1
|
Vidman S, Ma YHE, Fullenkamp N, Plant GW. Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury. Neural Regen Res 2025; 20:3063-3075. [PMID: 39715081 DOI: 10.4103/nrr.nrr-d-24-00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024] Open
Abstract
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons. While embryonic stem cells demonstrated great potential in treating central nervous system pathologies, ethical and technical concerns remained. These barriers, along with the clear necessity for this type of treatment, ultimately prompted the advent of induced pluripotent stem cells. The advantage of pluripotent cells in central nervous system regeneration is multifaceted, permitting differentiation into neural stem cells, neural progenitor cells, glia, and various neuronal subpopulations. The precise spatiotemporal application of extrinsic growth factors in vitro, in addition to microenvironmental signaling in vivo, influences the efficiency of this directed differentiation. While the pluri- or multipotency of these cells is appealing, it also poses the risk of unregulated differentiation and teratoma formation. Cells of the neuroectodermal lineage, such as neuronal subpopulations and glia, have been explored with varying degrees of success. Although the risk of cancer or teratoma formation is greatly reduced, each subpopulation varies in effectiveness and is influenced by a myriad of factors, such as the timing of the transplant, pathology type, and the ratio of accompanying progenitor cells. Furthermore, successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration. Lastly, host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression. Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes. This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
Collapse
Affiliation(s)
- Stephen Vidman
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
2
|
Song S, Li C, Xiao Y, Ye Z, Rong M, Zeng J. Beyond conventional therapies: MSCs in the battle against nerve injury. Regen Ther 2025; 28:280-291. [PMID: 39896446 PMCID: PMC11782851 DOI: 10.1016/j.reth.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Nerve damage can cause abnormal motor and sensory consequences, including lifelong paralysis if not surgically restored. The yearly cost of healthcare in the United States is projected to be $150 billion, and millions of Americans suffer from peripheral nerve injuries as a result of severe traumas and disorders. For nerve injuries, the outcome of conventional therapies is suboptimal and may have unfavorable side effects. However, mesenchymal stem cells (MSCs) have been proven to be a viable option for the reconstruction of injured nerve tissue and bring a ray of hope. These stem cells are derived from bone marrow, adipose tissue, and human umbilical cord blood and have the ability to secrete trophic factors, contribute to the immune system, and stimulate axonal regeneration. The purpose of this review is to examine the potential benefits of MSCs for enhancing functional recovery and patient prognosis by highlighting their characteristics and elucidating their mechanism of action in nerve injury healing.
Collapse
Affiliation(s)
- Shuo Song
- Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, China
| | - Cong Li
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Ya Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
3
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
4
|
Karimi N, Dinçsoy AB. The Role of Mesenchymal Stem Cell-Derived Exosomes in Skin Regeneration, Tissue Repair, and the Regulation of Hair Follicle Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841379 DOI: 10.1007/5584_2024_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes. Exosomes, emerging as a promising cell-free therapy in tissue engineering, hold substantial potential due to their ability to influence various biological functions. This review explores the mechanisms by which MSC-derived exosomes facilitate skin regeneration and repair, and hair growth, their therapeutic applications, and the future research directions in this emerging field.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Adnan Berk Dinçsoy
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
5
|
Narasimha RB, Shreya S, Jayabal VA, Yadav V, Rath PK, Mishra BP, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK, Jena MK. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet Sci 2025; 12:67. [PMID: 39852942 PMCID: PMC11768649 DOI: 10.3390/vetsci12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases. Although there are substantial studies revealing the treatment of human degenerative diseases using stem cells, this is yet to be explored in livestock animals. Many diseases in livestock species such as mastitis, laminitis, neuromuscular disorders, autoimmune diseases, and some debilitating diseases are not covered completely by the existing drugs and treatment can be improved by using different types of stem cells like embryonic stem cells, adult stem cells, and induced pluripotent stem cells. This review mainly focuses on the use of stem cells for disease treatment in livestock animals. In addition to the diseases mentioned, the potential of stem cells can be helpful in wound healing, skin disease therapy, and treatment of some genetic disorders. This article explores the potential of stem cells from various sources in the therapy of livestock diseases and also their role in the conservation of endangered species as well as disease model preparation. Moreover, the future perspectives and challenges associated with the application of stem cells in livestock are discussed. Overall, the transformative impact of stem cell research on the livestock sector is comprehensively studied which will help researchers to design future research work on stem cells related to livestock diseases.
Collapse
Affiliation(s)
- Raghavendra B. Narasimha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Singireddy Shreya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Vijay Anand Jayabal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213 Malmö, Sweden
| | - Prasana Kumar Rath
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Bidyut Prava Mishra
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, Haryana, India;
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut 250001, Uttar Pradesh, India;
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| |
Collapse
|
6
|
Sindhi K, Pingili RB, Beldar V, Bhattacharya S, Rahaman J, Mukherjee D. The role of biomaterials-based scaffolds in advancing skin tissue construct. J Tissue Viability 2025; 34:100858. [PMID: 39827732 DOI: 10.1016/j.jtv.2025.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Despite extensive clinical studies and therapeutic interventions, addressing significant skin wounds remains challenging, necessitating novel approaches for effective regeneration therapy. In the current review, we analyzed and evaluated the application, advancements, and future directions of biomaterials-based scaffolds for skin tissue construct. In addition, we investigated the role of other biological substitutes in promoting wound healing and skin tissue regeneration. The review highlights the impact of biomaterial-based scaffolds on skin tissue regeneration and wound healing. After presenting the physiological process of skin tissue regeneration, the review emphasizes the different biochemical components significant for skin healing and regeneration. Subsequently, it delves into the role of scaffolds in skin tissue engineering. Recent advancements in nanotechnology are also highlighted with a specific focus on the utilization of nanomaterials for enhancing healing, facilitating tissue regeneration, and promoting skin reconstruction. Biomaterial scaffolds have emerged as a potential intervention for wound healing forming the foundation of skin tissue regeneration. These scaffolds, intricate three-dimensional frameworks, serve as carriers for cells, medications, and genes, facilitating their delivery into the body. The integration of degradable porous scaffolds with biological cells offers a promising avenue for tissue repair. Biomaterials play a crucial role in tissue engineering, providing temporary mechanical support and facilitating cellular processes to augment skin tissue regeneration.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Vishal Beldar
- Department of Pharmacognosy, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India; Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
7
|
Chen Z, Luo Y, Liu J. Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications. Hum Cell 2025; 38:39. [PMID: 39753919 DOI: 10.1007/s13577-024-01171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/28/2024] [Indexed: 01/14/2025]
Abstract
The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications. Initially, we will discuss the characteristics, origin, and advantages of hAESCs in differentiating into insulin-secreting cells. Subsequently, we will focus on the potential applications of hAESCs in treating diabetes complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy, etc. We will scrutinize the progress of relevant clinical studies and trials involving hAESC therapy. In conclusion, as an emerging diabetes treatment method, hAESCs exhibit immense potential and application value. Despite numerous challenges in practical application, we are confident that with scientific advancement and technological progress, hAESCs will play a pivotal role in treating diabetes and its related complications.
Collapse
Affiliation(s)
- Zhenshuo Chen
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Ghamrawi A, Basso R, Shakik N, Haddad L, Nasr Z, Harmouch C. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds. Stem Cells Dev 2025; 34:1-16. [PMID: 39605205 DOI: 10.1089/scd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in cartilage regeneration and osteoarthritis treatment. It covers key factors influencing chondrogenesis, including growth factors, cytokines, and hypoxia, focusing on precise timing. The effectiveness of three-dimensional cultures and scaffold-based strategies in chondrogenic differentiation is discussed. Specific biomaterials such as chitosan and hyaluronic acid are highlighted for tissue engineering. The document reviews clinical applications, incorporating evidence from animal research and early trials and molecular and histological assessments of chondrogenic differentiation processes. It addresses challenges and strategies for optimizing MSC-derived chondrocyte therapy, emphasizing the immunomodulatory properties of these cells. The review concludes as a comprehensive road map for future research and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Ahed Ghamrawi
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Rasha Basso
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Nour Shakik
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Haddad
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Chaza Harmouch
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
9
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhang Q, He J, Zhu D, Chen Y, Fu M, Lu S, Qiu Y, Zhou G, Yang G, Jiang Z. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid Interface Sci 2025; 335:103337. [PMID: 39547125 DOI: 10.1016/j.cis.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
To date, genetically modified organoids are emerging as a promising 3D modeling tool aimed at solving genetically relevant clinical and biomedical problems for regenerative medicine and tissue engineering. As an optimal vehicle for gene delivery, genetically modified organoids can enhance or reduce the expression of target genes through virus and non-virus-based gene transfection methods to achieve tissue regeneration. Animal experiments and preclinical studies have demonstrated the beneficial role of genetically modified organoids in various aspects of organ regeneration, including thymus, lacrimal glands, brain, lung, kidney, photoreceptors, etc. Furthermore, the technology offers a potential treatment option for various diseases, such as Fabry disease, non-alcoholic steatohepatitis, and Lynch syndrome. Nevertheless, the uncertain safety of genetic modification, the risk of organoid application, and bionics of current genetically modified organoids are still challenging. This review summarizes the researches on genetically modified organoids in recent years, and describes the transfection methods and functions of genetically modified organoids, then introduced their applications at length. Also, the limitations and future development directions of genetically modified organoids are included.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Shifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yuesheng Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guodong Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Yan H, Abdulla A, Wang A, Ding S, Zhang M, Zhang Y, Zhuang TY, Wu L, Wang Y, Ren R, Jiang L, Ding X. Time-Lapse Acquisition of Both Freely Secreted Proteome and Exosome Encapsulated Proteome in Live Organoids' Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406509. [PMID: 39573935 PMCID: PMC11727246 DOI: 10.1002/advs.202406509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Indexed: 01/14/2025]
Abstract
Proteomic communications in neighboring microenvironments during early organ development is a dynamic process that continuously reshapes human embryonic stem cells (hESCs) developmental fate. Such dynamic proteomic alteration in the microenvironment consists of both freely secreted proteome and exosome-encapsulated proteome. Simultaneous monitoring of the time-lapse shift of both proteomes with live organoids remains technically challenging. Here, a continuous organoid secretion/encapsulation proteome tandem LC-MS/MS (COSEP-LCM) is introduced, which permits time-lapse monitoring of proteomic alterations both in free secretion form and in exosome encapsulated form at live organoids' microenvironment. Continuous growth of human cerebral organoids (COs) and free-secretion/exosome-encapsulation proteomics acquisition with COSEP-LCM for 60 days is demonstrated. SERPINF1, F5, and EFNB1 are initially enriched inside exosomes as encapsulated excretion and then gradually enriched outside exosomes as freely secreted excretion, while C3 is initially enriched outside exosomes as freely secreted excretion and gradually enriched inside exosomes as encapsulated excretion. Such dynamic excretion pattern paradigm shift may imply critical developmental strategy evolution during early human cerebral development. COSEP-LCM offers a platform technique for continuous inside/outside exosome proteomics co-analysis in live organoids' microenvironment.
Collapse
Affiliation(s)
- Haoni Yan
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Aynur Abdulla
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Shuyu Ding
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Manlin Zhang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yizhi Zhang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Tsz Yui Zhuang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Leqi Wu
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Rongrong Ren
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalShanghai Jiaotong University School of MedicineShanghai200092P. R. China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| |
Collapse
|
13
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Atta H, Kassem DH, Kamal MM, Hamdy NM. Harnessing the ubiquitin proteasome system as a key player in stem cell biology. Biofactors 2025; 51:e2157. [PMID: 39843166 DOI: 10.1002/biof.2157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins. Proteasomes have a critical role in controlling protein homeostasis in all cell types, including stem cells. We will discuss the role of UPS enzymes as well as the 26S proteasome complex in stem cell biology from several angles. First, we shall overview common trends of proteasomal activity and gene expression of different proteasomal subunits and UPS enzymes upon passaging and differentiation of stem cells toward various cell lineages. Second, we shall explore the effect of modulating proteasomal activity in stem cells and navigate through the interrelation between proteasomes' activity and various proteasome-related transcription factors. Third, we will shed light on curated microRNAs and long non-coding RNAs using various bioinformatics tools that might have a possible role in regulating UPS in stem cells and possibly, upon manipulation, can enhance the differentiation process into different lineages and/or delay senescence upon cell passaging. This will help to decipher the role played by individual UPS enzymes and subunits as well as various interrelated molecular mediators in stem cells' maintenance and/or differentiation and open new avenues in stem cell research. This can ultimately provide a leap toward developing novel therapeutic interventions related to proteasome dysregulation.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Chuang CF, Phan TN, Fan CH, Vo Le TT, Yeh CK. Advancements in ultrasound-mediated drug delivery for central nervous system disorders. Expert Opin Drug Deliv 2025; 22:15-30. [PMID: 39625732 DOI: 10.1080/17425247.2024.2438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS. AREAS COVERED This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed. EXPERT OPINION FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Thanh-Thuy Vo Le
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
de Sousa Moreira A, Lopes B, Sousa AC, Coelho A, Sousa P, Araújo A, Delgado E, Alvites R, Maurício AC. Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients. Int J Mol Sci 2024; 26:232. [PMID: 39796087 PMCID: PMC11719664 DOI: 10.3390/ijms26010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential. These therapies, particularly those based on mesenchymal stem cells, offer the potential to repair and protect retinal tissues through the bioactive molecules (growth factors, cytokines, chemokines) secreted, their secretome. However, research in this field, especially on the use of umbilical cord mesenchymal stem cells' secretome, remains sparse. Most clinical trials focus on human glaucomatous patients, leaving a significant gap in veterinary patients' application, especially in dogs, with additional research being needed to determine its usefulness in canine glaucoma treatment. Future studies should aim to evaluate these therapies across both human and veterinary contexts, broadening treatment possibilities for glaucoma.
Collapse
Affiliation(s)
- Alícia de Sousa Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Araújo
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Esmeralda Delgado
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra n° 1317, 4585-116 Paredes, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| |
Collapse
|
17
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
18
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
19
|
Wong HPN, Selvakumar SV, Loh PY, Liau JYJ, Liau MYQ, Shelat VG. Ethical frontiers in liver transplantation. World J Transplant 2024; 14:96687. [PMID: 39697458 PMCID: PMC11438941 DOI: 10.5500/wjt.v14.i4.96687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Liver transplantation represents a pivotal intervention in the management of end-stage liver disease, offering a lifeline to countless patients. Despite significant strides in surgical techniques and organ procurement, ethical dilemmas and debates continue to underscore this life-saving procedure. Navigating the ethical terrain surrounding this complex procedure is hence paramount. Dissecting the nuances of ethical principles of justice, autonomy and beneficence that underpin transplant protocols worldwide, we explore the modern challenges that plaques the world of liver transplantation. We investigate the ethical dimensions of organ transplantation, focusing on allocation, emerging technologies, and decision-making processes. PubMed, Scopus, Web of Science, Embase and Central were searched from database inception to February 29, 2024 using the following keywords: "liver transplant", "transplantation", "liver donation", "liver recipient", "organ donation" and "ethics". Information from relevant articles surrounding ethical discussions in the realm of liver transplantation, especially with regards to organ recipients and allocation, organ donation, transplant tourism, new age technologies and developments, were extracted. From the definition of death to the long term follow up of organ recipients, liver transplantation has many ethical quandaries. With new transplant techniques, societal acceptance and perceptions also play a pivotal role. Cultural, religious and regional factors including but not limited to beliefs, wealth and accessibility are extremely influential in public attitudes towards donation, xenotransplantation, stem cell research, and adopting artificial intelligence. Understanding and addressing these perspectives whilst upholding bioethical principles is essential to ensure just distribution and fair allocation of resources. Robust regulatory oversight for ethical sourcing of organs, ensuring good patient selection and transplant techniques, and high-quality long-term surveillance to mitigate risks is essential. Efforts to promote equitable access to transplantation as well as prioritizing patients with true needs are essential to address disparities. In conclusion, liver transplantation is often the beacon of hope for individuals suffering from end-stage liver disease and improves quality of life. The ethics related to transplantation are complex and multifaceted, considering not just the donor and the recipient, but also the society as a whole.
Collapse
Affiliation(s)
- Hoi Pong Nicholas Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Surya Varma Selvakumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Pei Yi Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jovan Yi Jun Liau
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Matthias Yi Quan Liau
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vishalkumar Girishchandra Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Surgical Science Training Centre, Tan Tock Seng Hospital, Singapore 308433, Singapore
| |
Collapse
|
20
|
Altabas V, Bulum T. Current Challenges in Pancreas and Islet Transplantation: A Scoping Review. Biomedicines 2024; 12:2853. [PMID: 39767759 PMCID: PMC11673013 DOI: 10.3390/biomedicines12122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes mellitus is an autoimmune condition characterized by the destruction of pancreatic β-cells, necessitating insulin therapy to prevent life-threatening complications such as diabetic ketoacidosis. Despite advancements in glucose monitoring and pharmacological treatments, managing this disease remains challenging, often leading to long-term complications and psychological burdens, including diabetes distress. Advanced treatment options, such as whole-pancreas transplantation and islet transplantation, aim to restore insulin production and improve glucose control in selected patients with diabetes. The risk of transplant rejection necessitates immunosuppressive therapy, which increases susceptibility to infections and other adverse effects. Additionally, surgical complications, including infection and bleeding, are significant concerns, particularly for whole-pancreas transplantation. Recently, stem cell-derived therapies for type 1 diabetes have emerged as a promising alternative, offering potential solutions to overcome the limitations of formerly established transplantation methods. The purpose of this scoping review was to: (1) summarize the current evidence on achieved insulin independence following various transplantation methods of insulin-producing cells in patients with type 1 diabetes; (2) compare insulin independence rates among whole-pancreas transplantation, islet cell transplantation, and stem cell transplantation; and (3) identify limitations, challenges and potential future directions associated with these techniques. We systematically searched three databases (PubMed, Scopus, and Web of Science) from inception to November 2024, focusing on English-language, peer-reviewed clinical studies. The search terms used were 'transplantation' AND 'type 1 diabetes' AND 'insulin independence'. Studies were included if they reported on achieved insulin independence, involved more than 10 patients with type 1 diabetes, and had a mean follow-up period of at least one year. Reviewers screened citations and extracted data on transplant type, study population size, follow-up duration, and insulin independence rates. We identified 1380 papers, and after removing duplicates, 705 papers remained for title and abstract screening. A total of 139 English-language papers were retrieved for full-text review, of which 48 studies were included in this review. The findings of this scoping review indicate a growing body of literature on transplantation therapy for type 1 diabetes. However, significant limitations and challenges, like insufficient rates of achieved insulin independence, risks related to immunosuppression, malignant diseases, and ethical issues remain with each of the established techniques, highlighting the need for innovative approaches such as stem cell-derived islet transplantation to promote β-cell regeneration and protection.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases Mladen Sekso, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Bulum
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2024:szae088. [PMID: 39674578 DOI: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital, Changsha, Hunan, People's Republic of China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People's Republic of China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Aly RM, Abohashem RS, Ahmed HH, Halim ASA. Combinatorial intervention with dental pulp stem cells and sulfasalazine in a rat model of ulcerative colitis. Inflammopharmacology 2024; 32:3863-3879. [PMID: 39078564 PMCID: PMC11550242 DOI: 10.1007/s10787-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Ulcerative colitis is an inflammatory bowel disease (IBD) that involves inflammation of the colon lining and rectum. Although a definitive cure for IBD has not been identified, various therapeutic approaches have been proposed to mitigate the symptomatic presentation of this disease, primarily focusing on reducing inflammation. The aim of the present study was to evaluate the therapeutic potential of combining dental pulp stem cells (DPSCs) with sulfasalazine in an acetic acid-induced ulcerative colitis rat model and to assess the impact of this combination on the suppression of inflammatory cytokines and the regulation of oxidative stress in vivo. METHODS Ulcerative colitis was induced in rats through transrectal administration of 3% acetic acid. The therapeutic effect of combining DPSCs and sulfasalazine on UC was evaluated by measuring the colonic weight/length ratio and edema markers; performing histopathological investigations of colon tissue; performing immunohistochemical staining for NF-κB-P65 and IL-1β; and evaluating oxidative stress and antioxidant indices via ELISA. Moreover, the proinflammatory markers NF-κB-P65, TNF-α and TLR-4 were assessed in colon tissue via ELISA. Furthermore, qRT‒PCR was used to estimate the expression levels of the TLR-4, NF-κB-P65, and MYD88 genes in colon tissue. RESULTS The investigated macroscopic and microscopic signs of inflammation were markedly improved after the combined administration of sulfasalazine and DPSCs, where a noticeable improvement in histological structure, with an intact mucosal epithelium and mild inflammatory infiltration in the mucosa and submucosa, with slight hemorrhage. The administration of either DPSCs or sulfasalazine, either individually or in combination, significantly reduced ROS levels and significantly increased XOD activity. The immunohistochemical results demonstrated that the combined administration of DPSCs and sulfasalazine attenuated NFκB-p65 and IL-1β expression. Finally, the combined administration of DPSCs and sulfasalazine significantly downregulated MyD88, NF-κB and TLR4 gene expression. CONCLUSIONS Cotreatment with DPSCs and sulfasalazine had synergistic effects on ulcerative colitis, and these effects were relieved.
Collapse
Affiliation(s)
- Riham M Aly
- Basic Dental Science Department, Oral & Dental Research Institute, National Research Centre, 33 El Bohouth St, Dokki, Giza, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Rehab S Abohashem
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Alyaa S Abdel Halim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
23
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
24
|
Kaibagarova I, Saparbaev S, Aringazina R, Zhumabaev M, Nurgaliyeva Z. The role of fetal pancreatic islet cell transplantation in the treatment of type 2 diabetes mellitus. J Diabetes Metab Disord 2024; 23:1949-1957. [PMID: 39610528 PMCID: PMC11599508 DOI: 10.1007/s40200-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetes mellitus has a negative impact on patients' lives and is a significant medical and social problem. Due to the high prevalence of diabetes mellitus, shortage of donor materials, immune rejection of the pancreas and limited efficacy of existing treatment methods, the study of promising and more effective approaches to the treatment of this disease, such as transplantation of fetal pancreatic islet cells, becomes relevant. The aim of the study is to determine the efficacy and necessity of fetal pancreatic islet cell transplantation in the treatment of type 2 diabetes mellitus. Methods The study was carried out with the help of analytical-synthetic method, literature review and analysis of medical databases corresponding to the topic of work, clinical and experimental studies conducted by other authors were considered. Results As a result of this work, it was found that the use of fetal stem cell transplantation is an effective method in the treatment of diabetes. Studies confirm that this method reduces hyperglycaemia and NOMA index, increases c-peptide values without serious side effects on the background of treatment. Conclusions Fetal islet cells have advantages in cell culture, relatively low immunogenicity, effective engraftment, although they may produce less insulin relative to adult somatic stem cells. Transplanted islet cells are able to replace and renew the function of the recipient's own pancreatic β-cells, and prevent their destruction. Fetal pancreatic islet cell transplantation is a promising treatment option for type 2 diabetes that can complement or replace existing therapies, improving patients' glucose control.
Collapse
Affiliation(s)
- Indira Kaibagarova
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str, Aktobe, 030012 Republic of Kazakhstan
| | - Samat Saparbaev
- Medical Center Al-Jami, 23 Mailin Str, Astana, 010000 Republic of Kazakhstan
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030012 Aktobe, Republic of Kazakhstan
| | - Marat Zhumabaev
- Department of Surgical Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030012 Aktobe, Republic of Kazakhstan
| | - Zhansulu Nurgaliyeva
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str, Aktobe, 030012 Republic of Kazakhstan
| |
Collapse
|
25
|
Jin T, Liu X, Li G, Sun S, Xie L. Intravenous injection of BMSCs modulate tsRNA expression and ameliorate lung remodeling in COPD mice. Stem Cell Res Ther 2024; 15:450. [PMID: 39587604 PMCID: PMC11590572 DOI: 10.1186/s13287-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by lung remodeling induced by chronic inflammation, presenting challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) have shown promise in mitigating inflammation and tissue repairing in various diseases, including COPD. However, the optimal therapeutic pathways for different stages of COPD remain unclear. Transfer RNA-derived small RNAs (tsRNAs) are emerging as key regulators of cellular processes. However, their role in COPD and MSC therapy remains poorly understood. METHODS This study explored the optimal administration routes and efficacy of bone marrow mesenchymal stem cells (BMSCs) and their extracellular vesicles (BMSC-EVs) in treating inflammatory or emphysematous COPD stages in mouse models. Male C57BL/6 mice were exposed to cigarette smoke daily for 6 or 16 weeks, with intraperitoneal CSE injections every 10 days, to model different stages of COPD. Mice were then treated with tracheal or intravenous injections of BMSCs or BMSC-EVs. PKH26 fluorescent dye labeled BMSCs and BMSC-EVs for pulmonary distribution observation. Lung tissue inflammation, apoptosis, EMT, and collagen deposition were assessed using HE staining, TUNEL assay, immunohistochemistry, and Sirius Red staining. Gene and tsRNA expression in lung tissues were analyzed by high-throughput sequencing. Differentially expressed tsRNAs (DE-tsRNAs) were validated by RT-qPCR. Statistical analysis was performed using GraphPad Prism 9.0. Data are presented as mean ± standard deviation (SD). RESULTS In 16-week COPD mice characterized by emphysema, tracheal administration of BMSC-EVs showed more significant lung distribution and inhibition of emphysematous pathology. In 6-week COPD mice characterized by inflammation, intravenous injection of BMSCs led to significant pulmonary homing, significantly reduced lung inflammation, apoptosis, EMT, and collagen deposition (P < 0.05). High-throughput sequencing indicated BMSC treatment downregulated genes related to these processes while upregulating mitochondrial function genes. Co-expression networks of DE-tsRNAs and target genes suggested potential roles in COPD. RT-qPCR confirmed significant differential expression of two DE-tsRNAs during COPD progression and BMSC treatment (P < 0.05). CONCLUSIONS Our study provides insights into selecting MSC and MSC-EV administration routes for different COPD stages. High-throughput sequencing supports BMSCs' inhibitory effects on lung remodeling and identifies the first tsRNA expression profile in a COPD model, warranting further investigation.
Collapse
Affiliation(s)
- Ting Jin
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xianyang Liu
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guoan Li
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Sun
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Xie
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
26
|
Minev T, Balbuena S, Gill JM, Marincola FM, Kesari S, Lin F. Mesenchymal stem cells - the secret agents of cancer immunotherapy: Promises, challenges, and surprising twists. Oncotarget 2024; 15:793-805. [PMID: 39576660 PMCID: PMC11584032 DOI: 10.18632/oncotarget.28672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recognized for their immunomodulatory capabilities, tumor-homing abilities, and capacity to serve as carriers for therapeutic agents. This review delves into the role of adoptively transferred MSCs in tumor progression, their interactions with the tumor microenvironment, and their use in delivering anti-cancer drugs, oncolytic viruses, and genetic material. It also addresses the challenges and limitations associated with MSC therapy, such as variability in MSC preparations and potential tumorigenic effects emphasizing the need for advanced genetic engineering and personalized approaches to enhance therapeutic efficacy. The review concludes with an optimistic outlook on the future of MSC-based therapies, underscoring their promise to develop effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Theia Minev
- CureScience Institute, San Diego, CA 92121, USA
| | | | | | | | - Santosh Kesari
- Department of Translational Neurosciences, Pacific Neuroscience Institute and Providence Saint John's Health Center, Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | - Feng Lin
- CureScience Institute, San Diego, CA 92121, USA
| |
Collapse
|
27
|
Song SJ, Nam Y, Rim YA, Ju JH, Sohn Y. Comparative analysis of regulations and studies on stem cell therapies: focusing on induced pluripotent stem cell (iPSC)-based treatments. Stem Cell Res Ther 2024; 15:447. [PMID: 39574212 PMCID: PMC11583560 DOI: 10.1186/s13287-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Stem cell therapies have emerged as a promising approach in regenerative medicine, demonstrating potential in personalized medicine, disease modeling, and drug discovery. Therapies based on induced pluripotent stem cells (iPSCs) particularly stand out for their ability to differentiate into various cell types while avoiding ethical concerns. However, the development and application of these therapies are influenced by varying regulatory frameworks across countries. This study provides a comparative analysis of regulations and research on stem cell therapies in key regions: The European Union (EU), Switzerland, South Korea, Japan, and the United States. First, the study reviews the regulatory frameworks on stem cell therapies. The EU and Switzerland maintain rigorous guidelines that prioritize safety and ethical considerations, which can hinder innovation. In contrast, the United States adopts a more flexible regulatory stance, facilitating the rapid development of stem cell therapies. South Korea and Japan take a balanced approach by incorporating practices from both regimes. These regulatory differences reflect each country's unique priorities and impact the pace and scope of stem cell therapy development. Moreover, the study examines global trends in clinical trials on stem cell treatments based on data obtained from two sources: ClinicalTrials.gov and ICTRP. Findings indicate a significant growth in the number of clinical trials since 2008, particularly in that involving iPSCs. Therapeutic studies involving iPSCs predominantly target conditions affecting the cardiovascular and nervous systems which are considered vital. The results put emphasis on the safety of stem cell treatments. Meanwhile, the number of such trials also varies by country. The United States and Japan, where relatively flexible guidelines on stem cell research are adopted, are in a leading position. However, countries in the EU fall behind with rigorous regulations imposed. This reflects the need for more flexible regulatory guidance for active development of stem cell therapies. The findings underscore the importance of legal frameworks in facilitating innovation while ensuring safety. Regulatory agencies in different countries should collaborate to achieve a balanced global standard to ensure the safe and efficient advancement of stem cell therapies. Global regulatory convergence will promote international collaboration in research and the applicability of new treatments.
Collapse
Affiliation(s)
- Seohyun Jennie Song
- Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Yoojun Nam
- YiPSCELL Inc., L2 Omnibus Park, Banpo-Dearo 222, Seocho-Gu, Seoul, 06591, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- YiPSCELL Inc., L2 Omnibus Park, Banpo-Dearo 222, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- YiPSCELL Inc., L2 Omnibus Park, Banpo-Dearo 222, Seocho-Gu, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
28
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Ma YN, Hu X, Karako K, Song P, Tang W, Xia Y. Exploring the multiple therapeutic mechanisms and challenges of mesenchymal stem cell-derived exosomes in Alzheimer's disease. Biosci Trends 2024; 18:413-430. [PMID: 39401895 DOI: 10.5582/bst.2024.01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder, and the current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exos) have garnered significant attention due to their unique biological properties, showcasing tremendous potential as an acellular alternative therapy for AD. MSC-Exos exhibit excellent biocompatibility and low immunogenicity, enabling them to effectively cross the blood-brain barrier (BBB) and deliver therapeutic molecules directly to target cells. They are highly efficacious in delivering nucleic acid-based drugs. Moreover, the production process of MSC-Exos benefits from a high proliferation capacity and multilineage differentiation potential, allowing for production while maintaining a stable composition. Despite the significant theoretical advantages of MSC-Exos, their clinical use still faces multiple challenges, including cross-contamination during isolation and purification processes, the complexity of their components, and the presence of potential adverse paracrine factors. Future research needs to focus on optimizing separation and purification techniques, enhancing delivery methods to improve therapeutic efficacy, and performing detailed analyses of the components of MSC-Exos. In summary, MSC-Exos hold promise as an effective option for the treatment of AD and other neurodegenerative diseases, driving their clinical research and use in related fields.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
30
|
Naeimi A, Mousavi SF, Amini N, Golipoor M, Ghasemi Hamidabadi H. Therapeutic potential of melatonin-pretreated human dental pulp stem cells (hDPSCs) in an animal model of spinal cord injury. Sci Rep 2024; 14:28174. [PMID: 39548147 PMCID: PMC11568238 DOI: 10.1038/s41598-024-78077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Dental pulp stem cells (DPSCs) show potential for treating neurodegenerative and traumatic diseases due to their neural crest origin. Melatonin (MT), an endogenous neurohormone with well-documented anti-inflammatory and antioxidant properties, has shown promising results with MSCs in terms of engraftment, proliferation, and neuronal differentiation in animal SCI models. However, the effects of melatonin preconditioning on human dental pulp stem cells (hDPSCs) for SCI treatment remain unclear. This study investigates the impact of melatonin preconditioning on hDPSCs engraftment, neural differentiation, and neurological function in rats with SCI. Forty-two male Sprague-Dawley rats were divided into six groups: Control, Sham, Model, Vehicle, Lesion Treatment A (SCI + hDPSCs), and Lesion Treatment B (SCI + MT-hDPSCs). After obtaining hDPSCs, stem cells were evaluated using flow cytometry. Cell viability was assessed using the MTT assay. SCI was induced in the Model, Vehicle, Lesion Treatment A, and Lesion Treatment B groups. The Lesion Treatment A and B groups received hDPSCs and hDPSCs pretreated with melatonin, respectively, 1 week after SCI, while the Vehicle group received only an intravenous injection of DMEM to simulate treatment. The other groups were used for behavioral testing. Immunohistochemistry (IHC) was employed to assess hDPSCs engraftment and differentiation at the SCI site. Motor function across the six groups was evaluated using the Basso, Beattie, and Bresnahan (BBB) score. Histological studies and cell counts confirmed hDPSCs implantation at the injury site, with a significantly higher presence in the MT-hDPSCs compared to hDPSCs (p < 0.01). IHC revealed that hDPSCs and MT-hDPSCs differentiated into neurons and astrocytes, with greater differentiation observed in the MT-hDPSCs compared to the hDPSCs (p < 0.01 and p < 0.05, respectively). Functional improvement was noted in both SCI + hDPSCs and SCI + MT-hDPSCs groups compared to SCI and Vehicle groups from Week 4 onward (p < 0.001). Significant differences were also observed between the SCI + hDPSCs and SCI + MT-hDPSCs groups starting from Week 7 (p < 0.01). Preconditioning hDPSCs with melatonin enhances engraftment, neuronal differentiation, and greater performance improvement compared to hDPSCs alone in the SCI animal model.
Collapse
Affiliation(s)
- Arvin Naeimi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Fatemeh Mousavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Golipoor
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
31
|
Brenes AJ, Griesser E, Sinclair LV, Davidson L, Prescott AR, Singh F, Hogg EKJ, Espejo-Serrano C, Jiang H, Yoshikawa H, Platani M, Swedlow JR, Findlay GM, Cantrell DA, Lamond AI. Proteomic and functional comparison between human induced and embryonic stem cells. eLife 2024; 13:RP92025. [PMID: 39540879 PMCID: PMC11563575 DOI: 10.7554/elife.92025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.
Collapse
Affiliation(s)
- Alejandro J Brenes
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Cell Signalling & Immunology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Human Pluripotent Stem Cell Facility, School of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EHDundeeUnited Kingdom
| | - Eva Griesser
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Linda V Sinclair
- Cell Signalling & Immunology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Lindsay Davidson
- Human Pluripotent Stem Cell Facility, School of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EHDundeeUnited Kingdom
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Francois Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Carmen Espejo-Serrano
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hao Jiang
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Harunori Yoshikawa
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Melpomeni Platani
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jason R Swedlow
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Doreen A Cantrell
- Cell Signalling & Immunology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Angus I Lamond
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
32
|
Luo L, Hu Q, Yan R, Gao X, Zhang D, Yan Y, Liu Q, Mao S. Alpha‑Asarone Ameliorates Neuronal Injury After Ischemic Stroke and Hemorrhagic Transformation by Attenuating Blood-Brain Barrier Destruction, Promoting Neurogenesis, and Inhibiting Neuroinflammation. Mol Neurobiol 2024:10.1007/s12035-024-04596-5. [PMID: 39531192 DOI: 10.1007/s12035-024-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects. This study aims to investigate whether ASA could improve outcomes in IS and be used to mitigate HT induced by rt-PA. We employed models of permanent middle cerebral artery occlusion (pMCAO) and photothrombotic cortical injury (PCI) to investigate both the therapeutic efficacy and underlying mechanisms of ASA during the acute and recovery periods following IS, respectively. Additionally, Sprague-Dawley rats were subjected to rt-PA treatment at 6-h post-PCI to mimic HT (rt-PA-HT). Our results revealed three key findings: (1) ASA demonstrated therapeutic effects in the acute phase of pMCAO rats by alleviating blood-brain barrier damage through inhibition of glial cell-mediated neuroinflammation; (2) administration of ASA 24 h after stroke ameliorated the neurological damage during the recovery phase in PCI mice by promoting neurogenesis via activation of the BDNF/ERK/CREB signaling pathway; (3) ASA attenuated rt-PA-HT injury by modulating the NLRP3/Caspase1/IL-1β and IL-18 pathways. Overall, our findings suggest that ASA mitigates neuronal injury following IS and HT, positioning it as a promising candidate for treating these conditions.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Fang JR, Chen CL, Chen YQ, Luo SK. Inhibition of Small Extracellular Vesicles by GW4869 Does not Disrupt the Paracrine Regulation of Adipose-Derived Mesenchymal Stem Cells Over Keloid Fibroblasts. Aesthetic Plast Surg 2024:10.1007/s00266-024-04477-1. [PMID: 39496963 DOI: 10.1007/s00266-024-04477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Keloid, scar caused by atypical wound repair, represents a significant difficulty for specialists in plastic surgery and dermatology. Adipose-derived mesenchymal stem cells (ADSCs) can regulate fibrotic phenotypes of keloid fibroblasts (KFs) in a paracrine fashion, but whether small extracellular vesicles (SEVs) are the key functional carrier in ADSC paracrine regulation of KFs remains unknown. This study aims to explore whether the regulatory effects of conditioned medium (CM) obtained from ADSCs on KFs can be impaired by decreased SEV content in the ADSC-CM. METHODS Clinical specimens were utilized to extract keloid fibroblasts (KFs), normal fibroblasts (NFs), and adipose-derived stem cells (ADSCs). Fibroblasts were cultured with CM obtained from ADSCs untreated or treated with the sphingomyelinase inhibitor GW4869. The features of SEVs derived from ADSC-CM were characterized, and fibroblast proliferation, migration, apoptosis, and expression of ECM proteins were analyzed. RESULTS The sphingomyelinase inhibitor GW4869 successfully reduced the SEV content in ADSC-CM, and both control ADSC-CM and ADSC-CM with reduced SEV content significantly inhibited KF proliferation, migration, and α-SMA synthesis but not KF apoptosis, whereas only NF proliferation was inhibited by ADSC-CM. The reduced SEV content only affected the inhibition of KF proliferation induced by ADSC-CM. CONCLUSION ADSC-CM inhibits various fibrotic phenotypes of KFs, but decreasing the SEV content in ADSC-CM did not significantly alter the antifibrotic effects of ADSC-CM. Thus, SEVs may not be the key mediator of ADSCs paracrine regulation of KFs. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors . www.springer.com/00266 .
Collapse
Affiliation(s)
- Jun-Ren Fang
- Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China
| | - Chun-Lin Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China
| | - Yi-Qing Chen
- Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China
| | - Sheng-Kang Luo
- Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China.
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China.
| |
Collapse
|
34
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
35
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
36
|
Şenkal-Turhan S, Bulut-Okumuş E, Aydın M, Başak Türkmen N, Taşlıdere A, Şahin F, Yılmaz Ş, Akkuş Süt P, Doğan A. Induced Pluripotent Stem Cell-Derived Parathyroid Organoids Resemble Parathyroid Morphology and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407567. [PMID: 39331961 DOI: 10.1002/advs.202407567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Indexed: 09/29/2024]
Abstract
The primary role of the parathyroid glands is to maintain calcium homeostasis through the secretion of parathyroid hormone (PTH). The limited proliferative capacity and differentiation of parathyroid cells hinder the generation of cell therapy options. In this study, parathyroid organoids are successfully generated from human-induced pluripotent stem cells (hiPSCs). At the end of the 20 days of differentiation, the parathyroid organoids exhibited distinct parathyroid morphology. Stereomicroscope, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis demonstrated the 3D arrangement of the cell layers in which intracellular structures of parathyroid cells resemble human parathyroid cellular morphology. Comprehensive molecular analyses, including RNA sequencing (RNA-Seq) and liquid chromatography/mass spectrometry (LC-MS/MS), confirmed the expression of key parathyroid-related markers. Protein expression of CasR, CxCr4, Gcm2, and PTH are observed in parathyroid organoids. Parathyroid organoids secrete PTH, demonstrate active intercellular calcium signaling, and induce osteogenic differentiation via their secretome. The tissue integration potential of parathyroid organoids is determined by transplantation into parathyroidectomized rats. The organoid transplanted animals showed significant elevations in PTH-related markers (CasR, CxCr4, Foxn1, Gcm2, and PTH). PTH secretion is detected in organoid-transplanted animals. The findings represent a significant advancement in parathyroid organoid culture and may offer a cellular therapy for treating PTH-related diseases, including hypoparathyroidism.
Collapse
Affiliation(s)
- Selinay Şenkal-Turhan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Ezgi Bulut-Okumuş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Muhterem Aydın
- Department of Veterinary Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Fırat, Elazığ, 23119, Turkey
| | - Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, 44280, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, 44280, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Şahin Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Pınar Akkuş Süt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| |
Collapse
|
37
|
Klyucherev TO, Peshkova MA, Revokatova DP, Serejnikova NB, Fayzullina NM, Fayzullin AL, Ershov BP, Khristidis YI, Vlasova II, Kosheleva NV, Svistunov AA, Timashev PS. The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11564. [PMID: 39519121 PMCID: PMC11545893 DOI: 10.3390/ijms252111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV-exosomes and matrix-bound nanovesicles (MBV)-both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration.
Collapse
Affiliation(s)
- Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria P. Revokatova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nafisa M. Fayzullina
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yana I. Khristidis
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
38
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
39
|
Muniz TDTP, Rossi MC, de Vasconcelos Machado VM, Alves ALG. Mesenchymal Stem Cells and Tissue Bioengineering Applications in Sheep as Ideal Model. Stem Cells Int 2024; 2024:5176251. [PMID: 39465229 PMCID: PMC11511598 DOI: 10.1155/2024/5176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The most common technologies in tissue engineering include growth factor therapies; metal implants, such as titanium; 3D bioprinting; nanoimprinting for ceramic/polymer scaffolds; and cell therapies, such as mesenchymal stem cells (MSCs). Cell therapy is a promising alternative to organ grafts and transplants in the treatment of numerous musculoskeletal diseases. MSCs have increasingly been used in generative medicine due to their specialized self-renewal, immunomodulation, multiplication, and differentiation properties. To further expand the potential of these cells in tissue repair, significant efforts are currently dedicated to the production of biomaterials with desirable short- and long-term biophysical properties that can aid the differentiation and expansion of MSCs. Biomaterials support MSC differentiation by modulating their characteristics, such as composition, mechanical properties, porosity, and topography. This review aimed to describe recent MSC approaches, including those associated with biomaterials, from experimental, clinical, and preclinical studies with sheep models.
Collapse
Affiliation(s)
- Talita D'Paula Tavares Pereira Muniz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Mariana Correa Rossi
- Materials Engineering Department (DEMa), São Carlos Federal University (UFSCar), 13.565-905, São Carlos, Sao Paulo, Brazil
| | - Vânia Maria de Vasconcelos Machado
- Department of Veterinary Surgery and Animal Reproduction, Imaging Diagnostic Sector, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
40
|
Zhang Y, Li D, Han Y, Wu M, Zhang S, Ma H, Liu L, Ju X. Intraovarian injection of 3D-MSC-EVs-ECM gel significantly improved rat ovarian function after chemotherapy. Reprod Biol Endocrinol 2024; 22:125. [PMID: 39415205 PMCID: PMC11481453 DOI: 10.1186/s12958-024-01299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Restoring the function of the ovary is important for chemotherapy-induced ovarian failure (COF) patients. Stem cell and extracellular vesicles (EVs) therapy show promise but need further improvement. METHODS Human umbilical cord mesenchymal stem cells (hUC-MSCs) were primarily cultured and further three-dimensional (3D) cultured using an ultra-low attachment surface method. The expression levels of nutritional cytokines and immunomodulatory and stemness-related genes of 3D-cultured hUC-MSCs were analyzed. EVs were isolated by ultracentrifugation and characterized. Ovaries were decellularized with sodium dodecyl sulfate to obtain extracellular matrix (ECM). Lyophilized EVs from three-dimensional (2D) or 3D hUC-MSCs were mixed with ECM to prepare the 2D/3D-MSC-EVs-ECM gels. The therapeutic effect of the MSC-EVs-ECM gel on cyclophosphamide (CTX) -treated rats was analyzed through various tests. RNA sequencing was used to analyze the expression changes of genes before and after treatment. RESULTS After culturing in ultra-low attachment dishes, hUC-MSCs aggregated into spheroids and significantly upregulated the expression levels of immunomodulatory and stemness-related genes. The total EVs yield was also upregulated (5.6-fold) after 3D culture. The cell viability of CTX-treated ovarian granulosa cells (OGCs) was significantly rescued by coculture with the 3D-MSC-EVs-ECM gel. Hormones indicative of ovarian function, AMH, E2, and FSH, were recovered in both the CTX + 2D-MSC-EVs-ECM gel group and the CTX + 3D-MSC-EVs-ECM gel group, while the apoptosis-related protein Bax was significantly downregulated. The 3D-MSC-EVs-ECM gel was more effective than the 2D-MSC-EVs-ECM gel. Significantly differentially expressed genes, such as Hbb-b1, Gpd1, and Sirpa, were detected by RNA sequencing. Hbb-b1 was increased in the ovaries of CTX-treated rats, and this increase was attenuated by injecting the 2D/3D-MSC-EVs-ECM gel. Gpd1 was increased after CTX treatment, and this increase was reversed by the 3D-MSC-EVs-ECM gel. Sirpa was decreased in the ovaries of CTX-treated rats, and this decrease was attenuated by injecting the 3D-MSC-EVs-ECM gel. CONCLUSIONS Our study demonstrated that the 3D-MSC-EVs-ECM gel is an efficient strategy for the recovery of ovarian function in CTX-induced ovarian failure.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong Province, 250012, China
- Department of Anesthesiology, Shanghai Jiaotong University First People's Hospital (Shanghai General Hospital), Shanghai, China
| | - Dong Li
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China
| | - Yi Han
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong Province, 250012, China
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China
| | - Min Wu
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong Province, 250012, China
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China
| | - Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong Province, 250012, China
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China
| | - Huixian Ma
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China
| | - Linghong Liu
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong Province, 250012, China.
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
41
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Desai S, Sharma D, Srinivas R, Balaji V, Thakore V, Bedi VS, Jindal R, Sugumaran A, Mohanasundaram S, Gogtay J, Gupta PK, Bhuiyan A, Atturu G. Mesenchymal stromal cell therapy (REGENACIP ®), a promising treatment option in chronic limb threatening ischemia - a narrative review. Stem Cell Res Ther 2024; 15:352. [PMID: 39380065 PMCID: PMC11463160 DOI: 10.1186/s13287-024-03957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Chronic Limb Threatening Ischemia (CLTI) is a challenging clinical problem associated with high morbidity and mortality. Endovascular interventions have been the cornerstone of treatment whenever possible. It is estimated that CLTI represents < 10% of all Peripheral Artery Disease patients, yet 50% of the patients end up either with a major amputation of the lower limbs or die of cardiovascular causes within one year period, especially in those with unsuccessful revascularization or "no-option" CLTI. Cell-based therapeutics, especially bone marrow-derived mesenchymal stromal cells have emerged as a potential, promising, and novel alternate therapeutic modality in the management of CLTI, bolstered with positive results in numerous research, including randomized and nonrandomized trials. REGENACIP® is one such BM-MSC therapy approved by Central Drugs Standard Control Organization in India for the management of "no-option" Atherosclerotic Peripheral Arterial disease / Buerger's disease patients with established critical limb ischemia in Rutherford Grade III-5 or III-6, not eligible for or have failed traditional revascularization treatment, with rest pain and / or ulcers in the affected limb. The current review aims to deliberate upon the various aspects of CLTI and clinical benefits of REGENACIP® therein.
Collapse
Affiliation(s)
- Sanjay Desai
- Senior Consultant Vascular and Endovascular surgeon, Ramaiah Memorial Hospital, Bengaluru, India
| | - Digvijay Sharma
- Head of Department, Vascular Interventions and Surgery, Fortis Escorts Heart Institute, New Delhi, India
| | - Rajesh Srinivas
- Vascular Surgeon, NH-Mazumdar-Shaw Medical Center, Bengaluru, India
| | | | - Vijay Thakore
- Senior Vascular Surgeon, Aadicura Super Speciality Hospitals, Vadodara, India
| | - Varinder Singh Bedi
- Chairman & Senior Consultant, Institute of Vascular & Endovascular Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Ravul Jindal
- Director of Vascular & Endovascular Surgery, Fortis Hospital, Mohali, India
| | | | | | | | | | - Aniruddha Bhuiyan
- Consultant Vascular & Endovascular Surgery, Vascular Care n Cure, Mumbai, India
| | - Gnaneswar Atturu
- Head & Senior Consultant, Department of Vascular & Endovascular Surgery, Renova Hospitals, Hyderabad, India
| |
Collapse
|
43
|
Shamsul Kamal AA, Fakiruddin KS, Bobbo KA, Ling KH, Vidyadaran S, Abdullah S. Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges. Malays J Med Sci 2024; 31:56-82. [PMID: 39416732 PMCID: PMC11477465 DOI: 10.21315/mjms2024.31.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 10/19/2024] Open
Abstract
The insufficient and unspecific target of classical chemotherapies often leads to therapy resistance and cancer recurrence. Over the past decades, discoveries about mesenchymal stem cell (MSC) biology have provided new potential approaches to improve cancer therapy. Researchers have utilised the multipotent, regenerative and immunosuppressive qualities of MSCs and tropisms towards inflammatory, hypoxic and malignant sites in various therapeutic applications. Although MSC-based therapies have generally been demonstrated safe, their effectiveness remains limited when these cells are used alone. However, through genetic engineering, researchers have proven that MSCs can be modified to have specialised delivery roles to increase their therapeutic efficacy in cancer treatment. They can be made to overexpress therapeutic proteins through viral or non-viral genetic modification, which enhances their innate properties. Nevertheless, these engineering strategies must be optimised to increase therapeutic efficacy and targeting effectiveness while minimising any loss of MSC function. This review underscores the cutting-edge methods for engineering MSCs, discusses their promise and the difficulties in translating them into clinical settings, and offers some prospective suggestions for the future on achieving their full therapeutic potential.
Collapse
Affiliation(s)
- Aishah Amirah Shamsul Kamal
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Shaik Fakiruddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Khadijat Abubakar Bobbo
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - King Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
44
|
Khandia R, Gurjar P, Priyanka, Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders - a review. Int J Surg 2024; 110:6367-6381. [PMID: 39705668 DOI: 10.1097/js9.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 12/22/2024]
Abstract
Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them. Stem cell therapy has emerged as a hope for neurodegenerative disorders since it is not only the damaged neurons that might be replaced, but other neuromodulators and neuroprotectors are secreted. Stem cell terminal differentiation before implantation ensures the implantation of correct cells and molecular markers like carbonic anhydrase II, CNPase (2',3'-cyclic nucleotide 3'-phosphohydrolase), myelin basic protein (MBP), and myelin oligodendrocyte glycoprotein (MOG) elucidate the differentiation. Secretion of various growth factors like epidermal growth factor (EGF), keratinocyte growth factor (KGF), vascular endothelial growth factor-α (VEGF-α), transforming growth factor (TGF), and macrophage inflammatory protein (MIP) supports cell survival, cell proliferation, blood vessel formation, axon regeneration, and neuroglial functional connection formation at the site of degeneration. Adverse effects of stem cell therapy, like teratogenicity and differentiation in different cells other than the desired one under the influence of microenvironment, are a few key concerns. Post-transplantation improved synaptic plasticity, apoptosis inhibition, and reduction in tau-phosphorylation and amyloid beta (Aβ) production has been observed in Alzheimer's patients. A large number of experimental, preclinical, and clinical studies have been conducted, and encouraging results have been obtained. The present review exhaustively discusses various kinds of stem cells, their usage in treating neurodegenerative disorders, limitations and challenges, and ethical issues related to stem cell therapy.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru AngadDev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Tambe P, Undale V, Sanap A, Bhonde R, Mante N. The prospective role of mesenchymal stem cells in Parkinson's disease. Parkinsonism Relat Disord 2024; 127:107087. [PMID: 39142905 DOI: 10.1016/j.parkreldis.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a stressful neurodegenerative disorder affecting millions worldwide. PD leads to debilitating motor and cognitive symptoms such as tremors, rigidity, and difficulty walking. Current therapies for PD are symptomatic and don't address the root cause. Therefore, there is an urgent need for better management and intensive research into alternative therapies. Mesenchymal stem cell (MSC) therapy is among the leading contenders among these promising avenues. We examined preclinical and clinical evidence demonstrating the neuroprotective, anti-inflammatory, and regenerative properties of the MSCs. This review focuses on the complex pathophysiological mechanisms of PD, as well as the perspectives of MSCs and their derivatives, such as secretomes and exosomes, in the clinical management of PD. We also analyzed the challenges and limitations of each approach, including delivery methods, timing of administration, and long-term safety considerations.
Collapse
Affiliation(s)
- Pratima Tambe
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India.
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| | - Nishant Mante
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
46
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
47
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
48
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
49
|
Reis ALG, Maximino JR, Lage LADPC, Gomes HR, Pereira J, Brofman PRS, Senegaglia AC, Rebelatto CLK, Daga DR, Paiva WS, Chadi G. Proteomic analysis of cerebrospinal fluid of amyotrophic lateral sclerosis patients in the presence of autologous bone marrow derived mesenchymal stem cells. Stem Cell Res Ther 2024; 15:301. [PMID: 39278909 PMCID: PMC11403799 DOI: 10.1186/s13287-024-03820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressive motoneuron degenerative disorder. There are still no drugs capable of slowing disease evolution or improving life quality of ALS patients. Thus, autologous stem cell therapy has emerged as an alternative treatment regime to be investigated in clinical ALS. METHOD Using Proteomics and Protein-Protein Interaction Network analyses combined with bioinformatics, the possible cellular mechanisms and molecular targets related to mesenchymal stem cells (MSCs, 1 × 106 cells/kg, intrathecally in the lumbar region of the spine) were investigated in cerebrospinal fluid (CSF) of ALS patients who received intrathecal infusions of autologous bone marrow-derived MSCs thirty days after cell therapy. Data are available via ProteomeXchange with identifier PXD053129. RESULTS Proteomics revealed 220 deregulated proteins in CSF of ALS subjects treated with MSCs compared to CSF collected from the same patients prior to MSCs infusion. Bioinformatics enriched analyses highlighted events of Extracellular matrix and Cell adhesion molecules as well as related key targets APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG in the CSF of cell treated ALS subjects. CONCLUSIONS Extracellular matrix and cell adhesion molecules as well as their related highlighted components have emerged as key targets of autologous MSCs in CSF of ALS patients. TRIAL REGISTRATION Clinicaltrial.gov identifier NCT0291768. Registered 28 September 2016.
Collapse
Affiliation(s)
- Ana Luiza Guimarães Reis
- Laboratorio de Neurologia Translacional, Departamento de Neurologia, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Jessica Ruivo Maximino
- Laboratorio de Neurologia Translacional, Departamento de Neurologia, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | | | - Hélio Rodrigues Gomes
- Departamento de Neurologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Juliana Pereira
- LIM-31, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Debora Regina Daga
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Wellingson Silva Paiva
- Departamento de Neurologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Gerson Chadi
- Laboratorio de Neurologia Translacional, Departamento de Neurologia, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil.
- Departamento de Neurologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
50
|
Ertem T, Uysal O. Differentiation of neural stem cells from human olfactory mucosa into dopaminergic neuron-like cells. IUBMB Life 2024; 76:697-711. [PMID: 38662920 DOI: 10.1002/iub.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/31/2024]
Abstract
The aim of this study was to develop an alternative treatment method for neurodegenerative diseases with dopaminergic neuron loss such as Parkinson's disease by differentiating cells obtained from human olfactory mucosa-derived neural stem cells (hOM-NSCs) with neurotrophic agents in vitro. hOM-NSCs were isolated and subjected to immunophenotypic and MTT analyses. These hOM-NSCs were then cultured in a 3D environment to form neurospheres. The neurospheres were subjected to immunophenotypic analysis and neuronal differentiation assays. Furthermore, hOM-NSCs were differentiated into dopaminergic neuron-like cells in vitro. After differentiation, the dopaminergic neuron-like cells were subjected to immunophenotypic (TH, MAP2) and genotypic (DAT, PITX3, NURR1, TH) characterization. Flow cytometric analysis showed that NSCs were positive for cell surface markers (CD56, CD133). Immunofluorescence analysis showed that NSCs were positive for markers with neuronal and glial cell characteristics (SOX2, NESTIN, TUBB3, GFAP and NG2). Immunofluorescence analysis after differentiation of hOM-NSCs into dopaminergic neuron-like cells in vitro showed that they were positive for a protein specific for dopaminergic neurons (TH). qRT-PCR analysis showed that the expression of dopaminergic neuron-specific genes (DAT, TH, PITX3, NURR1) was significantly increased. It was concluded that hOM-NSCs may be a source of neural stem cells that can be used for cell replacement therapies in neurodegenerative diseases such as Parkinson's disease, are resistant to cell culture, can differentiate into neuronal and glial lineage, are easy to obtain and are cost effective.
Collapse
Affiliation(s)
- Tuğba Ertem
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|