1
|
Naveed M, Ali U, Aziz T, Naveed R, Mahmood S, Khan MM, Alharbi M, Albekairi TH, Alasmari AF. An Aedes-Anopheles Vaccine Candidate Supplemented with BCG Epitopes Against the Aedes and Anopheles Genera to Overcome Hypersensitivity to Mosquito Bites. Acta Parasitol 2024; 69:483-504. [PMID: 38194049 DOI: 10.1007/s11686-023-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Skeeter syndrome is a severe local allergic response to mosquito bites that is accompanied by considerable inflammation and, in some cases, a systemic response like fever. People with the syndrome develop serious allergies, ranging from rashes to anaphylaxis or shock. The few available studies on mosquito venom immunotherapy have utilized whole-body preparations and small sample sizes. Still, owing to their little success, vaccination remains a promising alternative as well as a permanent solution for infections like Skeeter's. METHODS This study, therefore, illustrated the construction of an epitope-based vaccine candidate against Skeeter Syndrome using established immunoinformatic techniques. We selected three species of mosquitoes, Anopheles melas, Anopheles funestus, and Aedes aegypti, to derive salivary antigens usually found in mosquito bites. Our construct was also supplemented with bacterial epitopes known to elicit a strong TH1 response and suppress TH2 stimulation that is predicted to reduce hypersensitivity against the bites. RESULTS A quality factor of 98.9496, instability index of 38.55, aliphatic index of 79.42, solubility of 0.934747, and GRAVY score of -0.02 indicated the structural (tertiary and secondary) stability, thermostability, solubility, and hydrophilicity of the construct, respectively. The designed Aedes-Anopheles vaccine (AAV) candidate was predicted to be flexible and less prone to deformability with an eigenvalue of 1.5911e-9 and perfected the human immune response against Skeeter (hypersensitivity) and many mosquito-associated diseases as we noted the production of 30,000 Th1 cells per mm3 with little (insignificant production of Th2 cells. The designed vaccine also revealed stable interactions with the pattern recognition receptors of the host. The TLR2/vaccine complex interacted with a free energy of - 1069.2 kcal/mol with 26 interactions, whereas the NLRP3/vaccine complex interacted with a free energy of - 1081.2 kcal/mol with 16 molecular interactions. CONCLUSION Although being a pure in-silico study, the in-depth analysis performed herein speaks volumes of the potency of the designed vaccine candidate predicting that the proposition can withstand rigorous in-vitro and in-vivo clinical trials and may proceed to become the first preventative immunotherapy against mosquito bite allergy.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan.
| | - Urooj Ali
- Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Tariq Aziz
- Department of Agriculture, University of Ioannina Arta, 47100, Arta, Greece.
| | - Rida Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Sarmad Mahmood
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Muhammad Mustajab Khan
- Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Navaratna S, Burgess J, Waidyatillake N, Peters RL, Dharmage SC, Lodge CJ. Reply to the correspondence: Bacillus Calmette-Guérin vaccination to prevent childhood asthma-A revised analysis. Allergy 2022; 77:2264-2265. [PMID: 35770818 DOI: 10.1111/all.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Samidi Navaratna
- Department of Community Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - John Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Vic., Australia
| | - Nilakshi Waidyatillake
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Vic., Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Vic., Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
3
|
Pittet LF, Fritschi N, Tebruegge M, Dutta B, Donath S, Messina NL, Casalaz D, Hanekom WA, Britton WJ, Robins-Browne R, Curtis N, Ritz N. Bacille Calmette-Guérin Skin Reaction Predicts Enhanced Mycobacteria-Specific T Cell Responses in Infants. Am J Respir Crit Care Med 2022; 205:830-841. [DOI: 10.1164/rccm.202108-1892oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Laure F Pittet
- The Royal Children's Hospital Melbourne, 6453, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, 34361, Parkville, Victoria, Australia
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
| | | | - Marc Tebruegge
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
- University College London, 4919, London, United Kingdom of Great Britain and Northern Ireland
- Evelina London Children's Hospital, 443490, London, United Kingdom of Great Britain and Northern Ireland
| | - Binita Dutta
- Murdoch Childrens Research Institute, 34361, Parkville, Victoria, Australia
| | - Susan Donath
- Murdoch Childrens Research Institute, 34361, Parkville, Victoria, Australia
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
| | - Nicole L Messina
- Murdoch Childrens Research Institute, 34361, Parkville, Victoria, Australia
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
| | - Dan Casalaz
- Mercy Hospital for Women, 37244, Heidelberg, Victoria, Australia
| | | | - Warwick J. Britton
- Centenary Institute, 6022, TB Researtch Program, Sydney, New South Wales, Australia
| | - Roy Robins-Browne
- Murdoch Childrens Research Institute, 34361, Parkville, Victoria, Australia
- The Peter Doherty Institute for Infection and Immunity, 534133, Melbourne, Victoria, Australia
| | - Nigel Curtis
- The Royal Children's Hospital Melbourne, 6453, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, 34361, Parkville, Victoria, Australia
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
| | - Nicole Ritz
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
- University of Basel, 27209, Basel, Switzerland
- University Children’s Hospital Basel, 30280, Basel, Switzerland
| | | |
Collapse
|
4
|
BCG Vaccination in Early Childhood and Risk of Atopic Disease: A Systematic Review and Meta-Analysis. Can Respir J 2021; 2021:5434315. [PMID: 34868440 PMCID: PMC8635936 DOI: 10.1155/2021/5434315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 01/15/2023] Open
Abstract
Background Several large-scale studies suggest that Bacille Calmette–Guerin (BCG) vaccination in early childhood may reduce the risk of atopic diseases, but the findings remain controversial. Here, we aimed to investigate the potential correlation between early childhood BCG vaccination and the risk of developing atopic diseases. Methods Eligible studies published on PubMed, EMBASE, and Cochrane CENTRAL were systematically sourced from 1950 to July 2021. Studies with over 100 participants and focusing on the association between BCG vaccine and atopic diseases including eczema, asthma, and rhinitis were included. Preliminary assessment of methods, interventions, outcomes, and study quality was performed by two independent investigators. Odds ratio (OR) with 95% confidence interval (CI) was calculated. Random effects of the meta-analysis were performed to define pooled estimates of the effects. Results Twenty studies with a total of 222,928 participants were selected. The quantitative analysis revealed that administering BCG vaccine in early childhood reduced the risk of developing asthma significantly (OR 0.77, 95% CI 0.63 to 0.93), indicating a protective efficacy of 23% against asthma development among vaccinated children. However, early administration of BCG vaccine did not significantly reduce the risk of developing eczema (OR 0.94, 95% CI 0.76 to 1.16) and rhinitis (OR 0.99, 95% CI 0.81 to 1.21). Further analysis revealed that the effect of BCG vaccination on asthma prevalence was significant especially in developed countries (OR 0.73, 95% CI 0.58 to 0.92). Conclusion BCG vaccination in early childhood is associated with reduced risk of atopic disease, especially in developed countries.
Collapse
|
5
|
Peng W, Wang L, Zhang H, Zhang Z, Chen X. Effects of Recombinant IL-35-BCG on Treg/Th17 Cell Imbalance and Inflammatory Response in Asthmatic Newborn Mice Induced by RSV. Inflammation 2021; 44:2476-2485. [PMID: 34453228 DOI: 10.1007/s10753-021-01517-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
Treg/Th17 cell imbalance and inflammatory response may occur in neonatal asthma. IL-35 and BCG have inhibitory effects on inflammatory responses in diseases. However, studies on neonatal asthma after combination of the two have not been reported so far. A respiratory syncytial virus (RSV)-induced neonatal asthma model was first developed in newborn mice. Pathological sections of lung tissue of asthmatic mice were observed by HE staining. Masson staining was used to observe the lung tissue and to compare the deposition of collagen fibers under bronchial epithelium in model mice. The expression of cytokines in serum was detected by ELISA. Giemsa staining analyzed each cell in bronchoalveolar lavage fluid (BALF). Flow cytometry was used to detect the differentiation and development of Treg and Th17 subgroups in BALF. The expression levels of inflammation-related factors were detected by RT-qPCR. Western blot was used to detect the expression of JNK pathway-related proteins. Recombinant IL-35-BCG improved the pathological response of asthmatic mice; inhibited the expression of IgE in serum, neutrophils, macrophages, and eosinophils in BALF; and increased the expression of lymphocytes. In addition, recombinant IL-35-BCG significantly inhibited Th17 differentiation, promoted Treg cell differentiation, and inhibited the expression of inflammatory factors in lung tissue homogenates, thereby reducing allergic airway inflammation. This process might be achieved by inhibiting the JNK signaling pathway. Recombinant IL-35-BCG can regulate Treg/Th17 cell imbalance and inflammatory response in asthmatic newborn mice induced by RSV through JNK signaling pathway, suggesting a new path to neonatal asthma treatment.
Collapse
Affiliation(s)
- Wansheng Peng
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Lian Wang
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Hui Zhang
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Zhen Zhang
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Xin Chen
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China.
| |
Collapse
|
6
|
BCG for the prevention and treatment of allergic asthma. Vaccine 2021; 39:7341-7352. [PMID: 34417052 DOI: 10.1016/j.vaccine.2021.07.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Allergic diseases, in particular atopic asthma, have been on the rise in most industrialized countries for several decades now. Allergic asthma is characterized by airway narrowing, bronchial hyperresponsiveness, excessive airway mucus production, eosinophil influx in the lungs and an imbalance of the Th1/Th2 responses, including elevated IgE levels. Most available interventions provide only short-term relief from disease symptoms and do not alter the underlying immune imbalance. A number of studies, mostly in mouse models, have shown that Mycobacterium bovis bacillus Calmette-Guérin (BCG) treatment is capable of preventing or reducing an established allergen-driven inflammatory response, by redirecting pathogenic Th2 towards protective Th1 and/or regulatory T cell responses. Dendritic cells stimulated by BCG appear to be a crucial first step in the immunomodulatory effects of BCG. While the protective and therapeutic effects of BCG against allergy and asthma are well documented in animal models, they are less clear in humans, both in observational studies and in randomized controlled trials. The purpose of this article is to provide an up-to-date overview of the available evidence on the anti-allergy, in particular anti-asthma effects of BCG in mice, rats and humans.
Collapse
|
7
|
Sharma D. Repurposing of the childhood vaccines: could we train the immune system against the SARS-CoV-2. Expert Rev Vaccines 2021; 20:1051-1057. [PMID: 34313516 PMCID: PMC8425442 DOI: 10.1080/14760584.2021.1960161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The COVID-19 pandemic is a globalized health concern caused by a beta-coronavirus named Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Since December 2019, when this outbreak flared in Wuhan, China, COVID-19 cases have been continuously rising all over the world. Due to the emergence of SARS-CoV-2 mutants, subsequent waves are flowing in a faster manner as compared to the primary wave, which is more contagious and causing higher mortality. Recently, India has emerged as the new epicenter of the second wave by mutants of SARS-CoV-2. After almost eighteen months of this outbreak, some COVID-19 dedicated therapeutics and vaccines are available, and a few are under trial, but the situation is still uncontrolled. AREA COVERED This perspective article covers the repurposing of childhood vaccines like Bacille Calmette-Guerin (BCG), Measles, Mumps, Rubella (MMR), and Oral Polio Vaccine (OPV), which are live attenuated vaccines and have been shown the protective effect through 'trained immunity and 'crossreactivity.' EXPERT OPINION This perspective article has suggested that combinatorial use of these childhood vaccines might exert a better protective effect along with the available COVID-19 therapeutic and vaccines which could be considered as a preventive option against SARS-CoV-2 infection as well as its subsequent waves.
Collapse
Affiliation(s)
- Divakar Sharma
- Hericure Healthcare Pvt Ltd, Pune, India.,Present affiliation: Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
8
|
Navaratna S, Estcourt MJ, Burgess J, Waidyatillake N, Enoh E, Lowe AJ, Peters R, Koplin J, Dhamage SC, Lodge CJ. Childhood vaccination and allergy: A systematic review and meta-analysis. Allergy 2021; 76:2135-2152. [PMID: 33569761 DOI: 10.1111/all.14771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE As the rise in prevalence of allergic diseases worldwide corresponds in time with increasing infant vaccination, it has been hypothesized that childhood vaccination may increase the risk of allergic disease. We aimed to synthesize the literature on the association between childhood vaccination and allergy. DESIGN We searched the electronic databases PubMed and EMBASE (January 1946-January 2018) using vaccination and allergy terms. METHODS Two authors selected papers according to the inclusion criteria. Pooled effects across studies were estimated using random-effects meta-analysis. Due to inadequate number of homogeneous publications on newer and underused vaccines, meta-analysis was limited to allergic outcomes following administration of (Bacillus Calmette-Guérin) BCG, measles or pertussis vaccination. The review was prospectively registered in the PROSPERO systematic review registry (NO: CRD42017071009). RESULTS A total of 35 publications based on cohort studies and 7 publications based on randomized controlled trials (RCTs) met the inclusion criteria. RCTs: From 2 studies, early vaccination with BCG vaccine was associated with a reduced risk of eczema (RR = 0.83; 95% CI = 0.73-0.93; I2 = 0%) but not food allergy or asthma. No association was found between pertussis vaccine and any allergic outcome based on a single RCT. COHORT STUDIES Childhood measles vaccination was associated with a reduced risk of eczema (RR = 0.65; 95% CI = 0.47-0.90, I2 = 0.0%), asthma (RR = 0.78; 95% CI = 0.62-0.98, I2 = 93.9%) and, with a similar, statistically non-significant reduction in sensitization (RR = 0.78; 95% CI = 0.61-1.01, I2 = 19.4%). CONCLUSIONS We found no evidence that childhood vaccination with commonly administered vaccines was associated with increased risk of later allergic disease. Our results from pooled analysis of both RCTs and cohort studies suggest that vaccination with BCG and measles vaccines were associated with a reduced risk of eczema.
Collapse
Affiliation(s)
- Samidi Navaratna
- Faculty of Medicine Department of Community Medicine University of Peradeniya Kandy Sri Lanka
| | - Marie J. Estcourt
- Wesfarmers Centre of Vaccines & Infectious Diseases Telethon Kids InstitutePerth Children's Hospital Nedlands Australia
| | - John Burgess
- Allergy and Lung Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Parkville Vic. Australia
| | - Nilakshi Waidyatillake
- Allergy and Lung Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Parkville Vic. Australia
| | - Elizabeth Enoh
- Reproductive Health Programme United Nations Population Fund (UNFPA) Yaounde Cameroon
| | - Adrian J. Lowe
- Allergy and Lung Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Parkville Vic. Australia
- Murdoch Children's Research InstituteRoyal Children’s Hospital Parkville Vic. Australia
| | - Rachel Peters
- Murdoch Children's Research InstituteRoyal Children’s Hospital Parkville Vic. Australia
- Department of Paediatrics The University of Melbourne Parkville Vic. Australia
| | - Jennifer Koplin
- Allergy and Lung Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Parkville Vic. Australia
- Murdoch Children's Research InstituteRoyal Children’s Hospital Parkville Vic. Australia
- Department of Paediatrics The University of Melbourne Parkville Vic. Australia
| | - Shyamali C. Dhamage
- Allergy and Lung Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Parkville Vic. Australia
- Murdoch Children's Research InstituteRoyal Children’s Hospital Parkville Vic. Australia
- Centre for Food and Allergy Research (CFAR) Murdoch Children’s Research Institute Parkville Vic. Australia
| | - Caroline J. Lodge
- Allergy and Lung Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Parkville Vic. Australia
- Murdoch Children's Research InstituteRoyal Children’s Hospital Parkville Vic. Australia
- Centre for Food and Allergy Research (CFAR) Murdoch Children’s Research Institute Parkville Vic. Australia
| |
Collapse
|
9
|
Abdelaziz MH, Ji X, Wan J, Abouelnazar FA, Abdelwahab SF, Xu H. Mycobacterium-Induced Th1, Helminths-Induced Th2 Cells and the Potential Vaccine Candidates for Allergic Asthma: Imitation of Natural Infection. Front Immunol 2021; 12:696734. [PMID: 34413850 PMCID: PMC8369065 DOI: 10.3389/fimmu.2021.696734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bronchial asthma is one of the most chronic pulmonary diseases and major public health problems. In general, asthma prevails in developed countries than developing countries, and its prevalence is increasing in the latter. For instance, the hygiene hypothesis demonstrated that this phenomenon resulted from higher household hygienic standards that decreased the chances of infections, which would subsequently increase the occurrence of allergy. In this review, we attempted to integrate our knowledge with the hygiene hypothesis into beneficial preventive approaches for allergic asthma. Therefore, we highlighted the studies that investigated the correlation between allergic asthma and the two different types of infections that induce the two major antagonizing arms of T cells. This elucidation reflects the association between various types of natural infections and the immune system, which is predicted to support the main objective of the current research on investigating of the benefits of natural infections, regardless their immune pathways for the prevention of allergic asthma. We demonstrated that natural infection with Mycobacterium tuberculosis (Mtb) prevents the development of allergic asthma, thus Bacille Calmette-Guérin (BCG) vaccine is suggested at early age to mediate the same prevention particularly with increasing its efficiency through genetic engineering-based modifications. Likewise, natural helminth infections might inhabit the allergic asthma development. Therefore, helminth-derived proteins at early age are good candidates for designing vaccines for allergic asthma and it requires further investigation. Finally, we recommend imitation of natural infections as a general strategy for preventing allergic asthma that increased dramatically over the past decades.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Xiaoyun Ji
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
| | - Jie Wan
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
- Department of Neuroimmunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fatma A. Abouelnazar
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sayed F. Abdelwahab
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
- *Correspondence: Huaxi Xu, ; orcid.org/0000-0002-2568-7393; Sayed F. Abdelwahab, ; ; orcid.org/0000-0002-9636-7485
| | - Huaxi Xu
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
- *Correspondence: Huaxi Xu, ; orcid.org/0000-0002-2568-7393; Sayed F. Abdelwahab, ; ; orcid.org/0000-0002-9636-7485
| |
Collapse
|
10
|
Sohrabi Y, Dos Santos JC, Dorenkamp M, Findeisen H, Godfrey R, Netea MG, Joosten LAB. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology 2020; 9:e1228. [PMID: 33363733 PMCID: PMC7755499 DOI: 10.1002/cti2.1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
| | - Marc Dorenkamp
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Hannes Findeisen
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Rinesh Godfrey
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo AB Joosten
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de GoiásGoiâniaBrazil
| |
Collapse
|
11
|
Covián C, Retamal-Díaz A, Bueno SM, Kalergis AM. Could BCG Vaccination Induce Protective Trained Immunity for SARS-CoV-2? Front Immunol 2020; 11:970. [PMID: 32574258 PMCID: PMC7227382 DOI: 10.3389/fimmu.2020.00970] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Trained immunity is a type of non-specific memory-like immune response induced by some pathogens and vaccines, such as BCG, which can confer antigen-independent protection against a wide variety of pathogens. The BCG vaccine has been extensively used to protect against tuberculosis for almost a 100 years. Interestingly, this vaccine reduces children's mortality caused by infections unrelated to Mycobacterium tuberculosis infection, a phenomenon thought to be due to the induction of trained immunity. The SARS-CoV-2 pandemic has infected, as of April 22, 2020, 2,623,231 people globally, causing a major public health problem worldwide. Currently, no vaccine or treatment is available to control this pandemic. We analyzed the number of positive cases and deaths in different countries and correlated them with the inclusion of BCG vaccination at birth in their national vaccination programs. Interestingly, those countries where BCG vaccination is given at birth have shown a lower contagion rate and fewer COVID-19-related deaths, suggesting that this vaccine may induce trained immunity that could confer some protection for SARS-CoV-2.
Collapse
Affiliation(s)
- Camila Covián
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Mustafa AS. Vaccine Potential of Mycobacterial Antigens against Asthma. Med Princ Pract 2020; 29:404-411. [PMID: 32422630 PMCID: PMC7511680 DOI: 10.1159/000508719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a cause of substantial burden of disease in the world, including both premature deaths and reduced quality of life. A leading hypothesis to explain the worldwide increase of asthma is the "hygiene hypothesis," which suggests that the increase in the prevalence of asthma is due to the reduction in exposure to infections/microbial antigens. In allergic asthma, the most common type of asthma, antigen-specific T helper (Th)2 and Th17 cells and their cytokines are primary mediators of the pathological consequences. In contrast, Th1 and T regulatory (Treg) cells and their cytokines play a protective role. This article aims to review the information on the effect of mycobacteria and their antigens in modulating Th2/Th17 responses towards Th1/Treg responses and protection against asthma in humans and animal models.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,
| |
Collapse
|
13
|
Zhang Y, Feng Y, Li L, Ye X, Wang J, Wang Q, Li P, Li N, Zheng X, Gao X, Li C, Li F, Sun B, Lai K, Su Z, Zhong N, Chen L, Feng L. Immunization with an adenovirus-vectored TB vaccine containing Ag85A-Mtb32 effectively alleviates allergic asthma. J Mol Med (Berl) 2018; 96:249-263. [PMID: 29302700 PMCID: PMC5859035 DOI: 10.1007/s00109-017-1614-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/12/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Abstract Current treatments for allergic asthma primarily ameliorate symptoms rather than inhibit disease progression. Regulating the excessive T helper type 2 (Th2) responses may prevent asthma exacerbation. In this study, we investigated the protective effects of Ad5-gsgAM, an adenovirus vector carrying two mycobacterial antigens Ag85A and Mtb32, against allergic asthma. Using an ovalbumin (OVA)-induced asthmatic mouse model, we found that Ad5-gsgAM elicited much more Th1-biased CD4+T and CD8+T cells than bacillus Calmette-Guérin (BCG). After OVA challenge, Ad5-gsgAM-immunized mice showed significantly lowered airway inflammation in comparison with mice immunized with or without BCG. Total serum immunoglobulin E and pulmonary inducible-nitric-oxide-synthase were efficiently reduced. The cytokine profiles in bronchial-alveolar-lavage-fluids (BALFs) were also modulated, as evidenced by the increased level of interferon-γ (IFN-γ) and the decreased level of interleukin (IL)-4, IL-5, and IL-13. Anti-inflammatory cytokine IL-10 was sharply increased, whereas pro-inflammatory cytokine IL-33 was significantly decreased. Importantly, exogenous IL-33 abrogated the protective effects of Ad5-gsgAM, revealing that the suppression of IL-33/ST2 axis substantially contributed to protection against allergic inflammation. Moreover, regulatory T cells were essential for regulating aberrant Th2 responses as well as IL-33/ST2 axis. These results suggested that modulating the IL-33/ST2 axis via adenovirus-vectored mycobacterial antigen vaccination may provide clinical benefits in allergic inflammatory airways disease. Key messages •Ad5-gsgAM elicits Th1 responses and suppresses Th2-mediated allergic asthma in mice. •Ad5-gsgAM inhibits IL-33/ST2 axis by reducing IL-33 secretion but not ILC2 recruiting. •Treg is essential for modulating Th2 responses and IL-33/ST2 axis by Ad5-gsgAM. Electronic supplementary material The online version of this article (10.1007/s00109-017-1614-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiling Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China.,Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Feng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Liang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Xianmiao Ye
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Jinlin Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Qian Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Na Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuehua Zheng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Xiang Gao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhong Su
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. .,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China.
| | - Liqiang Feng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China.
| |
Collapse
|