1
|
Al-Naimi MS, Abu-Raghif AR, Fawzi HA. Novel therapeutic effects of rifaximin in combination with methylprednisolone for LPS-induced oxidative stress and inflammation in mice: An in vivo study. Toxicol Rep 2024; 13:101808. [PMID: 39640902 PMCID: PMC11617758 DOI: 10.1016/j.toxrep.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Cytokine-releasing syndrome (CRS) is a special form of systemic inflammatory response syndrome provoked by factors like viral infections and certain immunomodulatory drugs. To elucidate the potential role of rifaximin (RIF) and its combination with methylprednisolone (MP) against the development and progression of CRS in mice. This experiment consists of two parts: protective and therapeutic interventions. The protective experiment: in the induction group, mice received an intraperitoneal injection (IP) of 5 mg/kg lipopolysaccharide (LPS) without intervention. The other group received various drugs before the induction by three days, then observed for an additional two days (50 mg/kg MP, 50 mg/kg RIF, and a combination of 25 mg/kg RIF with 25 mg/kg MP. The second part of the study involves the therapeutic potential; all groups received similar doses of drugs to that received in the prevention groups, except LPS induction was given first, and after one hour, the mice received daily doses of the drugs for five days. At the end of the experiment, blood and tissue samples were obtained. Mice treated with RIF and its combination with MP showed improved serum TNF-α, IL-6, IL-8, IL-1β, INF-γ, MDA, and GSH in both prevention and therapeutic groups. Histopathologically, mice treated with rifaximin and its combination with MP ameliorates the tissue damage in both lung and liver tissues following LPS induction. In conclusion, rifaximin showed protective and therapeutic effects in LPS-induced cytokine storms in mice through anti-inflammatory and antioxidant mechanisms, and its combination with methylprednisolone showed additive/ synergistic action.
Collapse
Affiliation(s)
- Marwa Salih Al-Naimi
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| | - Ahmed R. Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Tepebasi MY, Selcuk E, Taner R, Tasan S, Asci H, Gunes AB, Sarisahin B, Aydın B. Potential ameliorative effect of Dapagliflozin on systemic inflammation-induced cardiovascular injury via endoplasmic reticulum stress and autophagy pathway. Mol Biol Rep 2024; 51:1080. [PMID: 39432138 DOI: 10.1007/s11033-024-09990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Dapagliflozin (DPG) is a sodium-glucose cotransporter-2 inhibitor and is used in the treatment of diabetes. In this study, we aimed to investigate the effect of DPG on cardiotoxicity caused by systemic inflammation via endoplasmic reticulum (ER) stress and autophagy. METHODS AND RESULTS Four groups of thirty-two Wistar Albino rats were created: Control (1 ml oral physiological saline for five days and intraperitoneal saline on the 5th day), LPS (1 ml oral physiological saline for five days and intraperitoneal 5 mg/kg of LPS on the 5th day), LPS + DPG (10 mg/kg of DPG orally for five days and 5 mg/kg of LPS intraperitoneally on the 5th day), and DPG (10 mg/kg of DPG orally for five days and 5 mg/kg of SF intraperitoneally on the 5th day). Histopathological and immunohistochemical analyses were performed on heart and aorta tissues. ER stress and autophagy gene markers in heart tissues were evaluated by RT-qPCR. Oxidative stress in heart tissues and serum cardiac enzymes were analyzed by spectrophotometric method. The heart and aortic tissues of the LPS group showed increased expressions of Tumor Necrosis Factor-α (TNF-α) and Caspase-3 (Cas-3), along with mild hyperemia, slight inflammatory cell infiltrations, and myocardial cell damage. The heart tissues also showed genetically increased expressions of include binding immunoglobulin protein (BiP/ GRP78), protein kinase RNA-like ER Kinase (PERK), inositol-requiring enzyme 1 (IRE-1), activating transcription factors 4 (ATF-4), activating transcription factors 4 (ATF6), C/EBP homologous protein (CHOP), and BECLIN 1. Furthermore, Creatine kinase-MB (CK-MB) and Lactate dehydrogenase (LDH) levels in blood tissue significantly increased, according to biochemical analysis. With DPG therapy, all of these findings were reversed. CONCLUSION In conclusion, DPG protects against the cardiotoxic effect of systemic inflammation with its antioxidant and anti-inflammatory properties by regulating ER stress and autophagy pathways.
Collapse
Affiliation(s)
| | - Esma Selcuk
- Department of Medical Biology, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - Rumeysa Taner
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Serife Tasan
- Department of Pathology, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Ali Baran Gunes
- Undergraduate student, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - Berkehan Sarisahin
- Undergraduate student, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - Bunyamin Aydın
- Kutahya Evliya Celebi Training and Research Hospital, Division of Endocrinology and Metabolism, Kutahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
3
|
Matsuda K, Mitsuo H, Nishijima T, Uchiyama H, Nita T, Matsunaga S, Fujimoto N, Ushijima T, Ando Y, Kan-O M, Shinohara G, Kimura S, Sonoda H, Shiose A. Acute Dapagliflozin Administration Ameliorates Cardiac Surgery-Associated Acute Kidney Injury in a Rabbit Model. Circ J 2024; 88:1488-1498. [PMID: 38658352 DOI: 10.1253/circj.cj-23-0864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND Several studies have shown that sodium-glucose cotransporter-2 inhibitors have a renoprotective effect on acute kidney injury (AKI), but their effect on cardiac surgery-associated AKI is unknown. METHODS AND RESULTS AKI was induced in 25 rabbits without diabetes mellitus by cardiopulmonary bypass (CPB) for 2 h and they were divided into 5 groups: sham; dapagliflozin-treated sham; CPB; dapagliflozin-treated CPB; and furosemide-treated CPB (n=5 in each group). Dapagliflozin was administered via the femoral vein before initiating CPB. Kidney tissue and urine and blood samples were collected after the surgical procedure. There were no differences in the hemodynamic variables of each group. Dapagliflozin reduced serum creatinine and blood urea nitrogen concentrations, and increased overall urine output (all P<0.05). Hematoxylin and eosin staining showed that the tubular injury score was improved after dapagliflozin administration (P<0.01). Dapagliflozin administration mitigated reactive oxygen species and kidney injury molecule-1 as assessed by immunohistochemistry (both P<0.0001). Protein expression analysis showed improvement of inflammatory cytokines and apoptosis, and antioxidant enzyme expression was elevated (all P<0.05) through activation of the nuclear factor erythroid 2-related factor 2 pathway (P<0.01) by dapagliflozin. CONCLUSIONS Acute intravenous administration of dapagliflozin protects against CPB-induced AKI. Dapagliflozin may have direct renoprotective effects in renal tubular cells.
Collapse
Affiliation(s)
- Kensaku Matsuda
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Hiroshi Mitsuo
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Takuya Nishijima
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Hikaru Uchiyama
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Tobuhiro Nita
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Shogo Matsunaga
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Noriko Fujimoto
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Tomoki Ushijima
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Yusuke Ando
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Meikun Kan-O
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Gen Shinohara
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Satoshi Kimura
- Advanced Aortic Therapeutics, Faculty of Medicine, Kyushu University Graduate School of Medicine
| | - Hiromichi Sonoda
- Department of Cardiovascular Surgery, Kyushu University Hospital
| | - Akira Shiose
- Department of Cardiovascular Surgery, Kyushu University Hospital
| |
Collapse
|
4
|
Gómez H, Derde LPG. Sodium-Glucose Cotransporter 2 Therapy for Acute Organ Dysfunction in Critically Ill Patients. JAMA 2024; 332:377-379. [PMID: 38873705 DOI: 10.1001/jama.2024.10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Hernando Gómez
- Program for Critical Care Nephrology, the Research, Investigation and Systems Modeling (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Quagliariello V, Canale ML, Bisceglia I, Iovine M, Paccone A, Maurea C, Scherillo M, Merola A, Giordano V, Palma G, Luciano A, Bruzzese F, Zito Marino F, Montella M, Franco R, Berretta M, Gabrielli D, Gallucci G, Maurea N. Sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents ejection fraction reduction, reduces myocardial and renal NF-κB expression and systemic pro-inflammatory biomarkers in models of short-term doxorubicin cardiotoxicity. Front Cardiovasc Med 2024; 11:1289663. [PMID: 38818214 PMCID: PMC11138344 DOI: 10.3389/fcvm.2024.1289663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background Anthracycline-mediated adverse cardiovascular events are among the leading causes of morbidity and mortality in patients with cancer. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic benefits in patients with/without type 2 diabetes, chronic kidney disease, and heart failure with reduced and preserved ejection fraction. We hypothesized that the SGLT2i dapagliflozin administered before and during doxorubicin (DOXO) therapy could prevent cardiac dysfunction and reduce pro-inflammatory pathways in preclinical models. Methods Cardiomyocytes were exposed to DOXO alone or combined with dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++ were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy 2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through selective colorimetric and enzyme-linked immunosorbent assay (ELISA) methods. Female C57Bl/6 mice were treated for 10 days with a saline solution or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA. Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF) were quantified. After treatments, immunohistochemical staining of myocardial and renal p65/NF-kB was performed. Results DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels, lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory intracellular cytokines were also reduced. In preclinical models, DAPA prevented the reduction of radial and longitudinal strain and ejection fraction after 10 days of treatment with DOXO. A reduced myocardial expression of NLRP-3 and MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice. Systemic levels of IL-1β, IL-6, TNF-α, G-CSF, and GM-CSF were significantly reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP were strongly enhanced in the DOXO group; on the other hand, their expression was reduced in the DAPA-DOXO group. Troponin-T, B-type natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly reduced in the DOXO-DAPA group, revealing cardioprotective properties of SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and renal NF-kB expression. Conclusion The overall picture of the study encourages the use of DAPA in the primary prevention of cardiomyopathies induced by anthracyclines in patients with cancer.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - M. L. Canale
- Cardiology Division, Azienda USL Toscana Nord-Ovest, Versilia Hospital, Lido di Camaiore, Italy
| | - I. Bisceglia
- Integrated Cardiology Services, Department of Cardio-Thoracic-Vascular, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - C. Maurea
- ASL NA1, UOC Neurology and Stroke Unit, Ospedale del Mare, Naples, Italy
| | - M. Scherillo
- Cardiology Department, San Pio Hospital, Benevento, Italy
| | - A. Merola
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - V. Giordano
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - G. Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - A. Luciano
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Bruzzese
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Zito Marino
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Montella
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - R. Franco
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlani-ni, Roma—Fondazione per il Tuo Cuore—Heart Care Foundation, Firenze, Italy
| | - G. Gallucci
- Cardio-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| |
Collapse
|
6
|
Cai D, Chen Q, Mao L, Xiao T, Wang Y, Gu Q, Wang Q, Ji Y, Sun L. Association of SGLT2 inhibitor dapagliflozin with risks of acute kidney injury and all-cause mortality in acute myocardial infarction patients. Eur J Clin Pharmacol 2024; 80:613-620. [PMID: 38319348 PMCID: PMC10937750 DOI: 10.1007/s00228-024-03623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE Sodium-glucose cotransporter 2 (SGLT2) inhibitors have well-documented effects in reducing hospitalization or cardiovascular mortality, while the association of SGLT2 inhibitor dapagliflozin (DAPA) and the risk of acute kidney injury (AKI) in acute myocardial infarction (AMI) patients has not been comprehensively investigated. Therefore, we aimed to assess the association between DAPA and AKI risk in AMI patients after percutaneous coronary intervention (PCI) therapy. METHODS Using the Changzhou Acute Myocardial Infarction Registry database, we retrospectively included AMI patients from January 2017 to August 2021 and analyzed the risk of AKI and all-cause mortality after PCI therapy. The patients were divided into two groups according to the use of DAPA (DAPA group and Ctrl group). Patients in the DAPA group started to use DAPA after admission and continued its use during hospitalization and follow-up period. Baseline characteristics were balanced between the two groups with a propensity score matching (PSM) analysis. The outcome was AKI within 7 days after PCI and all-cause mortality during a follow-up of 2 years. Univariate and multivariate logistic regression analyses were used to assess the association between DAPA and AKI risk. RESULTS A total of 1839 AMI patients undergoing PCI were enrolled. DAPA was used in 278 (15.1%) patients. Postoperative AKI occurred in 351 (19.1%) cases. A 1:1 PSM analysis was used to reduce confounding factors. The multivariate stepwise regression analysis showed that DAPA (odds ratio, OR 0.66; 95% confidence interval, CI 0.44-0.97; P = 0.036) was an independent protective factor in the entire cohort. After matching, the use of DAPA in AMI patients was independently associated with a decline of AKI risk (OR 0.32; 95% CI, 0.19-0.53; P < 0.001) after hospital admission. Meanwhile, there were significant differences in mortality between the DAPA group and Ctrl group (2.5% vs. 7.6%, P = 0.012). CONCLUSION SGLT2 inhibitor DAPA was associated with lower risks of incident AKI and all-cause mortality in AMI patients after PCI therapy.
Collapse
Affiliation(s)
- Dabei Cai
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Qianwen Chen
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Lipeng Mao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Yu Wang
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Qingqing Gu
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Qingjie Wang
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Yuan Ji
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| | - Ling Sun
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| |
Collapse
|
7
|
Abdel-Wahab BA, El-Shoura EAM, Habeeb MS, Zaafar D. Dapagliflozin alleviates arsenic trioxide-induced hepatic injury in rats via modulating PI3K/AkT/mTOR, STAT3/SOCS3/p53/MDM2 signaling pathways and miRNA-21, miRNA-122 expression. Int Immunopharmacol 2024; 127:111325. [PMID: 38070468 DOI: 10.1016/j.intimp.2023.111325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Dapagliflozin (DPG) is a sodium-glucose co-transporter 2 inhibitor that is commonly used in the treatment of type 2 diabetes. However, studies have shown that DPG has a protective effect under a variety of experimental conditions through its antioxidative and anti-inflammatory properties. DPG's effect on experimental hepatotoxicity caused by arsenic trioxide (ATO) has yet to be investigated. The purpose of this study was to investigate the protective effect of DPG in preventing hepatic damage caused by ATO and discover the underlying mechanisms. The effect of DPG (1 mg/kg, orally) on ATO (5 mg/kg, i.p.)-induced hepatic injury was evaluated in rats. Serum liver function parameters, as well as oxidative stress biomarkers and inflammatory cytokine levels were assessed. Histopathological changes in the liver were detected using H&E staining. Using Western blotting and PCR techniques, the molecular mechanisms of DPG in ameliorating hepatic injury were investigated. DPG improved liver function by inhibiting histopathological changes, decreasing levels of hepatic function and toxicity parameters measured in both serum and tissues, and exhibiting antioxidant and anti-inflammatory effects, according to the findings. Consistent with the PCR results, DPG also decreased the expression of LC3-II, micro-RNA-122, and micro-RNA-21 while increased the expression of SOCS3. Furthermore, according to western blotting results, DPG was able to reduce the protein expression of AKT, mTOR, PI3K, and STAT3. Although further clinical research is necessary, this study highlights the potential of DPG in preventing liver damage in a rat model of hepatotoxicity induced by ATO.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mohammed S Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology, and Information, Cairo, Egypt.
| |
Collapse
|
8
|
Bashir KMI, Kim JW, Park HR, Lee JK, Choi BR, Choi JS, Ku SK. Validating the Health Benefits of Coffee Berry Pulp Extracts in Mice with High-Fat Diet-Induced Obesity and Diabetes. Antioxidants (Basel) 2023; 13:10. [PMID: 38275632 PMCID: PMC10812732 DOI: 10.3390/antiox13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The effects of coffee (Coffea arabica L.) berry pulp extracts (CBP extracts) on the improvement of diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD) were evaluated using various in vitro antioxidant activity assays and through a high-fat diet-induced mild diabetic obese mouse model. After an 84-day oral administration of CBP extracts (400-100 mg/kg), bioactivities were evaluated. The in vitro analysis showed the highest DPPH● scavenging activity of 73.10 ± 4.27%, ABTS● scavenging activity of 41.18 ± 1.14%, and SOD activity of 56.24 ± 2.81%, at a CBP extract concentration of 1000 µg/mL. The in vivo analysis of the CBP extracts showed favorable and dose-dependent anti-obesity, anti-diabetic, NAFLD, nephropathy, and hyperlipidemia refinement effects through hepatic glucose enzyme activity, 5'-AMP-activated protein kinase (AMPK) up-regulation, antioxidant activity, lipid metabolism-related gene expression, and pancreatic lipid digestion enzyme modulatory activities. This study shows that an appropriate oral dosage of CBP extracts could function as a potent herbal formulation for a refinement agent or medicinal food ingredient to control type 2 diabetes and related complications.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, Busan 46742, Republic of Korea
| | - Joo Wan Kim
- Department of Companion Animal Health, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Hye-Rim Park
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jae-Kyoung Lee
- CNS Pharm Korea Co., Ltd., Seoul 04043, Republic of Korea
- Department of Food Regulatory Science, College of Science and Technology, Korea University Sejong Campus, Sejong 30019, Republic of Korea
| | | | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
9
|
Donoiu I, Târtea G, Sfredel V, Raicea V, Țucă AM, Preda AN, Cozma D, Vătășescu R. Dapagliflozin Ameliorates Neural Damage in the Heart and Kidney of Diabetic Mice. Biomedicines 2023; 11:3324. [PMID: 38137545 PMCID: PMC10741899 DOI: 10.3390/biomedicines11123324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Measures for the control of diabetes mellitus (DM) and, especially, for the control of its complications represent a main objective of the research carried out on this disease, since both mortality and morbidity relating to DM represent real problems for the health system worldwide. The aim of our study was to evaluate nervous tissue from the heart and kidneys of mice with diabetes induced by streptozotocin (STZ) in the presence or absence of dapagliflozin (DAPA) treatment. (2) Methods: For this purpose, we used 24 C 57Bl/6 male mice, aged between 8 and 10 weeks. The mice were divided into three groups: sham (DM-), control (DM+), and treated (DM+). Diabetes mellitus was induced by injecting a single intraperitoneal dose of STZ. The duration of diabetes in the mice included in our study was 12 weeks after STZ administration; then, the heart and kidneys were sampled, and nervous tissue (using the primary antibody PGP 9.5) from the whole heart, from the atrioventricular node, and from the kidneys was analyzed. (3) Results: The density of nerve tissue registered a significant decrease in animals from the control group (DM+), to a value of 0.0122 ± 0.005 mm2 nerve tissue/mm2 cardiac tissue, compared with the sham group (DM-), wherein the value was 0.022 ± 0.006 mm2 nervous tissue/mm2 cardiac tissue (p = 0.004). Treatment with dapagliflozin reduced the nerve tissue damage in the treated (DM+DAPA) group of animals, resulting in a nerve tissue density of 0.019 ± 0.004 mm2 nerve tissue/mm2 cardiac tissue; a statistically significant difference was noted between the control (DM+) and treated (DM+DAPA) groups (p = 0.046). The same trends of improvement in nerve fiber damage in DM after treatment with DAPA were observed both in the atrioventricular node and in the kidneys. (4) Conclusions. These data suggest that dapagliflozin, when used in streptozotocin-induced diabetes in mice, reduces the alteration of the nervous system in the kidneys and in the heart, thus highlighting better preservation of cardiac and renal homeostasis, independent of any reduction in the effects of hyperglycemia produced in this disease.
Collapse
Affiliation(s)
- Ionuț Donoiu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.D.); (V.R.)
| | - Georgică Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Veronica Sfredel
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Victor Raicea
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.D.); (V.R.)
| | - Anca Maria Țucă
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Alexandra Nicoleta Preda
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Dragoş Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Radu Vătășescu
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
10
|
Santulli G, Varzideh F, Forzano I, Wilson S, Salemme L, de Donato A, Lombardi A, Rainone A, Nunziata L, Jankauskas SS, Tesorio T, Guerra G, Kansakar U, Mone P. Functional and Clinical Importance of SGLT2-inhibitors in Frailty: From the Kidney to the Heart. Hypertension 2023; 80:1800-1809. [PMID: 37403685 PMCID: PMC10529735 DOI: 10.1161/hypertensionaha.123.20598] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) enables glucose and sodium reabsorption in the kidney. SGLT2-inhibitors (also known as gliflozins, which include canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin) act by increasing glycosuria, thereby reducing glycemia. These drugs are critical to reach and keep glycemic control, a crucial feature, especially in patients with comorbidities, like frail individuals. Several studies evaluated the effects of SGLT2-inhibitors in different settings beyond diabetes, revealing that they are actually pleiotropic drugs. We recently evidenced the favorable effects of SGLT2-inhibition on physical and cognitive impairment in frail older adults with diabetes and hypertension. In the present overview, we summarize the latest clinical and preclinical studies exploring the main effects of SGLT2-inhibitors on kidney and heart, emphasizing their potential beneficial actions in frailty.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Einstein College, New York, USA
- Naples University “Federico II”
| | | | | | - Scott Wilson
- Department of Medicine, Einstein College, New York, USA
| | | | | | | | | | | | | | | | | | - Urna Kansakar
- Department of Medicine, Einstein College, New York, USA
| | - Pasquale Mone
- Department of Medicine, Einstein College, New York, USA
- Department of Medicine, Molise University
| |
Collapse
|
11
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
12
|
Saurin S, Meineck M, Rohr M, Roth W, Opatz T, Erkel G, Pautz A, Weinmann-Menke J. The macrocyclic lactone oxacyclododecindione reduces fibrosis progression. Front Pharmacol 2023; 14:1200164. [PMID: 37383717 PMCID: PMC10294233 DOI: 10.3389/fphar.2023.1200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background: Renal fibrosis is one of the most important triggers of chronic kidney disease (CKD), and only a very limited number of therapeutic options are available to stop fibrosis progression. As fibrosis is characterized by inflammation, myofibroblast activation, and extracellular matrix (ECM) deposition, a drug that can address all these processes might be an interesting therapeutic option. Methods: We tested in vivo in an ischemia-reperfusion (I/R) model in C57BL/6 mice and in kidney tubular epithelial cells (TEC) (HK2 cell line and primary cells) whether the natural product oxacyclododecindione (Oxa) reduces fibrosis progression in kidney disease. This was evaluated by Western blot, mRNA expression, and mass spectrometry secretome analyses, as well as by immunohistochemistry. Results: Indeed, Oxa blocked the expression of epithelial-mesenchymal transition marker proteins and reduced renal damage, immune cell infiltration, and collagen expression and deposition, both in vivo and in vitro. Remarkably, the beneficial effects of Oxa were also detected when the natural product was administered at a time point of established fibrotic changes, a situation close to the clinical situation. Initial in vitro experiments demonstrated that a synthetic Oxa derivative possesses similar features. Conclusion: Although open questions such as possible side effects need to be investigated, our results indicate that the combination of anti-inflammatory and anti-fibrotic effects of Oxa make the substance a promising candidate for a new therapeutic approach in fibrosis treatment, and thus in the prevention of kidney disease progression.
Collapse
Affiliation(s)
- Sabrina Saurin
- Department of Nephrology, Center of Immunotherapy, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Myriam Meineck
- Department of Nephrology, Center of Immunotherapy, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Markus Rohr
- Department of Molecular Biotechnology and Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Wilfried Roth
- Institute of Pathology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Andrea Pautz
- Institute of Pharmacology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Nephrology, Center of Immunotherapy, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Lu CW, Lee CJ, Hsieh YJ, Hsu BG. Empagliflozin Attenuates Vascular Calcification in Mice with Chronic Kidney Disease by Regulating the NFR2/HO-1 Anti-Inflammatory Pathway through AMPK Activation. Int J Mol Sci 2023; 24:10016. [PMID: 37373164 DOI: 10.3390/ijms241210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular calcification (VC) is associated with increased cardiovascular risks in patients with chronic kidney disease (CKD). Sodium-glucose cotransporter 2 inhibitors, such as empagliflozin, can improve cardiovascular and renal outcomes. We assessed the expression of Runt-related transcription factor 2 (Runx2), interleukin (IL)-1β, IL-6, AMP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor (Nrf2), and heme oxygenase 1 (HO-1) in inorganic phosphate-induced VC in mouse vascular smooth muscle cells (VSMCs) to investigate the mechanisms underlying empagliflozin's therapeutic effects. We evaluated biochemical parameters, mean artery pressure (MAP), pulse wave velocity (PWV), transcutaneous glomerular filtration rate (GFR), and histology in an in vivo mouse model with VC induced by an oral high-phosphorus diet following a 5/6 nephrectomy in ApoE-/- mice. Compared to the control group, empagliflozin-treated mice showed significant reductions in blood glucose, MAP, PWV, and calcification, as well as increased calcium and GFR levels. Empagliflozin inhibited osteogenic trans-differentiation by decreasing inflammatory cytokine expression and increasing AMPK, Nrf2, and HO-1 levels. Empagliflozin mitigates high phosphate-induced calcification in mouse VSMCs through the Nrf2/HO-1 anti-inflammatory pathway by activating AMPK. Animal experiments suggested that empagliflozin reduces VC in CKD ApoE-/- mice on a high-phosphate diet.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
14
|
Alanazi WA, Alharbi T, El-Nagar DM, Albogami AM, Alswayyed M. Dapagliflozin Mitigates Hypotension in Lipopolysaccharide-Induced Acute Inflammation Independent of Glycemia Level. Pharmaceutics 2023; 15:1683. [PMID: 37376131 DOI: 10.3390/pharmaceutics15061683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been suggested to have anti-inflammatory properties in diabetes. The goal of this study was to evaluate the role of the SGLT2 inhibitor dapagliflozin (DAPA) in the attenuation of lipopolysaccharide (LPS)-induced hypotension. Male Wistar albino rats were divided into normal and diabetic groups and received DAPA (1 mg/kg/day) for two weeks followed by a single dose of 10 mg/kg LPS. Blood pressure was recorded throughout the study and the circulatory levels of cytokines were assessed using a multiplex array, while the aortas were harvested for analysis. DAPA attenuated the vasodilation and hypotension caused by LPS. Mean arterial pressure (MAP) was preserved in the normal and diabetic DAPA-treated septic groups (MAP = 83.17 ± 5.27, 98.43 ± 5.57 mmHg) compared to the vehicle-treated septic groups (MAP = 65.60 ± 3.31, 68.21 ± 5.88 mmHg). Most of the cytokines induced by LPS were decreased in the DAPA-treated septic groups. In the aorta, the inducible nitric oxide synthase-derived nitric oxide had lower expression in the DAPA-treated rats. In contrast, the expression of α-smooth muscle actin, a marker of the vessel's contractile state, was higher in the DAPA-treated rats in comparison with non-treated septic rats. These findings revealed that the protective role of DAPA against LPS-induced hypotension is likely to be glucose-lowering independent, as was observed in the non-diabetic septic group. Taken together, the results show that DAPA has a potential effect in the prevention of the hemodynamic disturbances of sepsis regardless of glycemia levels.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Turki Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M El-Nagar
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Pari B, Gallucci M, Ghigo A, Brizzi MF. Insight on Infections in Diabetic Setting. Biomedicines 2023; 11:971. [PMID: 36979949 PMCID: PMC10046483 DOI: 10.3390/biomedicines11030971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The correlation between diabetes mellitus and infectious diseases is widely recognized. DM patients are characterized by the impaired function of the immune system. This translates into the occurrence of a variety of infections, including urinary tract, skin and surgical site infections, pneumonia, tuberculosis, and, more recently, SARS-CoV-2. Hyperglycemia has been identified as a relevant factor contributing to unfavorable outcomes in hospitalized patients including SARS-CoV-2 patients. Several studies have been performed proving that to maintain the proper and stringent monitoring of glycemia, a balanced diet and physical activity is mandatory to reduce the risk of infections and their associated complications. This review is focused on the mechanisms accounting for the increased susceptibility of DM patients to infections, with particular attention to the impact of newly introduced hypoglycemic drugs in sepsis management.
Collapse
Affiliation(s)
| | | | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| |
Collapse
|
16
|
Niu L, Wang L, He X, Fan Q, Chen M, Qiao Y, Huang H, Lai S, Wan Q, Zhang Z, He M, He H. Renoprotective effects of ferulic acid mediated by AMPKα1 against lipopolysaccharide-induced damage. Int Immunopharmacol 2023; 115:109703. [PMID: 37724953 DOI: 10.1016/j.intimp.2023.109703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
The kidney is susceptible to lipopolysaccharide (LPS)-induced damage with sepsis, and renal dysfunction is a leading cause of mortality in patients with sepsis. However, the renoprotective effects of ferulic acid (FA) during sepsis and the underlying mechanism remain unclear. This study explored these renoprotective effects using NRK-52E cells and mice with LPS-induced renal damage. The results showed that after LPS challenge, NRK-52E cell viability decreased, whereas lactate dehydrogenase, caspase-3 activity, apoptosis, the release of the inflammatory cytokines, and reactive oxygen species generation increased. Further, the activities of endogenous enzymatic and non-enzymatic antioxidant systems, and energy metabolism were inhibited, mitochondrial membrane potential was lost, mitochondrial permeability transition pores opened, renal blood flow and excretory functions were reduced, and the morphology and ultrastructure of renal tissue were seriously damaged in mice exposed to LPS. FA pretreatment upregulated AMP-activated protein kinase (AMPK) α1 expression and phosphorylation and significantly reversed the aforementioned functional, enzymological, and morphological indexes in vivo and in vitro. However, these renoprotective effects of FA were attenuated by compound C, an AMPK inhibitor. In conclusion, FA pretreatment can upregulate AMPKα1 expression and phosphorylation, inhibit inflammatory cytokine release and oxidative stress, improve mitochondrial function and energy supply, alleviate apoptosis, and ultimately protect renal tissue against LPS damage.
Collapse
Affiliation(s)
- Li Niu
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Liang Wang
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xinlan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Qigui Fan
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Maosi Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Yang Qiao
- Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qing Wan
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zeyu Zhang
- Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ming He
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| |
Collapse
|
17
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
18
|
Yan LJ. The Nicotinamide/Streptozotocin Rodent Model of Type 2 Diabetes: Renal Pathophysiology and Redox Imbalance Features. Biomolecules 2022; 12:biom12091225. [PMID: 36139064 PMCID: PMC9496087 DOI: 10.3390/biom12091225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus. While there has been a great advance in our understanding of the pathogenesis of DN, no effective managements of this chronic kidney disease are currently available. Therefore, continuing to elucidate the underlying biochemical and molecular mechanisms of DN remains a constant need. In this regard, animal models of diabetes are indispensable tools. This review article highlights a widely used rodent model of non-obese type 2 diabetes induced by nicotinamide (NA) and streptozotocin (STZ). The mechanism underlying diabetes induction by combining the two chemicals involves blunting the toxic effect of STZ by NA so that only a percentage of β cells are destroyed and the remaining viable β cells can still respond to glucose stimulation. This NA-STZ animal model, as a platform for the testing of numerous antidiabetic and renoprotective materials, is also discussed. In comparison with other type 2 diabetic animal models, such as high-fat-diet/STZ models and genetically engineered rodent models, the NA-STZ model is non-obese and is less time-consuming and less expensive to create. Given that this unique model mimics certain pathological features of human DN, this model should continue to find its applications in the field of diabetes research.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|