effects against stroke. RESULTS NBO can exert neuroprotective effects through various mechanisms, such as the rescue of hypoxic tissues, preservation of the blood-brain barrier, reduction of brain edema, alleviation of neuroinflammation, improvement of mitochondrial function, mitigation of oxidative stress, reduction of excitotoxicity, and inhibition of apoptosis. These mechanisms may help improve the prognosis of stroke patients. CONCLUSIONS This review summarizes the mechanism by which hypoxia causes brain injury and how NBO can act as a neuroprotective therapy to treat stroke. We conclude that NBO has significant potential for treating stroke and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital, Zhengzhou UniversityZhengzhouHenanChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
19
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
20
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
22
|
Li D, Gao X, Ma X, Wang M, Cheng C, Xue T, Gao F, Shen Y, Zhang J, Liu Q. Aging-induced tRNA Glu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab 2024; 36:1059-1075.e9. [PMID: 38458203 DOI: 10.1016/j.cmet.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.
Collapse
Affiliation(s)
- Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinyi Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolin Ma
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Xue
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
23
|
Huang Y, Shi Y, Wang M, Liu B, Chang X, Xiao X, Yu H, Cui X, Bai Y. Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. Aging Dis 2024; 15:1296-1307. [PMID: 37196132 PMCID: PMC11081155 DOI: 10.14336/ad.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Bingyi Liu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xueqin Chang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xia Xiao
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Huihui Yu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xiaodie Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
24
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Isu UH, Badiee SA, Polasa A, Tabari SH, Derakhshani-Molayousefi M, Moradi M. Cholesterol Dependence of the Conformational Changes in Metabotropic Glutamate Receptor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589854. [PMID: 38659864 PMCID: PMC11042357 DOI: 10.1101/2024.04.17.589854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are class C G protein-coupled receptors that function as obligate dimers in regulating neurotransmission and synaptic plasticity in the central nervous system. The mGluR1 subtype has been shown to be modulated by the membrane lipid environment, particularly cholesterol, though the molecular mechanisms remain elusive. In this study, we employed all-atom molecular dynamics simulations to investigate the effects of cholesterol on the conformational dynamics of the mGluR1 seven-transmembrane (7TM) domain in an inactive state model. Simulations were performed with three different cholesterol concentrations (0%, 10%, and 25%) in a palmitoyl-oleoyl phosphatidylcholine (POPC) lipid bilayer system. Our results demonstrate that cholesterol induces conformational changes in the mGluR1 dimer more significantly than in the individual protomers. Notably, cholesterol modulates the dynamics and conformations of the TM1 and TM2 helices at the dimer interface. Interestingly, an intermediate cholesterol concentration of 10% elicits more pronounced conformational changes compared to both cholesterol-depleted (0%) and cholesterol-enriched (25%) systems. Specific electrostatic interaction unique to the 10% cholesterol system further corroborate these conformational differences. Given the high sequence conservation of the 7TM domains across mGluR subtypes, the cholesterol-dependent effects observed in mGluR1 are likely applicable to other members of this receptor family. Our findings provide atomistic insights into how cholesterol modulates the conformational landscape of mGluRs, which could impact their function and signaling mechanisms.
Collapse
|
26
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
27
|
Harachi M, Masui K, Shimizu E, Murakami K, Onizuka H, Muragaki Y, Kawamata T, Nakayama H, Miyata M, Komori T, Cavenee WK, Mischel PS, Kurata A, Shibata N. DNA hypomethylator phenotype reprograms glutamatergic network in receptor tyrosine kinase gene-mutated glioblastoma. Acta Neuropathol Commun 2024; 12:40. [PMID: 38481314 PMCID: PMC10935831 DOI: 10.1186/s40478-024-01750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.
Collapse
Affiliation(s)
- Mio Harachi
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan.
| | - Erika Shimizu
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Kumiko Murakami
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Hiromi Onizuka
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
- Center for Advanced Medical Engineering Research and Development, Kobe University, Kobe, Hyogo, 650-0047, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Hisako Nakayama
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, Musashinodai, Tokyo, 156-8506, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
28
|
Néré R, Kouba S, Carreras-Sureda A, Demaurex N. S-acylation of Ca2+ transport proteins: molecular basis and functional consequences. Biochem Soc Trans 2024; 52:407-421. [PMID: 38348884 PMCID: PMC10903462 DOI: 10.1042/bst20230818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Calcium (Ca2+) regulates a multitude of cellular processes during fertilization and throughout adult life by acting as an intracellular messenger to control effector functions in excitable and non-excitable cells. Changes in intracellular Ca2+ levels are driven by the co-ordinated action of Ca2+ channels, pumps, and exchangers, and the resulting signals are shaped and decoded by Ca2+-binding proteins to drive rapid and long-term cellular processes ranging from neurotransmission and cardiac contraction to gene transcription and cell death. S-acylation, a lipid post-translational modification, is emerging as a critical regulator of several important Ca2+-handling proteins. S-acylation is a reversible and dynamic process involving the attachment of long-chain fatty acids (most commonly palmitate) to cysteine residues of target proteins by a family of 23 proteins acyltransferases (zDHHC, or PATs). S-acylation modifies the conformation of proteins and their interactions with membrane lipids, thereby impacting intra- and intermolecular interactions, protein stability, and subcellular localization. Disruptions of S-acylation can alter Ca2+ signalling and have been implicated in the development of pathologies such as heart disease, neurodegenerative disorders, and cancer. Here, we review the recent literature on the S-acylation of Ca2+ transport proteins of organelles and of the plasma membrane and highlight the molecular basis and functional consequence of their S-acylation as well as the therapeutic potential of targeting this regulation for diseases caused by alterations in cellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Raphaël Néré
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sana Kouba
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Staudt M, Liu N, Malhaire F, Doroudian Y, Prézeau L, Renard E, Hasanpour Z, Pin JP, Bunch L. Synthesis and pharmacological characterization of conformationally restricted 2-amino-Adipic acid analogs and carboxycyclopropyl glycines as selective metabotropic glutamate 2 receptor agonists. Eur J Med Chem 2024; 266:116157. [PMID: 38245976 DOI: 10.1016/j.ejmech.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
The metabotropic glutamate (Glu) receptors (mGluRs) are G-protein coupled receptors, which play a central role in modulating excitatory neurotransmission in the central nervous system (CNS). Thus, the development of tool compounds thereto, continues to interest the scientific community. In this study, we report the design and synthesis of new conformationally restricted 2-aminoadipic acid (2AA) 2-4, and glutamic acid 5, 6 analogs, which share the cyclopropane ring as the restrictor. The analogs were characterized at rat mGlu1-8 in an IP-One functional assay. While the 2AA analogs 3a, 4a and CCG-I analog 5a were shown to be selective mGlu2 agonists with low micromolar potencies, CCG-II analog 5b was shown to be a potent full agonist at mGlu2 (EC50 = 82 nM) with ∼15-fold selectivity over mGlu3, >25-fold selectivity over group III, and >60-fold selectivity over group I subtypes. An in silico study was performed to address this significant change (>3500 fold) in potency upon introduction of this methyl group (L-CCG-II vs 5b).
Collapse
Affiliation(s)
- Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fanny Malhaire
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094, Montpellier, France
| | - Yasaman Doroudian
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laurent Prézeau
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094, Montpellier, France
| | - Emma Renard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Zahra Hasanpour
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jean-Philippe Pin
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 34094, Montpellier, France
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
30
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
31
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Liu N, Eshak F, Malhaire F, Brabet I, Prézeau L, Renard E, Pin JP, Acher FC, Staudt M, Bunch L. Design, Synthesis, Pharmacology, and In Silico Studies of (1 S,2 S,3 S)-2-(( S)-Amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic Acid (LBG30300): A Picomolar Potency Subtype-Selective mGlu 2 Receptor Agonist. J Med Chem 2024; 67:1314-1326. [PMID: 38170918 DOI: 10.1021/acs.jmedchem.3c01811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.
Collapse
Affiliation(s)
- Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| | - Floriane Eshak
- Faculty of Basic and Biomedical Sciences, SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Fanny Malhaire
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Isabelle Brabet
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Laurent Prézeau
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Emma Renard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| | - Jean-Philippe Pin
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Francine C Acher
- Faculty of Basic and Biomedical Sciences, SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| |
Collapse
|
33
|
Rathod SS, Agrawal YO. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease. Curr Drug Res Rev 2024; 16:94-110. [PMID: 37132109 DOI: 10.2174/2589977515666230502104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
The Endocannabinoid System (ECS) is a well-studied system that influences a variety of physiological activities. It is evident that the ECS plays a significant role in metabolic activities and also has some neuroprotective properties. In this review, we emphasize several plant-derived cannabinoids such as β-caryophyllene (BCP), Cannabichromene (CBC), Cannabigerol (CBG), Cannabidiol (CBD), and Cannabinol (CBN), which are known to have distinctive modulation abilities of ECS. In Alzheimer's disease (AD), the activation of ECS may provide neuroprotection by modulating certain neuronal circuitry pathways through complex molecular cascades. The present article also discusses the implications of cannabinoid receptors (CB1 and CB2) as well as cannabinoid enzymes (FAAH and MAGL) modulators in AD. Specifically, CBR1 or CB2R modulations result in reduced inflammatory cytokines such as IL-2 and IL-6, as well as a reduction in microglial activation, which contribute to an inflammatory response in neurons. Furthermore, naturally occurring cannabinoid metabolic enzymes (FAAH and MAGL) inhibit the NLRP3 inflammasome complex, which may offer significant neuroprotection. In this review, we explored the multi-targeted neuroprotective properties of phytocannabinoids and their possible modulations, which could offer significant benefits in limiting AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Dist. Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| |
Collapse
|
34
|
Ryding M, Mikkelsen AW, Nissen MS, Nilsson AC, Blaabjerg M. Pathophysiological Effects of Autoantibodies in Autoimmune Encephalitides. Cells 2023; 13:15. [PMID: 38201219 PMCID: PMC10778077 DOI: 10.3390/cells13010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The heterogeneity of autoantibody targets in autoimmune encephalitides presents a challenge for understanding cellular and humoral pathophysiology, and the development of new treatment strategies. Thus, current treatment aims at autoantibody removal and immunosuppression, and is primarily based on data generated from other autoimmune neurological diseases and expert consensus. There are many subtypes of autoimmune encephalitides, which now entails both diseases with autoantibodies targeting extracellular antigens and classical paraneoplastic syndromes with autoantibodies targeting intracellular antigens. Here, we review the current knowledge of molecular and cellular effects of autoantibodies associated with autoimmune encephalitis, and evaluate the evidence behind the proposed pathophysiological mechanisms of autoantibodies in autoimmune encephalitis.
Collapse
Affiliation(s)
- Matias Ryding
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne With Mikkelsen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | | | - Anna Christine Nilsson
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | - Morten Blaabjerg
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark;
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), 5000 Odense, Denmark
| |
Collapse
|
35
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
36
|
Tellios V, Maksoud MJE, Nagra R, Jassal G, Lu WY. Neuronal Nitric Oxide Synthase Critically Regulates the Endocannabinoid Pathway in the Murine Cerebellum During Development. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1200-1215. [PMID: 36402869 DOI: 10.1007/s12311-022-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
The cerebellum is a major site of endocannabinoid (eCB) production and signaling. The predominant eCB within the cerebellum, 2-arachidonoylglycerol (2-AG), is produced by a metabotropic glutamate receptor type 1 (mGluR1)-initiated signaling cascade within Purkinje neurons (PNs). 2-AG retrogradely stimulates cannabinoid 1 receptors (CB1Rs) located on presynaptic terminals. The activated CB1R decreases neurotransmitter release and leads to the production of nitric oxide (NO), a gaseous molecule. Recently, our group discovered that during development in mice lacking neuronal nitric oxide synthase (nNOS-/-), PNs display an excitotoxic phenotype associated with overactivated mGluR1. Considering the importance of mGluR1 in 2-AG synthesis, the present study explored the role of nNOS-derived NO in regulating the eCB pathway within the cerebella of wildtype (WT) and nNOS-/- mice at postnatal day 7 (PD7), 2 weeks (2 W), and 7 weeks (7 W). Our analysis showed that diacylglycerol lipase α, the enzyme that catalyzes 2-AG production, was elevated at early postnatal ages, and followed by elevated levels of 2-AG in nNOS-/- cerebella compared to WT. CB1R expression in nNOS-/- cerebella was upregulated at PD7 but decreased at 2 W and 7 W when compared to age-matched WT mice cerebella. Importantly, treating organotypic nNOS-/- cerebellar slice cultures with an NO-donor-attenuated CB1R levels after 7 days in vitro. In addition, expression of the eCB hydrolases fatty acid amide hydrolase and monoacylglycerol lipase were significantly downregulated in nNOS-/- cerebella compared to WT cerebella at 7 W. Together, these results reveal a novel role for nNOS/NO in regulating eCB signaling in the cerebellum.
Collapse
Affiliation(s)
- Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada
- Robarts Research Institute, London, N6A 5B7, Canada
| | - Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada
- Robarts Research Institute, London, N6A 5B7, Canada
| | | | - Gurneet Jassal
- Department of Physiology and Pharmacology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.
- Robarts Research Institute, London, N6A 5B7, Canada.
- Department of Physiology and Pharmacology, The University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
37
|
Hersey M, Tanda G. Modafinil, an atypical CNS stimulant? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:287-326. [PMID: 38467484 PMCID: PMC12004278 DOI: 10.1016/bs.apha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Modafinil is a central nervous system stimulant approved for the treatment of narcolepsy and sleep disorders. Due to its wide range of biochemical actions, modafinil has been explored for other potential therapeutic uses. Indeed, it has shown promise as a therapy for cognitive disfunction resulting from neurologic disorders like ADHD, and as a smart drug in non-medical settings. The mechanism(s) of actions underlying the therapeutic efficacy of this agent remains largely elusive. Modafinil is known to inhibit the dopamine transporter, thus decreasing dopamine reuptake following neuronal release, an effect shared by addictive psychostimulants. However, modafinil is unique in that only a few cases of dependence on this drug have been reported, as compared to other psychostimulants. Moreover, modafinil has been tested, with some success, as a potential therapeutic agent to combat psychostimulant and other substance use disorders. Modafinil has additional, but less understood, actions on other neurotransmitter systems (GABA, glutamate, serotonin, norepinephrine, etc.). These interactions, together with its ability to activate selected brain regions, are likely one of the keys to understand its unique pharmacology and therapeutic activity as a CNS stimulant. In this chapter, we outline the pharmacokinetics and pharmacodynamics of modafinil that suggest it has an "atypical" CNS stimulant profile. We also highlight the current approved and off label uses of modafinil, including its beneficial effects as a treatment for sleep disorders, cognitive functions, and substance use disorders.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States.
| |
Collapse
|
38
|
Khaledi F, Dehkordi HT, Zarean E, Shahrani M, Amini-Khoei H. Possible role of NO/NMDA pathway in the autistic-like behaviors induced by maternal separation stress in mice. PLoS One 2023; 18:e0292631. [PMID: 37815997 PMCID: PMC10564128 DOI: 10.1371/journal.pone.0292631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Maternal separation (MS) stress is an established model of early-life stress associated with autistic-like behaviors. Altered glutamatergic and nitrergic neurotransmissions may contribute to the pathophysiology of ASD. However, the specific mechanisms underlying these alterations and their relationship to MS-induced autistic-like behaviors remain unclear. Addressing this knowledge gap, this study aims to elucidate the involvement of the nitric oxide (NO)/ N-methyl-D-aspartate (NMDA) pathway in MS-induced autistic-like behaviors in mice. This knowledge has the potential to guide future research, potentially leading to the development of targeted interventions or treatments aimed at modulating the NO/NMDA pathway to ameliorate ASD symptoms. Ninety male Naval Medical Research Institute (NMRI) mice were assigned to six groups (n = 15) comprising a control group (treated with saline) and five groups subjected to MS and treated with saline, ketamine, NMDA, L-NAME, and L-arginine. Behavioral tests were conducted, including the three-chamber test, shuttle box, elevated plus-maze, and marble burying test. Gene expression of iNOS, nNOS, and NMDA-R subunits (NR2A and NR2B), along with nitrite levels, was evaluated in the hippocampus. The findings demonstrated that MS induced autistic-like behaviors, accompanied by increased gene expression of iNOS, nNOS, NR2B, NR2A, and elevated nitrite levels in the hippocampus. Modulation of the NO/NMDA pathway with activators and inhibitors altered the effects of MS. These results suggest that the NO/NMDA pathway plays a role in mediating the negative effects of MS and potentially contributes to the development of autistic-like behaviors in maternally separated mice.
Collapse
Affiliation(s)
- Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Zarean
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
39
|
Bartsch CJ, Aaflaq S, Jacobs JT, Smith M, Summa F, Skinner S, Qasem E, Thompson R, Li Z, Nordman JC. A single dose of ketamine enhances early life stress-induced aggression with no effect on fear memory, anxiety-like behavior, or depression-like behavior in mice. Behav Neurosci 2023; 137:281-288. [PMID: 37326523 PMCID: PMC10694802 DOI: 10.1037/bne0000560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ketamine is a dissociative anesthetic that has been shown to have antidepressant effects in humans and has been proposed as a potential treatment for mood disorders such as posttraumatic stress disorder and aggression. However, previous studies from our lab and others have demonstrated that ketamine's effects are highly context- and dose-dependent. In a recent study, we found that 10 mg/kg ketamine could exacerbate the effects of early life stress on excessive aggression in mice. To further investigate, the effect of ketamine on moods, such as fear, anxiety, depression, and aggression, we used a mouse model of early life stress, involving chronic social isolation followed by acute traumatic stress in the form of noncontingent, unpredictable foot shock during adolescence. We find this is necessary to induce long-lasting excessive aggression in a novel environment. Seven- to eight-week-old socially isolated mice were given IP injections of 10 mg/kg ketamine 30 min before being subjected to foot shock and then assessed 7 days later for changes in sociability, aggression, mobility, anxiety-like behavior, and depression-like behavior. The results show that ketamine selectively increases long-lasting aggression in mice exposed to foot shock, but does not affect mood-related behaviors or locomotion. These findings suggest that during early life stress, ketamine may exert its effects by specifically targeting aggression brain circuitry that is distinct from brain circuits responsible for nonaggressive social or emotional behaviors. Therefore, while ketamine may be a promising treatment for various mood disorders, caution should be exercised when using ketamine to treat disorders associated with early life stress. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Caitlyn J Bartsch
- Department of Physiology, Southern Illinois University School of Medicine
| | - Sophia Aaflaq
- Department of Physiology, Southern Illinois University School of Medicine
| | - Jessica T Jacobs
- Department of Physiology, Southern Illinois University School of Medicine
| | - Molly Smith
- Department of Physiology, Southern Illinois University School of Medicine
| | - Fletcher Summa
- Department of Physiology, Southern Illinois University School of Medicine
| | - Savannah Skinner
- Department of Physiology, Southern Illinois University School of Medicine
| | - Elana Qasem
- Department of Physiology, Southern Illinois University School of Medicine
| | - Rylee Thompson
- Department of Physiology, Southern Illinois University School of Medicine
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health
| | - Jacob C Nordman
- Department of Physiology, Southern Illinois University School of Medicine
| |
Collapse
|
40
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
41
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
43
|
Phoraksa O, Chimkerd C, Thiyajai P, Judprasong K, Tuntipopipat S, Tencomnao T, Charoenkiatkul S, Muangnoi C, Sukprasansap M. Neuroprotective Effects of Albizia lebbeck (L.) Benth. Leaf Extract against Glutamate-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Microglial Cells. Pharmaceuticals (Basel) 2023; 16:989. [PMID: 37513900 PMCID: PMC10384906 DOI: 10.3390/ph16070989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress caused by excessive glutamate in the central nervous system leads to neurodegeneration. Albizia lebbeck (L.) Benth. has been reported to possess neuroprotective properties. We aimed to investigate the effect and mechanism of A. lebbeck leaf extracts on glutamate-induced neurotoxicity and apoptosis linked to ER stress using human microglial HMC3 cells. A. lebbeck leaves were extracted using hexane (AHE), mixed solvents, and ethanol. Each different extract was evaluated for cytotoxic effects on HMC3 cells, and then non-cytotoxic concentrations of the extracts were pretreated with the cells, followed by glutamate. Our results showed that AHE treatment exhibited the highest protective effect and was thus selected for finding the mechanistic approach. AHE inhibited the specific ER stress proteins (calpain1 and caspase-12). AHE also suppressed the apoptotic proteins (Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3); however, it also increased the antiapoptotic Bcl-2 protein. Remarkably, AHE increased cellular antioxidant activities (SOD, CAT, and GPx). To support the activation of antioxidant defense and inhibition of apoptosis in our HMC3 cell model, the bioactive phytochemicals within AHE were identified by HPLC analysis. We found that AHE had high levels of carotenoids (α-carotene, β-carotene, and lutein) and flavonoids (quercetin, luteolin, and kaempferol). Our novel findings indicate that AHE can inhibit glutamate-induced neurotoxicity via ER stress and apoptosis signaling pathways by activating cellular antioxidant enzymes in HMC3 cells, suggesting a potential mechanism for neuroprotection. As such, A. lebbeck leaf might potentially represent a promising source and novel alternative approach for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Onuma Phoraksa
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Chanika Chimkerd
- Center of Analysis for Product Quality (Natural Products Division), Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Parunya Thiyajai
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Kunchit Judprasong
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Siriporn Tuntipopipat
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsri Charoenkiatkul
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
44
|
Molina-Salinas G, Langley E, Cerbon M. Prolactin-induced neuroprotection against excitotoxicity is mediated via PI3K/AKT and GSK3β/NF-κB in primary cultures of hippocampal neurons. Peptides 2023; 166:171037. [PMID: 37301481 DOI: 10.1016/j.peptides.2023.171037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Prolactin (PRL) is a polypeptide hormone that has been reported to play a significant role in neuroprotection against neuronal excitotoxicity produced by glutamate (Glu) or kainic acid (KA) in both, in vitro and in vivo models. However, the molecular mechanisms involved in PRL's neuroprotective effects in the hippocampus have not been completely elucidated. The aim of the present study was to assess the signaling pathways involved in PRL neuroprotection against excitotoxicity. Primary rat hippocampal neuronal cell cultures were used to assess PRL-induced signaling pathway activation. The effects of PRL on neuronal viability, as well as its effects on activation of key regulatory pathways, phosphoinositide 3-kinases/Protein Kinase B (PI3K/AKT) and glycogen synthase kinase 3β / nuclear factor kappa B (GSK3β/NF-κB), were evaluated under conditions of Glutamate-induced excitotoxicity. Additionally, the effect on downstream regulated genes such as Bcl-2 and Nrf2, was assessed. Here, we show that the PI3K/AKT signaling pathway is activated by PRL treatment during excitotoxicity, promoting neuronal survival through upregulation of active AKT and GSK3β/NF-κB, resulting in induction of Bcl-2 and Nrf2 gene expression. Inhibition of the PI3K/AKT signaling pathway abrogated the protective effect of PRL against Glu-induced neuronal death. Overall, results indicate that the neuroprotective actions of PRL are mediated in part, by the activation of the AKT pathway and survival genes. Our data support the idea that PRL could be useful as a potential neuroprotective agent in different neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- G Molina-Salinas
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - E Langley
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, CDMX, México 14080, Mexico
| | - M Cerbon
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| |
Collapse
|
45
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
46
|
Das TK, Ganesh BP, Fatima-Shad K. Common Signaling Pathways Involved in Alzheimer's Disease and Stroke: Two Faces of the Same Coin. J Alzheimers Dis Rep 2023; 7:381-398. [PMID: 37220617 PMCID: PMC10200243 DOI: 10.3233/adr-220108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) and stroke are two interrelated neurodegenerative disorders which are the leading cause of death and affect the neurons in the brain and central nervous system. Although amyloid-β aggregation, tau hyperphosphorylation, and inflammation are the hallmarks of AD, the exact cause and origin of AD are still undefined. Recent enormous fundamental discoveries suggest that the amyloid hypothesis of AD has not been proven and anti-amyloid therapies that remove amyloid deposition have not yet slowed cognitive decline. However, stroke, mainly ischemic stroke (IS), is caused by an interruption in the cerebral blood flow. Significant features of both disorders are the disruption of neuronal circuitry at different levels of cellular signaling, leading to the death of neurons and glial cells in the brain. Therefore, it is necessary to find out the common molecular mechanisms of these two diseases to understand their etiological connections. Here, we summarized the most common signaling cascades including autotoxicity, ApoE4, insulin signaling, inflammation, mTOR-autophagy, notch signaling, and microbiota-gut-brain axis, present in both AD and IS. These targeted signaling pathways reveal a better understanding of AD and IS and could provide a distinguished platform to develop improved therapeutics for these diseases.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kaneez Fatima-Shad
- School of Life Sciences, University of Technology Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, NSW, Australia
| |
Collapse
|
47
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
48
|
van den Oord EJCG, Xie LY, Zhao M, Campbell TL, Turecki G, Kähler AK, Dean B, Mors O, Hultman CM, Staunstrup NH, Aberg KA. Genes implicated by a methylome-wide schizophrenia study in neonatal blood show differential expression in adult brain samples. Mol Psychiatry 2023; 28:2088-2094. [PMID: 37106120 DOI: 10.1038/s41380-023-02080-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Schizophrenia is a disabling disorder involving genetic predisposition in combination with environmental influences that likely act via dynamic alterations of the epigenome and the transcriptome but its detailed pathophysiology is largely unknown. We performed cell-type specific methylome-wide association study of neonatal blood (N = 333) from individuals who later in life developed schizophrenia and controls. Suggestively significant associations (P < 1.0 × 10-6) were detected in all cell-types and in whole blood with methylome-wide significant associations in monocytes (P = 2.85 × 10-9-4.87 × 10-9), natural killer cells (P = 1.72 × 10-9-7.82 × 10-9) and B cells (P = 3.8 × 10-9). Validation of methylation findings in post-mortem brains (N = 596) from independent schizophrenia cases and controls showed significant enrichment of transcriptional differences (enrichment ratio = 1.98-3.23, P = 2.3 × 10-3-1.0 × 10-5), with specific highly significant differential expression for, for example, BDNF (t = -6.11, P = 1.90 × 10-9). In addition, expression difference in brain significantly predicted schizophrenia (multiple correlation = 0.15-0.22, P = 3.6 × 10-4-4.5 × 10-8). In summary, using a unique design combining pre-disease onset (neonatal) blood methylomic data and post-disease onset (post-mortem) brain transcriptional data, we have identified genes of likely functional relevance that are associated with schizophrenia susceptibility, rather than confounding disease associated artifacts. The identified loci may be of clinical value as a methylation-based biomarker for early detection of increased schizophrenia susceptibility.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas L Campbell
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Risskov, Denmark
- Center for Genomics and Personalized Medicine, University of Aarhus, Aarhus, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicklas H Staunstrup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, University of Aarhus, Aarhus, Denmark
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
49
|
ALNasser MN, AlSaadi AM, Whitby A, Kim DH, Mellor IR, Carter WG. Acai Berry ( Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress. Life (Basel) 2023; 13:life13041019. [PMID: 37109548 PMCID: PMC10144606 DOI: 10.3390/life13041019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aberrant accumulation of the neurotransmitter L-glutamate (L-Glu) has been implicated as a mechanism of neurodegeneration, and the release of L-Glu after stroke onset leads to a toxicity cascade that results in neuronal death. The acai berry (Euterpe oleracea) is a potential dietary nutraceutical. The aim of this research was to investigate the neuroprotective effects of acai berry aqueous and ethanolic extracts to reduce the neurotoxicity to neuronal cells triggered by L-Glu application. L-Glu and acai berry effects on cell viability were quantified using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and effects on cellular bioenergetics were assessed via quantitation of the levels of cellular ATP, mitochondrial membrane potential (MMP), and production of reactive oxygen species (ROS) in neuroblastoma cells. Cell viability was also evaluated in human cortical neuronal progenitor cell culture after L-Glu or/and acai berry application. In isolated cells, activated currents using patch-clamping were employed to determine whether L-Glu neurotoxicity was mediated by ionotropic L-Glu-receptors (iGluRs). L-Glu caused a significant reduction in cell viability, ATP, and MMP levels and increased ROS production. The co-application of both acai berry extracts with L-Glu provided neuroprotection against L-Glu with sustained cell viability, decreased LDH production, restored ATP and MMP levels, and reduced ROS levels. Whole-cell patch-clamp recordings showed that L-Glu toxicity is not mediated by the activation of iGluRs in neuroblastoma cells. Fractionation and analysis of acai berry extracts with liquid chromatography-mass spectrometry identified several phytochemical antioxidants that may have provided neuroprotective effects. In summary, the acai berry contains nutraceuticals with antioxidant activity that may be a beneficial dietary component to limit pathological deficits triggered by excessive L-Glu accumulations.
Collapse
Affiliation(s)
- Maryam N ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ayman M AlSaadi
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Alison Whitby
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian R Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wayne G Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
50
|
Li Y, Yue X, Wang S, Li P, Zhang M, Song K, Huang X, Li Z. Protective Effect of Trillium tschonoskii Maxim Components Against Glutamate-Induced SH-SY5Y Cells Damage Through Regulating Apoptosis. Dose Response 2023; 21:15593258231169585. [PMID: 37283817 PMCID: PMC10240882 DOI: 10.1177/15593258231169585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/27/2023] [Indexed: 06/08/2023] Open
Abstract
Context Among the Tujia people, the root or rhizome of Trillium tschonoskii Maxim.in Bull.Acad (TTM) is considered a miraculous herb for headaches. Previous studies have shown ethyl acetate extract (TTM1) can protect SH-SY5Y cells against glutamate injury. Objective This study clarified TTM1's mechanism against glutamate-induced cell damage, focusing on the regulation of apoptosis. The compounds were separated, identified, and performed molecular docking with pro-apoptotic proteins. Materials and Methods SH-SY5Y cells were treated with glutamate (2 mM) for 12 hour, and the effect of TTM1 (2.5, 5, 10, and 20 μg/mL) was evaluated with MTT and LDH release assays, taking EGb761(40 μg/mL) as a control. Cell apoptosis was detected with Hoechst 33258 and Annexin V-FITC and measurements of intracellular calcium and caspase-3. The major components were separated and identified by LCMS-IT-TOF and NMR, then the proapoptotic activity of TTM1 was confirmed by molecular docking method. Results TTM1 protected SH-SY5Y cells by resisting apoptosis, TTM1 (10 and 20 μg/mL) decreased apoptotic bodies and nuclear fragments, increased the proportion of normal cells to 68.38 ± 5.63% and 92.80 ± .88%, decreased VA cells to 4.30 ± .76% and 3.58 ± .45% and caspase-3 to .365 ± .034 and .344 ± .047 ng/mL.TTM1 (10 μg/mL) decreased intracellular free calcium to 2.77 ± .40. Polyphyllin VI and pennogenin 3-O-β-chacotrioside were identified in TTM1 at 15.04% and 2.84%, and had potential anti-apoptosis activities. Discussion and Conclusions Folk records of TTM for headache may be related to its anti-apoptosis of nerve cells. Identification and content determination of index components based on effective extract provides research paradigms for rare and endangered ethnic plants.
Collapse
Affiliation(s)
- Yanwen Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingnan Yue
- Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Shuo Wang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Pengyue Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Man Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Kuokui Song
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiulan Huang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|