1
|
Razzaq A, Disoma C, Iqbal S, Nisar A, Hameed M, Qadeer A, Waqar M, Mehmood SA, Gao L, Khan S, Xia Z. Genomic epidemiology and evolutionary dynamics of the Omicron variant of SARS-CoV-2 during the fifth wave of COVID-19 in Pakistan. Front Cell Infect Microbiol 2024; 14:1484637. [PMID: 39502171 PMCID: PMC11534695 DOI: 10.3389/fcimb.2024.1484637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus's rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan. Methods A total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis. Results Using a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway. Conclusions This study provides a comprehensive overview of Omicron's genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sonia Iqbal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Muddassar Hameed
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Waqar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | - Lidong Gao
- Hunan Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024; 61:609-620. [PMID: 38323378 DOI: 10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska-Lincoln, Lincoln, NE
| | - Jana M Ritter
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai'i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
3
|
Sultana A, Geethakumari AM, Islam Z, Kolatkar PR, Biswas KH. BRET-based biosensors for SARS-CoV-2 oligonucleotide detection. Front Bioeng Biotechnol 2024; 12:1353479. [PMID: 38887615 PMCID: PMC11181354 DOI: 10.3389/fbioe.2024.1353479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The need for the early detection of emerging pathogenic viruses and their newer variants has driven the urgent demand for developing point-of-care diagnostic tools. Although nucleic acid-based methods such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and loop-mediated isothermal amplification (LAMP) have been developed, a more facile and robust platform is still required. To address this need, as a proof-of-principle study, we engineered a prototype-the versatile, sensitive, rapid, and cost-effective bioluminescence resonance energy transfer (BRET)-based biosensor for oligonucleotide detection (BioOD). Specifically, we designed BioODs against the SARS-CoV-2 parental (Wuhan strain) and B.1.617.2 Delta variant through the conjugation of specific, fluorescently modified molecular beacons (sensor module) through a complementary oligonucleotide handle DNA functionalized with the NanoLuc (NLuc) luciferase protein such that the dissolution of the molecular beacon loop upon the binding of the viral oligonucleotide will result in a decrease in BRET efficiency and, thus, a change in the bioluminescence spectra. Following the assembly of the BioODs, we determined their kinetics response, affinity for variant-specific oligonucleotides, and specificity, and found them to be rapid and highly specific. Furthermore, the decrease in BRET efficiency of the BioODs in the presence of viral oligonucleotides can be detected as a change in color in cell phone camera images. We envisage that the BioODs developed here will find application in detecting viral infections with variant specificity in a point-of-care-testing format, thus aiding in large-scale viral infection surveillance.
Collapse
Affiliation(s)
- Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Leite G, Mehravar S, Pimentel M, Mathur R, Melmed GY, Teagle V, Barlow GM, Rezaie A. Extracellular and intracellular antiviral effects of ultraviolet A against severe acute respiratory syndrome coronavirus-2 are variant-independent. Photodiagnosis Photodyn Ther 2024; 47:104097. [PMID: 38677499 DOI: 10.1016/j.pdpdt.2024.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Under controlled settings, narrow-band ultraviolet A (UVA) exposure exerts antiviral effects both in vivo and in vitro. The effect is thought to be mediated via direct effect on viral particles and indirectly, by modulation of metabolic pathways of host cells. We aimed to explore the extracellular and intracellular antiviral effects of UVA exposure against Alpha, Beta, and Delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Vero E6 kidney normal epithelial cells and human tracheal epithelial cells were infected with Alpha, Beta, and Delta variants in a BSL-3 laboratory. To assess extracellular effects, SARS-CoV-2 variants were directly exposed to a single dose of UVA prior to infection of the host cells (Vero E6 kidney normal epithelial cells and human tracheal epithelial cells) The intracellular effects of UVA were assessed by first infecting the cells with SARS-CoV-2 variants followed by UVA treatment of infected cell monolayers. Efficacy was quantified by both plaque reduction assay and quantitative real-time polymerase chain reaction. Additionally, transcriptomic analysis was performed on exposed Vero E6 cells to assess differentially expressed genes and canonical pathways as compared to controls. RESULTS SARS-CoV-2 Alpha, Beta and Delta variants are susceptible to UVA exposure prior to infection of Vero E6 cells. Importantly, the UVA-driven reduction in Delta variant load could be reproduced in human primary tracheal cells. Beta and Delta variants load also significantly decreased during Vero E6 cells intracellular experiments. UVA-driven reductions in viral loads ameliorate several host metabolic pathways, including canonical pathways related to viral infection and interferon signaling. CONCLUSION Narrow-band UVA exhibits both extracellular effects on SARS-CoV-2 viral particles and intracellular effects on infected cells with SARS-CoV-2. Efficacy appears to be variant independent.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Gil Y Melmed
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Volha Teagle
- Eurofins Biopharma Product Testing, Lancaster, PA, United States
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Van Nam L, Dien TC, Bang LVN, Thach PN, Van Duyet L. Genetic features of SARS-CoV-2 Alpha, Delta, and Omicron variants and their association with the clinical severity of COVID-19 in Vietnam. IJID REGIONS 2024; 11:100348. [PMID: 38601946 PMCID: PMC11004080 DOI: 10.1016/j.ijregi.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Objectives We investigated the genetic variations in the Alpha, Delta, and Omicron variants of SARS-CoV-2 and their association with clinical status and treatment outcomes in patients with COVID-19. Methods MiSeq was used to sequence the Alpha, Delta, and Omicron genomes, and MEGA 6.6 was used to define the nucleotide variations. We determined the association between clinical severity and treatment outcomes for the SARS-CoV-2 variants. Results The BA.1.1 and BA.2 lineages of the Omicron variant had 57-59 mutations, which is 2-2.7-fold higher than that of the B.1.1.7 (Alpha), B.1.617.2, and AY.57 (Delta) lineages. We found distinct mutations in SARS-CoV-2: five in Alpha (C26305T, G26558T, G7042T, C14120T, and C27509T); seven in Delta (C26408T, C1403T, C5184T, C9891T, T11418C, C11514T, and C22227T); and three in Omicron (C26408T, C8991T, and C25810T). Patients with the Delta variant had a severe rate of 23.8%, a critical rate of 53.7%, and a mortality rate of 38.9%, which were significantly higher than those with the Omicron and Alpha variants. Conclusions The Alpha, Delta, and Omicron variants in this study had genetic diversity and differed from the strains reported in other countries, with the Delta variant producing significantly more clinical severity and mortality than the Alpha and Omicron variants.
Collapse
Affiliation(s)
- Le Van Nam
- Departments of Infectious Disease, Military Hospital, Hanoi, Vietnam
| | - Trinh Cong Dien
- Departments of Infectious Disease, Military Hospital, Hanoi, Vietnam
| | | | - Pham Ngoc Thach
- Micobiology and Molecular Biology Department, National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Le Van Duyet
- Micobiology and Molecular Biology Department, National Hospital for Tropical Diseases, Hanoi, Vietnam
| |
Collapse
|
6
|
Ayubov MS, Mirzakhmedov MK, Yusupov AN, Asrorov AM, Nosirov BV, Usmanov DE, Shermatov SE, Ubaydullaeva KA, Abdukarimov A, Buriev ZT, Abdurakhmonov IY. Most accurate mutations in SARS-CoV-2 genomes identified in Uzbek patients show novel amino acid changes. Front Med (Lausanne) 2024; 11:1401655. [PMID: 38882660 PMCID: PMC11176497 DOI: 10.3389/fmed.2024.1401655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose The rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field. Design We meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings. Methods Our study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. Results Our study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus. Conclusion The comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic's second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Mirzakamol S Ayubov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | | | - Abdurakhmon N Yusupov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Akmal M Asrorov
- Department of Chemistry for Natural Substances, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | - Dilshod E Usmanov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Shukhrat E Shermatov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Khurshida A Ubaydullaeva
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Zabardast T Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Ibrokhim Y Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| |
Collapse
|
7
|
Bae KH, Shunmuganathan B, Zhang L, Lim A, Gupta R, Wang Y, Chua BL, Wang Y, Gu Y, Qian X, Tan ISL, Purushotorman K, MacAry PA, White KP, Yang YY. Durable cross-protective neutralizing antibody responses elicited by lipid nanoparticle-formulated SARS-CoV-2 mRNA vaccines. NPJ Vaccines 2024; 9:43. [PMID: 38396073 PMCID: PMC10891077 DOI: 10.1038/s41541-024-00835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Bhuvaneshwari Shunmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Li Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Andrew Lim
- Provaxus, Inc, Dover, Delaware, 19901, USA
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Yanming Wang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Boon Lin Chua
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Yang Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Republic of Singapore
| | - Yue Gu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Xinlei Qian
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Isabelle Siang Ling Tan
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Kiren Purushotorman
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore.
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore.
| | - Kevin P White
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Republic of Singapore.
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Republic of Singapore.
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
8
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024. [DOI: https:/doi.org/10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Between September and November 2021, 5 snow leopards ( Panthera uncia) and 1 lion ( Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska–Lincoln, Lincoln, NE
| | | | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai‘i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R. Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
9
|
Liu K, Zhang YZ, Yin H, Yu LL, Cui JJ, Yin JY, Luo CH, Guo CX. Identification of SARS-CoV-2 m6A modification sites correlate with viral pathogenicity. Microbes Infect 2024; 26:105228. [PMID: 37734532 DOI: 10.1016/j.micinf.2023.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
It has recently been found that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) m6A modifications can affect viral replication and function. However, no studies to date have shown a correlation between SARS-CoV-2 m6A modifications and viral pathogenicity. In this study, we analyzed m6A modification in 2,190,667 SARS-CoV-2 genomic RNAs. m6A modifications of SARS-CoV-2 from different lineages, causing mild or severe COVID-19 and showing breakthrough for different vaccines were analyzed to explore correlations with viral pathogenicity. The results suggested that the presence of more m6A modifications in the SARS-CoV-2 N region (positive strand) correlates with weaker pathogenicity. In addition, we identified three m6A modification sites correlating with weak pathogenicity (924 in ORF1ab, 15,659 in ORF1ab, 28,288 in N, 28,633 in N and 29,385 in N, 29,707 in 3'UTR) and one with strong pathogenicity (74 in 5'UTR). These results provide new information for understanding the prevalence of SARS-CoV-2 and controlling the virus.
Collapse
Affiliation(s)
- Ke Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, China; National Clinical Research Center for Geriatric Disorders, China
| | - Ying-Zi Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, China; National Clinical Research Center for Geriatric Disorders, China
| | - Hui Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, China; National Clinical Research Center for Geriatric Disorders, China; Department of Pharmacy, The Central Hospital of Shaoyang, Shaoyang, China
| | - Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, China; National Clinical Research Center for Geriatric Disorders, China; Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jia-Jia Cui
- National Clinical Research Center for Geriatric Disorders, China; Department of Geriatric Surgery, Xiangya Hospital, Central South University, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, China; National Clinical Research Center for Geriatric Disorders, China; Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, China
| | - Chen-Hui Luo
- Scientific Research Office, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, China.
| |
Collapse
|
10
|
Ahmad T, Abdullah M, Mueed A, Sultan F, Khan A, Khan AA. COVID-19 in Pakistan: A national analysis of five pandemic waves. PLoS One 2023; 18:e0281326. [PMID: 38157382 PMCID: PMC10756537 DOI: 10.1371/journal.pone.0281326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES The COVID-19 pandemic showed distinct waves where cases ebbed and flowed. While each country had slight, nuanced differences, lessons from each wave with country-specific details provides important lessons for prevention, understanding medical outcomes and the role of vaccines. This paper compares key characteristics from the five different COVID-19 waves in Pakistan. METHODS Data was sourced from daily national situation reports (Sitreps) prepared by the National Emergency Operations Centre (NEOC) in Islamabad. We use specific criteria to define COVID-19 waves. The start of each COVID-19 wave is marked by the day of the lowest number of daily cases preceding a sustained increase, while the end is the day with the lowest number of cases following a 7-days decline, which should be lower than the 7 days following it. Key variables such as COVID-19 tests, cases, and deaths with their rates of change to the peak and then to the trough are used to draw descriptive comparisons. Additionally, a linear regression model estimates daily new COVID-19 deaths in Pakistan. RESULTS Pakistan saw five distinct waves, each of which displayed the typical topology of a complete infectious disease epidemic. The time from wave-start to peak became progressively shorter, and from wave-peak to trough, progressively longer. Each wave appears to also be getting shorter, except for wave 4, which lasted longer than wave 3. A one percent increase in vaccinations decreased deaths by 0.38% (95% CI: -0.67, -0.08) in wave 5 and the association is statistically significant. CONCLUSION Each wave displayed distinct characteristics that must be interpreted in the context of the level of response and the variant driving the epidemic. Key indicators suggest that COVID-19 preventive measures kept pace with the disease. Waves 1 and 2 were mainly about prevention and learning how to clinically manage patients. Vaccination started late during wave 3 and its impact on hospitalizations and deaths became visible in wave 5. The impact of highly virulent strains Alpha/B.1.1.7 and Delta/B.1.617.2 variants during wave 3 and milder but more infectious Omicron/B.1.1.529 during wave 5 are apparent.
Collapse
Affiliation(s)
- Taimoor Ahmad
- Research and Development Solutions, Islamabad, Pakistan
| | | | - Abdul Mueed
- Research and Development Solutions, Islamabad, Pakistan
| | - Faisal Sultan
- Ministry of National Health Services, Regulation and Coordination, Islamabad, Pakistan
- Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Ayesha Khan
- Akhter Hameed Khan Foundation, Islamabad, Pakistan
| | - Adnan Ahmad Khan
- Research and Development Solutions, Islamabad, Pakistan
- Ministry of National Health Services, Regulation and Coordination, Islamabad, Pakistan
| |
Collapse
|
11
|
Fokam J, Essomba RG, Njouom R, Okomo MCA, Eyangoh S, Godwe C, Tegomoh B, Otshudiema JO, Nwobegahay J, Ndip L, Akenji B, Takou D, Moctar MMM, Mbah CK, Ndze VN, Maidadi-Foudi M, Kouanfack C, Tonmeu S, Ngono D, Nkengasong J, Ndembi N, Bissek ACZK, Mouangue C, Ndongo CB, Epée E, Mandeng N, Kamso Belinga S, Ayouba A, Fernandez N, Tongo M, Colizzi V, Halle-Ekane GE, Perno CF, Ndjolo A, Ndongmo CB, Shang J, Esso L, de-Tulio O, Diagne MM, Boum Y, Mballa GAE, Njock LR. Genomic surveillance of SARS-CoV-2 reveals highest severity and mortality of delta over other variants: evidence from Cameroon. Sci Rep 2023; 13:21654. [PMID: 38066020 PMCID: PMC10709425 DOI: 10.1038/s41598-023-48773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
While the SARS-CoV-2 dynamic has been described globally, there is a lack of data from Sub-Saharan Africa. We herein report the dynamics of SARS-CoV-2 lineages from March 2020 to March 2022 in Cameroon. Of the 760 whole-genome sequences successfully generated by the national genomic surveillance network, 74% were viral sub-lineages of origin and non-variants of concern, 15% Delta, 6% Omicron, 3% Alpha and 2% Beta variants. The pandemic was driven by SARS-CoV-2 lineages of origin in wave 1 (16 weeks, 2.3% CFR), the Alpha and Beta variants in wave 2 (21 weeks, 1.6% CFR), Delta variants in wave 3 (11 weeks, 2.0% CFR), and omicron variants in wave 4 (8 weeks, 0.73% CFR), with a declining trend over time (p = 0.01208). Even though SARS-CoV-2 heterogeneity did not seemingly contribute to the breadth of transmission, the viral lineages of origin and especially the Delta variants appeared as drivers of COVID-19 severity in Cameroon.
Collapse
Affiliation(s)
- Joseph Fokam
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon.
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon.
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.
- Faculty of Health Sciences (FHS), University of Buea, Buea, Cameroon.
| | - Rene Ghislain Essomba
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
| | - Richard Njouom
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon
- Centre Pasteur du Cameroun (CPC), Yaoundé, Cameroon
| | - Marie-Claire A Okomo
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
| | - Sara Eyangoh
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon
- Centre Pasteur du Cameroun (CPC), Yaoundé, Cameroon
| | - Celestin Godwe
- Centre de Recherche en Maladies Emergentes et Re-emergentes (CREMER), Yaounde, Cameroon
| | - Bryan Tegomoh
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - John O Otshudiema
- World Health Organization (WHO), Cameroon Country Office, Yaounde, Cameroon
| | - Julius Nwobegahay
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon
- Centre de Recherche Pour la Santé des Armées (CRESAR), Ministry of Defence, Yaoundé, Cameroon
| | - Lucy Ndip
- Faculty of Health Sciences (FHS), University of Buea, Buea, Cameroon
| | - Blaise Akenji
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
| | - Desire Takou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Mohamed M M Moctar
- USAID's Infectious Diseases Detection and Surveillance, Yaounde, Cameroon
| | | | - Valantine Ngum Ndze
- Faculty of Health Sciences (FHS), University of Buea, Buea, Cameroon
- African Society for Laboratory Medicine (ASLM), Yaounde, Cameroon
| | - Martin Maidadi-Foudi
- Centre de Recherche en Maladies Emergentes et Re-emergentes (CREMER), Yaounde, Cameroon
| | - Charles Kouanfack
- Centre de Recherche en Maladies Emergentes et Re-emergentes (CREMER), Yaounde, Cameroon
| | - Sandrine Tonmeu
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
| | - Dorine Ngono
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - John Nkengasong
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis-Ababa, Ethiopia
| | - Nicaise Ndembi
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis-Ababa, Ethiopia
| | - Anne-Cecile Z K Bissek
- Faculty of Health Sciences (FHS), University of Buea, Buea, Cameroon
- Division for Operational Health Research (DROS), Ministry of Public Health, Yaoundé, Cameroon
| | - Christian Mouangue
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
| | - Chanceline B Ndongo
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Douala, Douala, Cameroon
| | - Emilienne Epée
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
| | - Nadia Mandeng
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
- Faculty of Health Sciences (FHS), University of Bamenda, Bamenda, Cameroon
| | - Sandrine Kamso Belinga
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
| | - Ahidjo Ayouba
- Institut de Recherche Pour le Developpement (IRD), Montpellier, France
| | - Nicolas Fernandez
- Institut de Recherche Pour le Developpement (IRD), Montpellier, France
| | - Marcel Tongo
- Centre de Recherche en Maladies Emergentes et Re-emergentes (CREMER), Yaounde, Cameroon
| | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
- Chair of UNESCO Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | | | - Carlo-Federico Perno
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
- Bambino Gesu Pediatric Hospital, Rome, Italy
| | - Alexis Ndjolo
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
| | - Clement B Ndongmo
- US Centres for Disease Control and Prevention (CDC), Cameroon Country Office, Yaounde, Cameroon
| | - Judith Shang
- US Centres for Disease Control and Prevention (CDC), Cameroon Country Office, Yaounde, Cameroon.
| | - Linda Esso
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
| | - Oliviera de-Tulio
- University of KwaZulu-Natal and Stellenbosch University, Stellenbosch, South Africa
| | | | - Yap Boum
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
- Epicentre, Medecins Sans Frontières (MSF), Yaounde, Cameroon
| | - Georges A E Mballa
- National Public Health Emergencies Operations Coordination Centre (NPHEOCC), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
- Department of Disease, Epidemic and Pandemic Control (DLMEP), Ministry of Public Health, Yaounde, Cameroon
| | - Louis R Njock
- COVID-19 Genomic Surveillance Platform (PSG), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaounde I, Yaounde, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Douala, Douala, Cameroon
- General Secretariat, Ministry of Public Health, Yaounde, Cameroon
| |
Collapse
|
12
|
Dorji T, Dorji K, Wangchuk T, Pelki T, Gyeltshen S. Genetic diversity and evolutionary patterns of SARS-CoV-2 among the Bhutanese population during the pandemic. Osong Public Health Res Perspect 2023; 14:494-507. [PMID: 38204428 PMCID: PMC10788421 DOI: 10.24171/j.phrp.2023.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by a dynamic virus, has had a profound global impact. Despite declining global COVID-19 cases and mortality rates, the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a major concern. This study provides a comprehensive analysis of the genomic sequences of SARS-CoV-2 within the Bhutanese population during the pandemic. The primary aim was to elucidate the molecular epidemiology and evolutionary patterns of SARS-CoV-2 in Bhutan, with a particular focus on genetic variations and lineage dynamics. METHODS Whole-genome sequences of SARS-CoV-2 collected from Bhutan between May 2020 and February 2023 (n=135) were retrieved from the Global Initiative on Sharing All Influenza Database. RESULTS The SARS-CoV-2 variants in Bhutan were predominantly classified within the Nextstrain clade 20A (31.1%), followed by clade 21L (20%) and clade 22D (15.6%). We identified 26 Pangolin lineages with variations in their spatial and temporal distribution. Bayesian time-scaled phylogenetic analysis estimated the time to the most recent common ancestor as February 15, 2020, with a substitution rate of 0.97×10-3 substitutions per site per year. Notably, the spike glycoprotein displayed the highest mutation frequency among major viral proteins, with 116 distinct mutations, including D614G. The Bhutanese isolates also featured mutations such as E484K, K417N, and S477N in the spike protein, which have implications for altered viral properties. CONCLUSION This is the first study to describe the genetic diversity of SARS-CoV-2 circulating in Bhutan during the pandemic, and this data can inform public health policies and strategies for preventing future outbreaks in Bhutan.
Collapse
Affiliation(s)
- Tshering Dorji
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Kunzang Dorji
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Tandin Wangchuk
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Tshering Pelki
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Sonam Gyeltshen
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| |
Collapse
|
13
|
Pillay A, Yeola A, Tea F, Denkova M, Houston S, Burrell R, Merheb V, Lee FXZ, Lopez JA, Moran L, Jadhav A, Sterling K, Lai CL, Vitagliano TL, Aggarwal A, Catchpoole D, Wood N, Phan TG, Nanan R, Hsu P, Turville SG, Britton PN, Brilot F. Infection and Vaccine Induced Spike Antibody Responses Against SARS-CoV-2 Variants of Concern in COVID-19-Naïve Children and Adults. J Clin Immunol 2023; 43:1706-1723. [PMID: 37405544 PMCID: PMC10661752 DOI: 10.1007/s10875-023-01540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Although a more efficient adaptive humoral immune response has been proposed to underlie the usually favorable outcome of pediatric COVID-19, the breadth of viral and vaccine cross-reactivity toward the ever-mutating Spike protein among variants of concern (VOCs) has not yet been compared between children and adults. We assessed antibodies to conformational Spike in COVID-19-naïve children and adults vaccinated by BNT162b2 and ChAdOx1, and naturally infected with SARS-CoV-2 Early Clade, Delta, and Omicron. Sera were analyzed against Spike including naturally occurring VOCs Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.2, BA.5, BQ.1.1, BA2.75.2, and XBB.1, and variants of interest Epsilon, Kappa, Eta, D.2, and artificial mutant Spikes. There was no notable difference between breadth and longevity of antibody against VOCs in children and adults. Vaccinated individuals displayed similar immunoreactivity profiles across variants compared with naturally infected individuals. Delta-infected patients had an enhanced cross-reactivity toward Delta and earlier VOCs compared to patients infected by Early Clade SARS-CoV-2. Although Omicron BA.1, BA.2, BA.5, BQ.1.1, BA2.75.2, and XBB.1 antibody titers were generated after Omicron infection, cross-reactive binding against Omicron subvariants was reduced across all infection, immunization, and age groups. Some mutations, such as 498R and 501Y, epistatically combined to enhance cross-reactive binding, but could not fully compensate for antibody-evasive mutations within the Omicron subvariants tested. Our results reveal important molecular features central to the generation of high antibody titers and broad immunoreactivity that should be considered in future vaccine design and global serosurveillance in the context of limited vaccine boosters available to the pediatric population.
Collapse
Affiliation(s)
- Aleha Pillay
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Avani Yeola
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Martina Denkova
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Samuel Houston
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Rebecca Burrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Joseph A Lopez
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Lilly Moran
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Ajay Jadhav
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Katrina Sterling
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Catherine L Lai
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tennille L Vitagliano
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Dan Catchpoole
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Nicholas Wood
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Center and Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Philip N Britton
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Disease, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney Institute for Infectious Disease, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
15
|
Zhan Y, Ye L, Ouyang Q, Yin J, Cui J, Liu K, Guo C, Zhang H, Zhai J, Zheng C, Guo A, Sun B. The binding profile of SARS-CoV-2 with human leukocyte antigen polymorphisms reveals critical alleles involved in immune evasion. J Med Virol 2023; 95:e29113. [PMID: 37750416 DOI: 10.1002/jmv.29113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), astonished the world and led to millions of deaths. Due to viral new mutations and immune evasion, SARS-CoV-2 ranked first in transmission and influence. The binding affinity of human leukocyte antigen (HLA) polymorphisms to SARS-CoV-2 might be related to immune escape, but the mechanisms remained unclear. In this study, we obtained the binding affinity of SARS-CoV-2 strains with different HLA proteins and identified 31 risk alleles. Subsequent structural predictions identified 10 active binding sites in these HLA proteins that may promote immune evasion. Particularly, we also found that the weak binding ability with HLA class I polymorphisms could contribute to the immune evasion of Omicron. These findings suggest important implications for preventing the immune evasion of SARS-CoV-2 and providing new insights for the vaccine design.
Collapse
Affiliation(s)
- Yan Zhan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ling Ye
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jiajia Cui
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ke Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aoxiang Guo
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Zeng Z, Geng X, Wen X, Chen Y, Zhu Y, Dong Z, Hao L, Wang T, Yang J, Zhang R, Zheng K, Sun Z, Zhang Y. Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future. Front Microbiol 2023; 14:1232453. [PMID: 37645223 PMCID: PMC10461067 DOI: 10.3389/fmicb.2023.1232453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital of Central South University, National Regional Medical Center for Nervous System Diseases, Nanchang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Taizhou, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yixi Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zishu Dong
- Department of Zoology, Advanced Research Institute, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Tingting Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jifeng Yang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruobing Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
18
|
Li K, Melnychuk S, Sandstrom P, Ji H. Tracking the evolution of the SARS-CoV-2 Delta variant of concern: analysis of genetic diversity and selection across the whole viral genome. Front Microbiol 2023; 14:1222301. [PMID: 37614597 PMCID: PMC10443222 DOI: 10.3389/fmicb.2023.1222301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Background Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has diversified extensively, producing five highly virulent lineages designated as variants of concern (VOCs). The Delta VOC emerged in India with increased transmission, immune evasion, and mortality, causing a massive global case surge in 2021. This study aims to understand how the Delta VOC evolved by characterizing mutation patterns in the viral population before and after its emergence. Furthermore, we aim to identify the influence of positive and negative selection on VOC evolution and understand the prevalence of different mutation types in the viral genome. Methods Three groups of whole viral genomes were retrieved from GISAID, sourced from India, with collection periods as follows: Group A-during the initial appearance of SARS-CoV-2; Group B-just before the emergence of the Delta variant; Group C-after the establishment of the Delta variant in India. Mutations in >1% of each group were identified with BioEdit to reveal differences in mutation quantity and type. Sites under positive or negative selection were identified with FUBAR. The results were compared to determine how mutations correspond with selective pressures and how viral mutation profiles changed to reflect genetic diversity before and after VOC emergence. Results The number of mutations increased progressively in Groups A-C, with Group C reporting a 2.2- and 1.9-fold increase from Groups A and B, respectively. Among all the observed mutations, Group C had the highest percentage of deletions (22.7%; vs. 4.2% and 2.6% in Groups A and B, respectively), and most mutations altered the final amino acid code, such as non-synonymous substitutions and deletions. Conversely, Group B had the most synonymous substitutions that are effectively silent. The number of sites experiencing positive selection increased in Groups A-C, but Group B had 2.4- and 2.6 times more sites under negative selection compared to Groups A and C, respectively. Conclusion Our findings demonstrated that viral genetic diversity continuously increased during and after the emergence of the Delta VOC. Despite this, Group B reports heightened negative selection, which potentially preserves important gene regions during evolution. Group C contains an unprecedented quantity of mutations and positively selected sites, providing strong evidence of active viral adaptation in the population.
Collapse
Affiliation(s)
- Katherine Li
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Melnychuk
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Paul Sandstrom
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Li F, Deng J, Xie C, Wang G, Xu M, Wu C, Li J, Zhong Y. The differences in virus shedding time between the Delta variant and original SARS-CoV-2 infected patients. Front Public Health 2023; 11:1132643. [PMID: 37559731 PMCID: PMC10408444 DOI: 10.3389/fpubh.2023.1132643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
Background The worldwide epidemic of Coronavirus Disease 2019 (COVID-19) has evolved into multiple variants. The Delta variant is known for its ability to spread and replicate, while data are limited about the virus shedding time in patients infected by the Delta variant. Methods 56 Delta variant and 56 original SARS-CoV-2 infected patients from Hunan, China, matched according to age and gender divided into two groups and compared the baseline characteristics and laboratory findings with appropriate statistical methods. Results Patients infected with the Delta variant had significantly fewer symptoms of fever (p < 0.001), fatigue (p = 0.004), anorexia (p < 0.001), shortness of breath (p = 0.004), diarrhea (p = 0.006), positive pneumonia rate of chest CT (p = 0.019) and chest CT ground glass opacities (p = 0.004) than those of patients with the original SARS-CoV-2. Patients of the Delta variant group had a significantly longer virus shedding time [41.5 (31.5, 46.75) vs. 18.5 (13, 25.75), p < 0.001] compared with the original SARS-CoV-2 group. The correlation analyses between the virus shedding time and clinical or laboratory parameters showed that the virus shedding time was positively related to the viral strain, serum creatinine and creatine kinase isoenzyme, while negatively correlated with lymphocyte count, total bilirubin and low-density lipoprotein. Finally, the viral strain and lymphocyte count were thought of as the independent risk factors of the virus shedding time demonstrated by multiple linear regression. Conclusion COVID-19 patients infected with the Delta variant exhibited fewer gastrointestinal symptoms and prolonged virus shedding time than those infected with the original SARS-CoV-2. Delta variant and fewer lymphocyte were correlated with prolonged virus shedding time.
Collapse
Affiliation(s)
- Fanglin Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Canbin Xie
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guyi Wang
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xu
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Jarvie MM, Reed-Lukomski M, Southwell B, Wright D, Nguyen TNT. Monitoring of COVID-19 in wastewater across the Eastern Upper Peninsula of Michigan. ENVIRONMENTAL ADVANCES 2023; 11:100326. [PMID: 36471702 PMCID: PMC9714184 DOI: 10.1016/j.envadv.2022.100326] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology is being used as a tool to monitor the spread of COVID-19 and provide an early warning for the presence or increase of clinical cases in a community. The majority of wastewater-based epidemiology for COVID-19 tracking has been utilized in sewersheds that service populations in the tens-to-hundreds of thousands. Few studies have been conducted to assess the usefulness of wastewater in predicting COVID-19 clinical cases specifically in rural areas. This study collected samples from 16 locations across the Eastern Upper Peninsula of Michigan from June to December 2021. Sampling locations included 12 rural municipalities, a Tribal housing community and casino, a public university, three municipalities that also contained a prison, and a small island with heavy tourist traffic. Samples were analyzed for SARS-CoV-2 N1, N2, and variant gene copies using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR). Wastewater N1 and N2 gene copies and clinical case counts were correlated to determine if wastewater results were predictive of clinical cases. Significant correlation between N1 and N2 gene copies and clinical cases was found for all sites (⍴= 0.89 to 0.48). N1 and N2 wastewater results were predictive of clinical case trends within 0-7 days. The Delta variant was detected in the Pickford and St. Ignace samples more than 12-days prior to the first reported Delta clinical cases in their respective counties. Locations with low correlation could be attributed to their high rates of tourism. This is further supported by the high correlation seen in the public university, which is a closed population. Long-term wastewater monitoring over a large, rural geographic area is useful for informing the public of potential outbreaks in the community regardless of asymptomatic cases and access to clinical testing.
Collapse
Affiliation(s)
- Michelle M Jarvie
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| | - Moriah Reed-Lukomski
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| | - Benjamin Southwell
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| | - Derek Wright
- School of Natural Resources and Environment, Lake Superior State University, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| | - Thu N T Nguyen
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| |
Collapse
|
21
|
Kumar R, Srivastava Y, Muthuramalingam P, Singh SK, Verma G, Tiwari S, Tandel N, Beura SK, Panigrahi AR, Maji S, Sharma P, Rai PK, Prajapati DK, Shin H, Tyagi RK. Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses 2023; 15:856. [PMID: 37112836 PMCID: PMC10142771 DOI: 10.3390/v15040856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic variant(s) of concern (VoC) of SARS-CoV-2 have been emerging worldwide due to mutations in the gene encoding spike glycoprotein. We performed comprehensive analyses of spike protein mutations in the significant variant clade of SARS-CoV-2, using the data available on the Nextstrain server. We selected various mutations, namely, A222V, N439K, N501Y, L452R, Y453F, E484K, K417N, T478K, L981F, L212I, N856K, T547K, G496S, and Y369C for this study. These mutations were chosen based on their global entropic score, emergence, spread, transmission, and their location in the spike receptor binding domain (RBD). The relative abundance of these mutations was mapped with global mutation D614G as a reference. Our analyses suggest the rapid emergence of newer global mutations alongside D614G, as reported during the recent waves of COVID-19 in various parts of the world. These mutations could be instrumentally imperative for the transmission, infectivity, virulence, and host immune system's evasion of SARS-CoV-2. The probable impact of these mutations on vaccine effectiveness, antigenic diversity, antibody interactions, protein stability, RBD flexibility, and accessibility to human cell receptor ACE2 was studied in silico. Overall, the present study can help researchers to design the next generation of vaccines and biotherapeutics to combat COVID-19 infection.
Collapse
Affiliation(s)
- Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
- Department of Biotherapeutics, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sunil Kumar Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Geetika Verma
- Department of Biotherapeutics, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Savitri Tiwari
- Division of Life Sciences, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Gautam Buddha Nagar, Greater Noida 201310, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG Highway, Gujarat 382481, India
| | - Samir Kumar Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | | | - Somnath Maji
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prakriti Sharma
- Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, IIET, Invertis University, Bareilly 243001, India
| | | | - Hyunsuk Shin
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| |
Collapse
|
22
|
Shi H, Zhao H, Zhang W, Wang S. COVID-19 is not a causal risk for miscarriage: evidence from a Mendelian randomization study. J Assist Reprod Genet 2023; 40:333-341. [PMID: 36527564 PMCID: PMC9758471 DOI: 10.1007/s10815-022-02675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) has caused a global pandemic in the last three years. The lack of reliable evidence on the risk of miscarriage due to COVID-19 has become a concern for patients and obstetricians. We sought to identify rigorous evidence using two-sample Mendelian randomization (MR) analysis. METHODS Seven single-nucleotide polymorphisms (SNPs) associated with COVID-19 were used as instrumental variables to explore causality by two-sample MR. The summary data of genetic variants were obtained from the Genome Wide Association Study (GWAS) among European populations in the UK Biobank and EBI database. Inverse variance weighting (IVW) method was taken as the gold standard for MR results, and other methods were taken as auxiliary. We also performed sensitivity analysis to evaluate the robustness of MR. RESULTS The MR analysis showed there was no clear causal association between COVID-19 and miscarriage in the genetic prediction [OR 0.9981 (95% CI, 0.9872-1.0091), p = 0.7336]. Sensitivity analysis suggested that the MR results were robust [horizontal pleiotropy (MR-Egger, intercept = 0.0001592; se = 0.0023; p = 0.9480)]. CONCLUSIONS The evidence from MR does not support COVID-19 as a causal risk factor for miscarriage in European populations. The small probability of direct placental infection, as well as the inability to stratify the data may explain the results of MR. These findings can be informative for obstetricians when managing women in labor.
Collapse
Affiliation(s)
- Huangcong Shi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
| | - Hui Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynecology, Yinan People's Hospital, No.50, Lishan Road, Yinan, Linyi, 276300, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, China
| | - Wei Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, China.
| | - Shan Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
23
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Sant’Anna FH, Finger Andreis T, Salvato RS, Muterle Varela AP, Comerlato J, Gregianini TS, Barcellos RB, de Souza Godinho FM, Resende PC, da Luz Wallau G, y Castro TR, Casarin BC, de Almeida Vieira A, Schwarzbold AV, de Arruda Trindade P, Tumioto Giannini GL, Freese L, Bristot G, Brasil CS, de Oliveira Rocha B, Martins PB, de Oliveira FH, van Oosterhout C, Wendland E. Incipient Parallel Evolution of SARS-CoV-2 Deltacron Variant in South Brazil. Vaccines (Basel) 2023; 11:vaccines11020212. [PMID: 36851091 PMCID: PMC9961971 DOI: 10.3390/vaccines11020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.
Collapse
Affiliation(s)
| | | | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CDCT/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | | | | | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (LACEN/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | - Regina Bones Barcellos
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CDCT/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | - Fernanda Marques de Souza Godinho
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CDCT/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco (FIOCRUZ-PE), Recife 50740-465, PE, Brazil
| | - Thaís Regina y Castro
- Departamento de Análises Clínicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Bruna Campestrini Casarin
- Departamento de Análises Clínicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Andressa de Almeida Vieira
- Departamento de Análises Clínicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | | | | | - Luana Freese
- Hospital Moinhos de Vento, Porto Alegre 90035-000, RS, Brazil
| | - Giovana Bristot
- Hospital Moinhos de Vento, Porto Alegre 90035-000, RS, Brazil
| | | | | | | | | | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| | - Eliana Wendland
- Hospital Moinhos de Vento, Porto Alegre 90035-000, RS, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
25
|
Gonçalves R, Couto J, Ferreirinha P, Costa JM, Silvério D, Silva ML, Fernandes AI, Madureira P, Alves NL, Lamas S, Saraiva M. SARS-CoV-2 variants induce distinct disease and impact in the bone marrow and thymus of mice. iScience 2023; 26:105972. [PMID: 36687317 PMCID: PMC9838028 DOI: 10.1016/j.isci.2023.105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to variants associated with milder disease. We employed the k18-hACE2 mouse model to study how differences in the course of infection by SARS-CoV-2 variants alpha, delta, and omicron relate to tissue pathology and the immune response triggered. We documented a variant-specific pattern of infection severity, inducing discrete lung and blood immune responses and differentially impacting primary lymphoid organs. Infections with variants alpha and delta promoted bone marrow (BM) emergency myelopoiesis, with blood and lung neutrophilia. The defects in the BM hematopoietic compartment extended to the thymus, with the infection by the alpha variant provoking a marked thymic atrophy. Importantly, the changes in the immune responses correlated with the severity of infection. Our study provides a comprehensive platform to investigate the modulation of disease by SARS-CoV-2 variants and underscores the impact of this infection on the function of primary lymphoid organs.
Collapse
Affiliation(s)
- Rute Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Maria Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Diogo Silvério
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta L. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,Immunethep, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Nuno L. Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal,Corresponding author
| |
Collapse
|
26
|
Guest PC, Kesharwani P, Butler AE, Sahebkar A. The COVID-19 Pandemic: SARS-CoV-2 Structure, Infection, Transmission, Symptomology, and Variants of Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:3-26. [PMID: 37378759 DOI: 10.1007/978-3-031-28012-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since it was first detected in December 2019, the COVID-19 pandemic has spread across the world and affected virtually every country and territory. The pathogen driving this pandemic is SARS-CoV-2, a positive-sense single-stranded RNA virus which is primarily transmissible though the air and can cause mild to severe respiratory infections in humans. Within the first year of the pandemic, the situation worsened with the emergence of several SARS-CoV-2 variants. Some of these were observed to be more virulent with varying capacities to escape the existing vaccines and were, therefore, denoted as variants of concern. This chapter provides a general overview of the course of the COVID-19 pandemic up to April 2022 with a focus on the structure, infection, transmission, and symptomology of the SARS-CoV-2 virus. The main objectives were to investigate the effects of the variants of concern on the trajectory of the virus and to highlight a potential pathway for coping with the current and future pandemics.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Zeng Z, Wu T, Lin Z, Luo L, Lin Z, Guan W, Liang J, Yu M, Guan P, He W, Liu Z, Lu G, Xie P, Chen C, Lau EHY, Yang Z, Hon C, He J. Containment of SARS-CoV-2 Delta strain in Guangzhou, China by quarantine and social distancing: a modelling study. Sci Rep 2022; 12:21096. [PMID: 36473881 PMCID: PMC9727161 DOI: 10.1038/s41598-022-21674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
China detected the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with Delta variant in May 2021. We assessed control strategies against this variant of concern. We constructed a robust transmission model to assess the effectiveness of interventions against the Delta variant in Guangzhou with initial quarantine/isolation, followed by social distancing. We also assessed the effectiveness of alternative strategies and that against potentially more infectious variants. The effective reproduction number (Rt) fell below 1 when the average daily number of close contacts was reduced to ≤ 7 and quarantine/isolation was implemented on average at the same day of symptom onset in Guangzhou. Simulations showed that the outbreak could still be contained when quarantine is implemented on average 1 day after symptom onset while the average daily number of close contacts was reduced to ≤ 9 per person one week after the outbreak's beginning. Early quarantine and reduction of close contacts were found to be important for containment of the outbreaks. Early implementation of quarantine/isolation along with social distancing measures could effectively suppress spread of the Delta and more infectious variants.
Collapse
Affiliation(s)
- Zhiqi Zeng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China ,grid.410737.60000 0000 8653 1072Guangzhou key laboratory for clinical rapid diagnosis and early warning of infectious diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tong Wu
- grid.259384.10000 0000 8945 4455Macao Institute of Systems Engineering, Macao University of Science and Technology, Macau SAR, People’s Republic of China ,Singou Technology (Macau) Ltd, Macau SAR, People’s Republic of China
| | - Zhijie Lin
- grid.259384.10000 0000 8945 4455Macao Institute of Systems Engineering, Macao University of Science and Technology, Macau SAR, People’s Republic of China
| | - Lei Luo
- grid.508371.80000 0004 1774 3337Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong People’s Republic of China
| | - Zhengshi Lin
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| | - Wenda Guan
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| | - Jingyi Liang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| | - Minfei Yu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| | - Peikun Guan
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| | - Wei He
- grid.259384.10000 0000 8945 4455Macao Institute of Systems Engineering, Macao University of Science and Technology, Macau SAR, People’s Republic of China
| | - Zige Liu
- grid.259384.10000 0000 8945 4455Macao Institute of Systems Engineering, Macao University of Science and Technology, Macau SAR, People’s Republic of China
| | - Guibin Lu
- grid.259384.10000 0000 8945 4455Macao Institute of Systems Engineering, Macao University of Science and Technology, Macau SAR, People’s Republic of China
| | - Peifang Xie
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500 People’s Republic of China
| | - Canxiong Chen
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| | - Eric H. Y. Lau
- grid.194645.b0000000121742757School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong People’s Republic of China ,Laboratory of Data Discovery for Health, Tai Po, Hong Kong People’s Republic of China
| | - Zifeng Yang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China ,grid.410737.60000 0000 8653 1072Guangzhou key laboratory for clinical rapid diagnosis and early warning of infectious diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China ,Guangzhou Laboratory, Guangzhou, People’s Republic of China
| | - Chitin Hon
- grid.259384.10000 0000 8945 4455Macao Institute of Systems Engineering, Macao University of Science and Technology, Macau SAR, People’s Republic of China ,Guangzhou Laboratory, Guangzhou, People’s Republic of China
| | - Jianxing He
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 People’s Republic of China
| |
Collapse
|
28
|
Wang L, Zhang H, Shang C, Liang H, Liu W, Han B, Xia W, Zou M, Sun C. Mental health issues in parents of children with autism spectrum disorder: A multi-time-point study related to COVID-19 pandemic. Autism Res 2022; 15:2346-2358. [PMID: 36263600 PMCID: PMC9874755 DOI: 10.1002/aur.2836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 01/27/2023]
Abstract
Given the unpredictability and challenges brought about by the 2019 novel coronavirus (COVID-19) pandemic, this study aimed to investigate the impact trend of the prolonged pandemic on the mental health of parents of children with autism spectrum disorder (ASD). The 8112 participants included parents of children with ASD and parents of typically developing (TD) children at two sites (Heilongjiang and Fujian province, China). The parents completed a set of self-report questionnaires covering demographic characteristics, influences related to COVID-19, COVID-19 concerns and perceived behaviors, as well as the Connor-Davidson resilience scale (CD-RISC), self-rating anxiety scale (SAS), and self-rating depression scale (SDS) by means of an online survey platform. Data were collected by three cross-sectional surveys carried out in April 2020 (Time 1), October 2020 (Time 2), and October 2021 (Time 3). The results of quantitative and qualitative comparisons showed that: (i) parents of children with ASD had lower levels of resilience, and more symptoms of anxiety and depression than parents of TD children at each time point (all P < 0.05); and (ii) there were significant time-cumulative changes in resilience, anxiety, and depression among all participants (all P < 0.05). The logistic regression analyzes after adjusting for demographic characteristics revealed that the following factors were significantly associated with poor resilience and a higher rate of anxiety and depression in parents of children with ASD: time-point, the effect of COVID-19 on children's emotions and parents' emotions, changes in relationships, changes in physical exercise, changes in daily diet during the COVID-19 pandemic, and COVID-19-related psychological distress. In conclusions, the parents did not report improvements in resilience, anxiety, or depression symptoms from Time 1 to Time 2 or 3, indicating that cumulative mental health issues increased when, surprisingly, the COVID-19 restrictions were eased. The psychological harm resulting from the COVID-19 pandemic is far-reaching, especially among parents of children with ASD.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina,Continuing Education Office, The Second Affiliated HospitalHarbin Medical UniversityHarbinChina
| | - Huiying Zhang
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina
| | - Chuang Shang
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina
| | - Huirong Liang
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina
| | - Wenlong Liu
- Department of Child Development and Behavior, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Bing Han
- Continuing Education Office, The Second Affiliated HospitalHarbin Medical UniversityHarbinChina
| | - Wei Xia
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina
| | - Mingyang Zou
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health CollegeHarbin Medical UniversityHarbinChina
| |
Collapse
|
29
|
Chiang CY, Kuo WW, Lin YJ, Kuo CH, Shih CY, Lin PY, Lin SZ, Ho TJ, Huang CY, Shibu MA. Combined effect of traditional Chinese herbal-based formulations Jing Si herbal tea and Jing Si nasal drop inhibits adhesion and transmission of SARS-CoV2 in diabetic SKH-1 mice. Front Pharmacol 2022; 13:953438. [PMID: 36425575 PMCID: PMC9681529 DOI: 10.3389/fphar.2022.953438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 09/05/2023] Open
Abstract
Multiple studies show increased severity of SARS-CoV2-infection in patients with comorbidities such as hypertension and diabetes. In this study, we have prepared two herbal-based formulations, a pleiotropic herbal drink (Jin Si Herbal Tea, JHT) and a nasal drop (Jin Si nasal drop, JND), to provide preventive care against SARS-CoV2 infection. The effect of JHT and JND was determined in SARS-CoV2-S-pseudotyped lentivirus-infected bronchial and colorectal cell lines and in SKH-1 mouse models. For preliminary studies, ACE2 receptor abundant bronchial (Calu-3) and colorectal cells (Caco-2) were used to determine the effect of JHT and JND on the host entry of various variants of SARS-CoV2-S-pseudotyped lentivirus. A series of experiments were performed to understand the infection rate in SKH-1 mice (6 weeks old, n = 9), find the effective dosage of JHT and JND, and determine the combination effect of JHT and JND on the entry and adhesion of various variant SARS-CoV2-S-pseudotyped lentiviruses, which included highly transmissible delta and gamma mutants. Furthermore, the effect of combined JHT and JND was determined on diabetes-induced SKH-1 mice against the comorbidity-associated intense viral entry and accumulation. In addition, the effect of combined JHT and JND administration on viral transmission from infected SKH-1 mice to uninfected cage mate mice was determined. The results showed that both JHT and JND were effective in alleviating the viral entry and accumulation in the thorax and the abdominal area. While JHT showed a dose-dependent decrease in the viral load, JND showed early inhibition of viral entry from day 1 of the infection. Combined administration of 48.66 mg of JHT and 20 µL of JND showed rapid reduction in the viral entry and reduced the viral load (97-99%) in the infected mice within 3 days of treatment. Moreover, 16.22 mg of JHT and 20 µL JND reduced the viral infection in STZ-induced diabetic SKH-1 mice. Interestingly, combined JHT and JND also inhibited viral transmission among cage mates. The results, therefore, showed that combined administration of JHT and JND is a novel and an efficient strategy to potentially prevent SARS-CoV2 infection.
Collapse
Affiliation(s)
- Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Cheng-Yen Shih
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Buddhist Tzu Chi Charity Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Buddhist Tzu Chi Charity Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
30
|
Aw ZQ, Mok CK, Wong YH, Chen H, Mak TM, Lin RTP, Lye DC, Tan KS, Chu JJH. Early pathogenesis profiles across SARS-CoV-2 variants in K18-hACE2 mice revealed differential triggers of lung damages. Front Immunol 2022; 13:950666. [DOI: 10.3389/fimmu.2022.950666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The on-going COVID-19 pandemic has given rise to SARS-CoV-2 clades and variants with differing levels of symptoms and severity. To this end, we aim to systematically elucidate the changes in the pathogenesis as SARS-CoV-2 evolved from ancestral to the recent Omicron VOC, on their mechanisms (e.g. cytokine storm) resulting in tissue damage, using the established K18-hACE2 murine model. We reported that among the SARS-CoV-2 viruses tested, infection profiles were initially similar between viruses from early clades but started to differ greatly starting from VOC Delta, where the trend continues in Omicron. VOCs Delta and Omicron both accumulated a significant number of mutations, and when compared to VOCs Alpha, Beta, and earlier predecessors, showed reduced neurotropism and less apparent gene expression in cytokine storm associated pathways. They were shown to leverage on other pathways to cause tissue damage (or lack of in the case of Omicron). Our study highlighted the importance of elucidating the response profiles of individual SARS-CoV-2 iterations, as their propensity of severe infection via pathways like cytokine storm changes as more variant evolves. This will then affect the overall threat assessment of each variant as well as the use of immunomodulatory treatments as management of severe infections of each variant.
Collapse
|
31
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
32
|
SARS-CoV-2 Variants Monitoring Using Real-Time PCR. Diagnostics (Basel) 2022; 12:diagnostics12102388. [PMID: 36292077 PMCID: PMC9600923 DOI: 10.3390/diagnostics12102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
According to the temporary recommendations of the 2021 World Health Organization (WHO), in addition to whole-genome sequencing, laboratories in various countries can also screen for known mutations utilizing targeted RT-PCR-based mutation detection assays. The aim of this work was to generate a laboratory technique to differentiate the main circulating SARS-CoV-2 variants in 2021–2022, when a sharp increase in morbidity was observed with the appearance of the Omicron variant. Real-time PCR methodology is available for use in the majority of scientific and diagnostic institutions in Russia, which makes it possible to increase the coverage of monitoring of variants in the territories of all 85 regions in order to accumulate information for the Central Services and make epidemiological decisions. With the methodology developed by the Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (FSSCRP Human Wellbeing) (CRIE), more than 6000 biological samples have been typed, and 7% of samples with the Delta variant and 92% of samples with the Omicron variant have been identified as of 25 August 2022. Reagents for 140,000 definitions have been supplied to regional organizations.
Collapse
|