1
|
Mehra P, Kumar A. Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology. Cell Biochem Funct 2024; 42:e4063. [PMID: 38961596 DOI: 10.1002/cbf.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 07/05/2024]
Abstract
The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.
Collapse
Affiliation(s)
- Parul Mehra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Rodrigues R, Sousa C, Vale N. Deciphering the Puzzle: Literature Insights on Chlamydia trachomatis-Mediated Tumorigenesis, Paving the Way for Future Research. Microorganisms 2024; 12:1126. [PMID: 38930508 PMCID: PMC11205399 DOI: 10.3390/microorganisms12061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Some infectious agents have the potential to cause specific modifications in the cellular microenvironment that could be propitious to the carcinogenesis process. Currently, there are specific viruses and bacteria, such as human papillomavirus (HPV) and Helicobacter pylori, that are well established as risk factors for neoplasia. Chlamydia trachomatis (CT) infections are one of the most common bacterial sexually transmitted infections worldwide, and recent European data confirmed a continuous rise across Europe. The infection is often asymptomatic in both sexes, requiring a screening program for early detection. Notwithstanding, not all countries in Europe have it. Chlamydia trachomatis can cause chronic and persistent infections, resulting in inflammation, and there are plausible biological mechanisms that link the genital infection with tumorigenesis. Herein, we aimed to understand the epidemiological and biological plausibility of CT genital infections causing endometrial, ovarian, and cervical tumors. Also, we covered some of the best suitable in vitro techniques that could be used to study this potential association. In addition, we defend the point of view of a personalized medicine strategy to treat those patients through the discovery of some biomarkers that could allow it. This review supports the need for the development of further fundamental studies in this area, in order to investigate and establish the role of chlamydial genital infections in oncogenesis.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal
| | - Carlos Sousa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
3
|
Liu L, Li Y, Zheng X, Huang R, Huang X, Zhao Y, Liu W, Lei Y, Li Q, Zhong Z, Zhao Z. Natural polysaccharides regulate intestinal microbiota for inhibiting colorectal cancer. Heliyon 2024; 10:e31514. [PMID: 38818184 PMCID: PMC11137569 DOI: 10.1016/j.heliyon.2024.e31514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
The gastrointestinal tract is an important part of the human immune system. The gut microbiome, which constitutes a major component of the gastrointestinal tract, plays a crucial role in maintaining normal physiological functions and influences the development, diagnosis, and immunotherapy of colorectal cancer (CRC). Natural polysaccharides can be extracted from animals, plants, and traditional Chinese medicines. They serve as an essential energy source for the gut microbiome, promoting probiotic proliferation and regulating the intestinal microecological balance. Moreover, polysaccharides exhibit anti-tumor effects due to their immune regulatory functions and low toxicity. This review focuses on discussing these anti-tumor effects in CRC, along with improving gut microbiome dysbiosis and regulating the tumor immune microenvironment, providing evidence for effective therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Lili Liu
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| | - Yinan Li
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| | - Xiaoting Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Rong Huang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Xiaoli Huang
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Yonghui Zhao
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| | - Wenjing Liu
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Yanli Lei
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ziyun Zhao
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| |
Collapse
|
4
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
5
|
Capozzi VA, Incognito GG, Scarpelli E, Palumbo M, Randazzo CL, Pino A, La Verde M, Ronsini C, Riemma G, Gaiano M, Romeo P, Palmara V, Berretta R, Cianci S. Exploring the Relationship between Ovarian Cancer and Genital Microbiota: A Systematic Review and Meta-Analysis. J Pers Med 2024; 14:351. [PMID: 38672978 PMCID: PMC11051512 DOI: 10.3390/jpm14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer (OC) remains a significant health challenge globally, with high mortality rates despite advancements in treatment. Emerging research suggests a potential link between OC development and genital dysbiosis, implicating alterations in the microbiome composition as a contributing factor. To investigate this correlation, a meta-analysis was conducted following PRISMA and MOOSE guidelines, involving eight studies encompassing 3504 patients. Studies investigating the role of upper and inferior genital tract dysbiosis were included, with particular reference to HPV infection and/or history of pelvic inflammatory disease. The analysis revealed no significant difference in genital dysbiosis prevalence between OC patients and healthy controls. Although previous literature suggests associations between dysbiosis and gynecologic cancers, such as cervical and endometrial cancers, the findings regarding OC are inconclusive. Methodological variations and environmental factors may contribute to these discrepancies, underscoring the need for standardized methodologies and larger-scale studies. Despite the limitations, understanding the microbiome's role in OC development holds promise for informing preventive and therapeutic strategies. A holistic approach to patient care, incorporating microbiome monitoring and personalized interventions, may offer insights into mitigating OC risk and improving treatment outcomes. Further research with robust methodologies is warranted to elucidate the complex interplay between dysbiosis and OC, potentially paving the way for novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Vito Andrea Capozzi
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Elisa Scarpelli
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Marco Palumbo
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Marco La Verde
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gaetano Riemma
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michela Gaiano
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Paola Romeo
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Vittorio Palmara
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Roberto Berretta
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Stefano Cianci
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| |
Collapse
|
6
|
Abedi A, Tafvizi F, Jafari P, Akbari N. The inhibition effects of Lentilactobacillus buchneri-derived membrane vesicles on AGS and HT-29 cancer cells by inducing cell apoptosis. Sci Rep 2024; 14:3100. [PMID: 38326490 PMCID: PMC10850327 DOI: 10.1038/s41598-024-53773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, probiotics and their derivatives have been recognized as important therapeutic agents in the fight against cancer. Therefore, this study aimed to investigate the anticancer effects of membrane vesicles (MVs) from Lentilactobacillus buchneri strain HBUM07105 probiotic isolated from conventional and unprocessed yogurt in Arak province, Iran, against gastric and colon cancer cell lines. The MVs were prepared from the cell-free supernatant (CFS) of L. buchneri and characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and SPS-PAGE techniques. The anticancer activity of MVs was evaluated using MTT, flow cytometry, qRT-PCR techniques, and a scratch assay. The study investigated the anti-adenocarcinoma effect of MVs isolated from L. buchneri on a human gastric adenocarcinoma cell line (AGS) and a human colorectal adenocarcinoma cell line (HT-29) at 24, 48, and 72-h time intervals. The results demonstrated that all prepared concentrations (12.5, 25, 50, 100, and 200 µg/mL) of MVs reduced the viability of both types of human adenocarcinoma cells after 24, 48, and 72 h of treatment. The analysis of the apoptosis results revealed that the percentage of AGS and HT-29 cancer cells in the early and late stages of apoptosis was significantly higher after 24, 48, and 72 h of treatment compared to the untreated cancer cells. After treating both AGS and HT-29 cells with the MVs, the cells were arrested in the G0/G1 phase. These microvesicles demonstrate apoptotic activity by increasing the expression of pro-apoptotic genes (BAX, CASP3, and CASP9). According to the scratch test, MVs can significantly decrease the migration of HT-29 and AGS cancer cells after 24, 48, and 72 h of incubation compared to the control groups. The MVs of L. buchneri can also be considered a potential option for inhibiting cancer cell activities.
Collapse
Affiliation(s)
- Adel Abedi
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.
| | - Neda Akbari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
7
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
8
|
Xu JY, Fan JX, Hu M, Zeng J. Microorganism-regulated autophagy in gastrointestinal cancer. PeerJ 2023; 11:e16130. [PMID: 37786582 PMCID: PMC10541808 DOI: 10.7717/peerj.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Gastrointestinal cancer has always been one of the most urgent problems to be solved, and it has become a major global health issue. Microorganisms in the gastrointestinal tract regulate normal physiological and pathological processes. Accumulating evidence reveals the role of the imbalance in the microbial community during tumorigenesis. Autophagy is an important intracellular homeostatic process, where defective proteins and organelles are degraded and recycled under stress. Autophagy plays a dual role in tumors as both tumor suppressor and tumor promoter. Many studies have shown that autophagy plays an important role in response to microbial infection. Here, we provide an overview on the regulation of the autophagy signaling pathway by microorganisms in gastrointestinal cancer.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Chongqing Normal University, Chongqing, China
| | | | - Min Hu
- Chongqing Normal University, Chongqing, China
| | - Jun Zeng
- Chongqing Normal University, Chongqing, China
| |
Collapse
|
9
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
10
|
Khattab RH, Abo-Hammam RH, Salah M, Hanora AM, Shabayek S, Zakeer S. Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study. BMC Microbiol 2023; 23:238. [PMID: 37644393 PMCID: PMC10464353 DOI: 10.1186/s12866-023-02991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a public health concern and the second most common disease worldwide. This is due to genetic coding and is influenced by environmental aspects, in which the gut microbiota plays a significant role. The purpose of this study was to compare the microbiota makeup of CRC patients with that of healthy control and to identify upregulated and downregulated proteins and metabolites in CRC patients. Using a next-generation sequencing approach, fecal samples of five females (4 CRC patients and one healthy control) were analyzed by BGI DNBSEQ-T7, Hong Kong, China. Furthermore, proteomics and metabolomics analysis were performed using LC-MS/MS technique. RESULTS Dysbiosis of gut microbiota has been observed in patients with CRC, with an increase in microbiota diversity at all taxonomic levels relative to healthy control. Where, at the functional level the bacterial species participate in many different pathways among them de novo nucleotide synthesis and amino acids pathways were aberrantly upregulated in CRC patients. Proteomics and metabolomics profiles of CRC patients showed different proteins and metabolites, a total of 360 and 158 proteins and metabolites, respectively were highly expressed compared to healthy control with fold change ≥ 1.2. Among the highly expressed proteins were transketolase, sushi domain-containing protein, sulfide quinone oxidoreductase protein, AAA family ATPase protein, carbonic anhydrase, IgG Fc-binding protein, nucleoside diphosphate kinase protein, arylsulfatase, alkaline phosphatase protein, phosphoglycerate kinase, protein kinase domain-containing protein, non-specific serine/threonine protein kinase, Acyl-CoA synthetase and EF-hand domain-containing protein. Some of the differential metabolites, Taurine, Taurocholic acid, 7-ketodeoxycholic acid, Glycochenodeoxycholic acid, Glycocholic acid, and Taurochenodeoxycholic acid that belong to bile acids metabolites. CONCLUSIONS Some bacterial species, proteins, and metabolites could be used as diagnostic biomarkers for CRC. Our study paves an insight into using multi-omics technology to address the relationship between gut microbiota and CRC.
Collapse
Affiliation(s)
- Randa H Khattab
- Department of Microbiology and Immunology, Al-Salam University, Tanta, Egypt
| | - Rana H Abo-Hammam
- Forensic toxicologist and narcotics expert, Ministry of Justice, Tanta, Egypt
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of pharmacy, Port-Said University, Port-Said, Egypt
| | - Amro M Hanora
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Spigaglia P, Barbanti F, Germinario EAP, Criscuolo EM, Bruno G, Sanchez-Mete L, Porowska B, Stigliano V, Accarpio F, Oddi A, Zingale I, Rossi S, De Angelis R, Fabbri A. Comparison of microbiological profile of enterotoxigenic Bacteroides fragilis (ETBF) isolates from subjects with colorectal cancer (CRC) or intestinal pre-cancerous lesions versus healthy individuals and evaluation of environmental factors involved in intestinal dysbiosis. Anaerobe 2023; 82:102757. [PMID: 37380012 DOI: 10.1016/j.anaerobe.2023.102757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE The aim of this study was to analyze enterotoxigenic Bacteroides fragilis (ETBF) isolates from colorectal biopsies of subjects with a histological analysis positive for colorectal cancer (CRC), pre-cancerous lesions (pre-CRC) or with a healthy intestinal tissue and to evaluate the environmental factors that may not only concur to CRC development but may also affect gut microbiota composition. METHODS ETBF isolates were typed using the ERIC-PCR method, while PCR assays were performed to investigate the bft alleles, the B. fragilis pathogenicity island (BFPAI) region and the cepA, cfiA and cfxA genes. Susceptibility to antibiotics was tested using the agar dilution method. Environmental factors that could play a role in promoting intestinal dysbiosis were evaluated throughout a questionnaire administered to the subjects enrolled. RESULTS Six different ERIC-PCR types were identified. The type denominated C in this study was the most prevalent, in particular among the biopsies of subjects with pre-CRC, while an isolate belonging to a different type, denominated F, was detected in a biopsy from a subject with CRC. All the ETBF isolates from pre-CRC or CRC subjects had a B. fragilis pathogenicity island (BFPAI) region pattern I, while those from healthy individuals showed also different patterns. Furthermore, 71% of isolates from subjects with pre-CRC or CRC were resistant to two or more classes of antibiotics vs 43% of isolates from healthy individuals. The B. fragilis toxin BFT1 was the most frequently detected in this study, confirming the constant circulation of this isoform strains in Italy. Interestingly, BFT1 was found in 86% of the ETBF isolates from patients with CRC or pre-CRC, while the BFT2 was prevalent among the ETBF isolates from healthy subjects. No substantial differences based on sex, age, tobacco and alcohol consumption were observed between healthy and non-healthy individuals included in this study, while most of the subjects with CRC or pre-CRC lesions were subjected to pharmacological therapy (71%) and showed a body mass index (BMI) that falls within the overweight range (86%). CONCLUSIONS Our data suggest that some types of ETBF seem to better adapt and colonize the human gut and that the selective pressure exerted by factors related to lifestyle, such as pharmacological therapy and weight, could facilitate their persistence in the gut and their possible involvement in CRC development.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | | - Giovanni Bruno
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Lupe Sanchez-Mete
- Gastroenterology and Digestive Endoscopy IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Barbara Porowska
- Digestive Endoscopy UOC CSC03 of the Department of General Surgery, Surgical Specialities "Paride Stefanini", Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Vittoria Stigliano
- Gastroenterology and Digestive Endoscopy IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Fabio Accarpio
- Digestive Endoscopy UOC CSC03 of the Department of General Surgery, Surgical Specialities "Paride Stefanini", Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Andrea Oddi
- Hepatopancreatobiliary Surgery, IRCCS Regina Elena National Cancer Institute, 00114, Rome, Italy.
| | - Ilaria Zingale
- Digestive Endoscopy UOC CSC03 of the Department of General Surgery, Surgical Specialities "Paride Stefanini", Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Silvia Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161, Rome, Italy.
| |
Collapse
|
12
|
Halsey TM, Thomas AS, Hayase T, Ma W, Abu-Sbeih H, Sun B, Parra ER, Jiang ZD, DuPont HL, Sanchez C, El-Himri R, Brown A, Flores I, McDaniel L, Turrubiates MO, Hensel M, Pham D, Watowich SS, Hayase E, Chang CC, Jenq RR, Wang Y. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis. Sci Transl Med 2023; 15:eabq4006. [PMID: 37315113 PMCID: PMC10759507 DOI: 10.1126/scitranslmed.abq4006] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Immune checkpoint inhibitors (ICIs) target advanced malignancies with high efficacy but also predispose patients to immune-related adverse events like immune-mediated colitis (IMC). Given the association between gut bacteria with response to ICI therapy and subsequent IMC, fecal microbiota transplantation (FMT) represents a feasible way to manipulate microbial composition in patients, with a potential benefit for IMC. Here, we present a large case series of 12 patients with refractory IMC who underwent FMT from healthy donors as salvage therapy. All 12 patients had grade 3 or 4 ICI-related diarrhea or colitis that failed to respond to standard first-line (corticosteroids) and second-line immunosuppression (infliximab or vedolizumab). Ten patients (83%) achieved symptom improvement after FMT, and three patients (25%) required repeat FMT, two of whom had no subsequent response. At the end of the study, 92% achieved IMC clinical remission. 16S rRNA sequencing of patient stool samples revealed that compositional differences between FMT donors and patients with IMC before FMT were associated with a complete response after FMT. Comparison of pre- and post-FMT stool samples in patients with complete responses showed significant increases in alpha diversity and increases in the abundances of Collinsella and Bifidobacterium, which were depleted in FMT responders before FMT. Histologically evaluable complete response patients also had decreases in select immune cells , including CD8+ T cells, in the colon after FMT when compared with non-complete response patients (n = 4). This study validates FMT as an effective treatment strategy for IMC and gives insights into the microbial signatures that may play a critical role in FMT response.
Collapse
Affiliation(s)
- Taylor M. Halsey
- Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases, The University of Texas MD Anderson Cancer Center UTHealth Houston; Houston, Texas, USA
| | - Anusha S. Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Weijie Ma
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University; Wuhan, Hubei Province, People’s Republic of China
| | - Hamzah Abu-Sbeih
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Internal Medicine, University of Missouri; Kansas City, Missouri, USA
| | - Baohua Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
- Kelsey Research Foundation; Houston, Texas, USA
| | - Christopher Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Rawan El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Alexandria Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Miriam Ortega Turrubiates
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | | | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| |
Collapse
|
13
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Yang X, Cao Q, Ma B, Xia Y, Liu M, Tian J, Chen J, Su C, Duan X. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition. PLoS One 2023; 18:e0277155. [PMID: 36913356 PMCID: PMC10010516 DOI: 10.1371/journal.pone.0277155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Based on the relationship between the gut microbiota and colorectal cancer, we developed a new probiotic powder for treatment of colorectal cancer. Initially, we evaluated the effect of the probiotic powder on CRC using hematoxylin and eosin staining, and evaluated mouse survival rate and tumor size. We then investigated the effects of the probiotic powder on the gut microbiota, immune cells, and apoptotic proteins using 16S rDNA sequencing, flow cytometry, and western blot, respectively. The results showed that the probiotic powder improved the intestinal barrier integrity, survival rate, and reduced tumor size in CRC mice. This effect was associated with changes in the gut microbiota. Specifically, the probiotic powder increased the abundance of Bifidobacterium animalis and reduced the abundance of Clostridium cocleatum. In addition, the probiotic powder resulted in decreased numbers of CD4+ Foxp3+ Treg cells, increased numbers of IFN-γ+ CD8+ T cells and CD4+ IL-4+ Th2 cells, decreased expression of the TIGIT in CD4+ IL-4+ Th2 cells, and increased numbers of CD19+ GL-7+ B cells. Furthermore, the expression of the pro-apoptotic protein BAX was significantly increased in tumor tissues in response to the probiotic powder. In summary, the probiotic powder ameliorated CRC by regulating the gut microbiota, reducing Treg cell abundance, promoting the number of IFN-γ+ CD8+ T cells, increasing Th2 cell abundance, inhibiting the expression of TIGIT in Th2 cells, and increasing B cell abundance in the immune microenvironment of CRC, thereby increasing the expression of BAX in CRC.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qian Cao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Yuhan Xia
- Department of Nutrition, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Miao Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinhua Tian
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | | | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Lee HN. Changes in Gut Microbiome upon Orchiectomy and Testosterone Administration in AOM/DSS-Induced Colon Cancer Mouse Model. Cancer Res Treat 2023; 55:196-218. [PMID: 35790194 PMCID: PMC9873319 DOI: 10.4143/crt.2022.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Sex hormones are known to affect the gut microbiota. Previously, we reported that endogenous and exogenous testosterone are associated with colorectal cancer (CRC) development and submucosal invasion. In the present study, we investigated whether the gut microbiota is affected by orchiectomy (ORX) and testosterone propionate (TP) administration using an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC mouse model. MATERIALS AND METHODS Gut microbiota was evaluated by means of 16S rRNA gene sequencing of stool DNA extracted from feces that were obtained at 13 weeks after AOM injection (from 22-week-old animals) and stored in a gas-generating pouch. RESULTS The increase in microbial diversity (Chao1 and Phylogenetic Diversity index) and Firmicutes/Bacteroidetes (F/B) ratio upon AOM/DSS treatment in ORX mice was significantly decreased by TP supplementation. The ratio of commensal bacteria to opportunistic pathogens was lower in the TP-administered females and ORX mice than in the AOM/DSS group. Opportunistic pathogens (Mucispirillum schaedleri or Akkermansia muciniphila) were identified only in the TP group. In addition, microbial diversity and F/B ratio were higher in male controls than in female and ORX controls. Flintibacter butyricus, Ruminococcus bromii, and Romboutsia timonensis showed similar changes in the male control group as those in the female and ORX controls. CONCLUSION In conclusion, testosterone determines the dysbiosis of gut microbiota, which suggests that it plays a role in the sex-related differences in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Ha-Na Lee
- Laboratory of Immunology, Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD,
USA
| |
Collapse
|
16
|
Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
|
17
|
Loganathan T, Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci 2022; 311:121118. [DOI: 10.1016/j.lfs.2022.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
18
|
Alasiri GA. Effect of gut microbiota on colorectal cancer progression and treatment. Saudi Med J 2022; 43:1289-1299. [PMID: 36517053 PMCID: PMC9994512 DOI: 10.15537/smj.2022.43.12.20220367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/25/2022] [Indexed: 12/17/2023] Open
Abstract
Microbiota is a collection of bacteria, archaea, eukaryotes, bacteriophages, viruses, and fungi that cover human body surfaces and cavities. They characterize inside the body due to several factors such as diet, nutrition, xenobiotic substances, and microbial infections. Several studies have shown that gut microbiota can induce resistance against pathogens and regulate the immune system. In addition, their disruption is associated with several physiological and biochemical disorders, including inflammatory bowel disease (IBD), obesity, autoimmune diseases such as diabetes, hypertension, colon cancer, and cardiovascular disease. Colorectal cancer (CRC) is the third-deadliest cancer worldwide, accounting for approximately 900,000 deaths per year globally. Gut microbiota has been heavily linked to CRC incidence and prevention via bacterial metabolites, invasion, translocation, host's defense modulations, and bacterial-immune system interactions. In addition, it can influence the metabolism of chemical compounds such as drugs and xenobiotics to manipulate the treatment response in CRC patients.
Collapse
Affiliation(s)
- Glowi A. Alasiri
- From the Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
19
|
Mozaffari SA, Salehi A, Mousavi E, Zaman BA, Nassaj AE, Ebrahimzadeh F, Nasiri H, Valedkarimi Z, Adili A, Asemani G, Akbari M. SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathol Res Pract 2022; 239:154131. [PMID: 36191449 PMCID: PMC9477615 DOI: 10.1016/j.prp.2022.154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The emergence of a novel coronavirus, COVID-19, in December 2019 led to a global pandemic with more than 170 million confirmed infections and more than 6 million deaths (by July 2022). Studies have shown that infection with SARS-CoV-2 in cancer patients has a higher mortality rate than in people without cancer. Here, we have reviewed the evidence showing that gut microbiota plays an important role in health and is linked to colorectal cancer development. Studies have shown that SARS-CoV-2 infection leads to a change in gut microbiota, which modify intestinal inflammation and barrier permeability and affects tumor-suppressor or oncogene genes, proposing SARS-CoV-2 as a potential contributor to CRC pathogenesis.
Collapse
Affiliation(s)
- Shahrooz Amin Mozaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Islamic Republic of Iran
| | - Elnaz Mousavi
- Dental Sciences Research Center, Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Islamic Republic of Iran
| | - Burhan Abdullah Zaman
- Department of Basic Sciences, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Ali Eslambol Nassaj
- Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ghazaleh Asemani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
20
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
21
|
Schemczssen-Graeff Z, Pileggi M. Probiotics and live biotherapeutic products aiming at cancer mitigation and patient recover. Front Genet 2022; 13:921972. [PMID: 36017495 PMCID: PMC9395637 DOI: 10.3389/fgene.2022.921972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular biology techniques allowed access to non-culturable microorganisms, while studies using analytical chemistry, as Liquid Chromatography and Tandem Mass Spectrometry, showed the existence of a complex communication system among bacteria, signaled by quorum sensing molecules. These approaches also allowed the understanding of dysbiosis, in which imbalances in the microbiome diversity, caused by antibiotics, environmental toxins and processed foods, lead to the constitution of different diseases, as cancer. Colorectal cancer, for example, can originate by a dysbiosis configuration, which leads to biofilm formation, production of toxic metabolites, DNA damage in intestinal epithelial cells through the secretion of genotoxins, and epigenetic regulation of oncogenes. However, probiotic strains can also act in epigenetic processes, and so be use for recovering important intestinal functions and controlling dysbiosis and cancer mitigation through the metabolism of drugs used in chemotherapy, controlling the proliferation of cancer cells, improving the immune response of the host, regulation of cell differentiation and apoptosis, among others. There are still gaps in studies on the effectiveness of the use of probiotics, therefore omics and analytical chemistry are important approaches to understand the role of bacterial communication, formation of biofilms, and the effects of probiotics and microbiome on chemotherapy. The use of probiotics, prebiotics, synbiotics, and metabiotics should be considered as a complement to other more invasive and hazard therapies, such chemotherapy, surgery, and radiotherapy. The study of potential bacteria for cancer treatment, as the next-generation probiotics and Live Biotherapeutic Products, can have a controlling action in epigenetic processes, enabling the use of these bacteria for the mitigation of specific diseases through changes in the regulation of genes of microbiome and host. Thus, it is possible that a path of medicine in the times to come will be more patient-specific treatments, depending on the environmental, genetic, epigenetic and microbiome characteristics of the host.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
- *Correspondence: Marcos Pileggi,
| |
Collapse
|
22
|
Caliceti C, Punzo A, Silla A, Simoni P, Roda G, Hrelia S. New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients 2022; 14:nu14142964. [PMID: 35889921 PMCID: PMC9317521 DOI: 10.3390/nu14142964] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the second among the causes of tumor death worldwide, with an estimation of 1.9 million new cases in 2020 and more than 900,000 deaths. This rate might increase by 60% over the next 10 years. These data are unacceptable considering that CRC could be successfully treated if diagnosed in the early stages. A high-fat diet promotes the hepatic synthesis of bile acids (BAs) increasing their delivery to the colonic lumen and numerous scientific reports correlate BAs, especially secondary BAs, with CRC incidence. We reviewed the physicochemical and biological characteristics of BAs, focusing on the major pathways involved in CRC risk and progression. We specifically pointed out the role of BAs as signaling molecules and the tangled relationships among their nuclear and membrane receptors with the big bang of molecular and cellular events that trigger CRC occurrence.
Collapse
Affiliation(s)
- Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
- Correspondence:
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician” Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Giulia Roda
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| |
Collapse
|
23
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
24
|
Hiremath S, Viswanathan P. Oxalobacter formigenes: A new hope as a live biotherapeutic agent in the management of calcium oxalate renal stones. Anaerobe 2022; 75:102572. [PMID: 35443224 DOI: 10.1016/j.anaerobe.2022.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023]
Abstract
Recent advances in understanding the association of gut microbiota with the host have shown evidence of certain bacterial therapeutic potentiality in preventing and treating metabolic diseases. Hyperoxaluria is a severe challenge in nephrology and has led to the novel gut eubiosis as current therapy. The human gut commensal, obligate anaerobic, and intestinal oxalate-degrading strains of Oxalobacter formigenes have drawn a promising significant interest for the next-generation probiotics (NGPs). This nonpathogenic, potential probiotic, and specialist oxalotrophic properties of O. formigenes give a new hope as a live biotherapeutic agent for calcium oxalate renal therapy. Numerous satisfactory outcomes of in vitro and in vivo studies were achieved on evaluating O. formigenes functionality, but the commercial production of this bacterium is yet to be achieved. This bacterium finds diverse application in dietary and endogenous oxalate degradation and the improvement of gut health, on which we concentrated our attention in this review. The relationship between good anaerobic gut bacterial dysbiosis and renal complications is comprehensively discussed to address the need for the development probiotic formulation. However, the commercial production of this bacteria on a broad scale is complex, with numerous obstacles, mainly because they are oxygen-sensitive and difficult to culture. This review will coherently present the current and available methodologies in producing, stabilizing, and delivering these NGPs to treat calcium stones. Moreover, the study presents the extensive work and key milestones achieved in the research on O. formigenes from tale to the truth.
Collapse
Affiliation(s)
- Shridhar Hiremath
- Renal Research Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| | - Pragasam Viswanathan
- Renal Research Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
25
|
Hasan R, Bose S, Roy R, Paul D, Rawat S, Nilwe P, Chauhan NK, Choudhury S. Tumor tissue-specific bacterial biomarker panel for colorectal cancer: Bacteroides massiliensis, Alistipes species, Alistipes onderdonkii, Bifidobacterium pseudocatenulatum, Corynebacterium appendicis. Arch Microbiol 2022; 204:348. [PMID: 35616767 DOI: 10.1007/s00203-022-02954-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
Human microbiome studies have shown diversity to exist among different ethnic populations. However, studies pertaining to the microbial composition of CRC among the Indian population have not been well explored. We aimed to decipher the microbial signature in tumor tissues from North Indian CRC patients. Next-generation sequencing of tumor and adjacent tissue-derived bacterial 16S rRNA V3-V4 hypervariable regions was performed to investigate the abundance of specific microbes. The expression profile analysis deciphered a decreased diversity among the tumor-associated microbial communities. At the phyla level, Proteobacteria was differentially expressed in CRC tissues than adjacent normal. Further, DeSeq2 normalization identified 4 out of 79 distinct species (p < 0.005) only in CRC, Bacteroides massiliensis, Alistipes onderdonkii, Bifidobacterium pseudocatenulatum, and Corynebacterium appendicis. Thus, the findings suggest that microbial signatures can be used as putative biomarkers in diagnosis, prognosis and treatment management of CRC.
Collapse
Affiliation(s)
- Rizwana Hasan
- Department of Research, Sir Ganga Ram Hospital, New Rajinder Nagar, Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sudeep Bose
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rahul Roy
- Department of Research, Sir Ganga Ram Hospital, New Rajinder Nagar, Delhi, India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Saumitra Rawat
- Institute of Surgical Gastroenterology and Liver Transplant, Sir Ganga Ram Hospital, Delhi, India
| | - Pravin Nilwe
- Thermo Fisher Scientific, Invitrogen BioServices India Pvt Ltd, Mumbai, Maharashtra, India
| | - Neeraj K Chauhan
- Thermo Fisher Scientific, Life Science Solutions, Gurgaon, Haryana, India
| | - Sangeeta Choudhury
- Department of Research, Sir Ganga Ram Hospital, New Rajinder Nagar, Delhi, India.
| |
Collapse
|
26
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
27
|
Bennedsen ALB, Furbo S, Bjarnsholt T, Raskov H, Gögenur I, Kvich L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS 2022; 130:121-139. [PMID: 35007370 DOI: 10.1111/apm.13206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Current evidence suggests that bacteria contribute to the development of certain cancers, such as colorectal cancer (CRC), partly by stimulating chronic inflammation. However, little is known about the bacterial impact on molecular pathways in CRC. Recent studies have demonstrated how specific bacteria can influence the major CRC-related pathways, i.e., Wnt, PI3K-Akt, MAPK, TGF-β, EGFR, mTOR, and p53. In order to advance the current understanding and facilitate the choice of pathways to investigate, we have systematically collected and summarized the current knowledge within bacterial altered major pathways in CRC. Several pro-tumorigenic and anti-tumorigenic bacterial species and their respective metabolites interfere with the major signaling pathways addressed in this review. Not surprisingly, some of these studies investigated known CRC drivers, such as Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis. Interestingly, some metabolites produced by bacterial species typically considered pathogenic, e.g., Vibrio cholera, displayed anti-tumorigenic activities, emphasizing the caution needed when classifying healthy and unhealthy microorganisms. The results collectively emphasize the complexity of the relationship between the microbiota and the tumorigenesis of CRC, and future studies should verify these findings in more realistic models, such as organoids, which constitute a promising platform. Moreover, future trials should investigate the clinical potential of preventive modulation of the gut microbiota regarding CRC development.
Collapse
Affiliation(s)
- Astrid L B Bennedsen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Sara Furbo
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Are Inflammatory Bowel Disease and Colorectal Carcinoma Associated with Helicobacter pylori? A Prospective Study and Meta-analysis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Observational studies regarding the correlation between colorectal carcinoma, inflammatory bowel disease and Helicobacter pylori infection are inconsistent. The present study aims to investigate the association between colorectal adenocarcinoma (CRA) and inflammatory bowel disease (IBD) with H. pylori status in 100 patients who have inflammatory bowel disease and colorectal carcinoma was confirmed disease by histological approach. Besides, a meta-analysis was performed of published studies, to evaluate the link between H. pylori infection and an increased risk of CRC and IBD. Among 67 cases with CRA and 33 cases with IBD, 59.7% and 51.5% were H. pylori positive; respectively. In the meta-analysis, thirty-nine articles were included, involving 13 231 cases with CRC and 2477 with IBD. The pooled odds ratio for CRC and IBD was 1.16 (95%CI = 0.73-1.82) and 0.42 (95%CI = 0.32-0.56); respectively. Our meta-analysis indicates that H. pylori is not associated with CRC.
Collapse
|
29
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
30
|
Schupack DA, Mars RAT, Voelker DH, Abeykoon JP, Kashyap PC. The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol 2022; 19:7-25. [PMID: 34453142 PMCID: PMC8712374 DOI: 10.1038/s41575-021-00499-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Variability in disease presentation, progression and treatment response has been a central challenge in medicine. Although variability in host factors and genetics are important, it has become evident that the gut microbiome, with its vast genetic and metabolic diversity, must be considered in moving towards individualized treatment. In this Review, we discuss six broad disease groups: infectious disease, cancer, metabolic disease, cardiovascular disease, autoimmune or inflammatory disease, and allergic and atopic diseases. We highlight current knowledge on the gut microbiome in disease pathogenesis and prognosis, efficacy, and treatment-related adverse events and its promise for stratifying existing treatments and as a source of novel therapies. The Review is not meant to be comprehensive for each disease state but rather highlights the potential implications of the microbiome as a tool to individualize treatment strategies in clinical practice. Although early, the outlook is optimistic but challenges need to be overcome before clinical implementation, including improved understanding of underlying mechanisms, longitudinal studies with multiple data layers reflecting gut microbiome and host response, standardized approaches to testing and reporting, and validation in larger cohorts. Given progress in the microbiome field with concurrent basic and clinical studies, the microbiome will likely become an integral part of clinical care within the next decade.
Collapse
Affiliation(s)
- Daniel A Schupack
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Dayne H Voelker
- Division of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jithma P Abeykoon
- Division of Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Choi SI, Kim N, Nam RH, Park JH, Nho H, Yu JE, Song CH, Lee SM, Lee DH. Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fischer-344 Rats. J Cancer Prev 2021; 26:277-288. [PMID: 35047454 PMCID: PMC8749319 DOI: 10.15430/jcp.2021.26.4.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022] Open
Abstract
The gut microbiota interacts with the host gut environment, which is influenced by such factors as sex, age, and host diet. These factors induce changes in the microbial composition. The aim of this study was to identify differences in the gut microbiome of Fisher-344 (F344) rats fed a high-fat diet (HFD), depending on their age and sex. Fecal microbiomes from 6-, 31-, and 74-week-old, and 2-year-old both male and female rats (corresponding to 5-, 30-, 60-, and 80-year-old humans) were analyzed using 16S rRNA gene sequencing, phylogenetic investigation of communities by reconstruction of unobserved states, and enterotype (E) assessment. Moreover, the effect of an HFD on colonic epithelial cells was measured using real-time quantitative PCR. Alpha diversity decreased in the HFD group regardless of age and sex. Based on the enterotype clustering of the whole fecal microbiome, clusters from male rats were divided into E1 and E2 enterotypes, while clusters from female rats were divided into E1, E2, and E3 enterotypes. The female E3 group showed a significantly high abundance in the Ruminococcus genus and expression of Tlr2 mRNA, which may reflect compensation to the HFD. Moreover, the female E3 group showed a lower ratio of opportunistic pathogenic strains to commensal strains compared to the female E2 group. Administration of an HFD influenced the rat fecal microbiota in all assessed age groups, which could be further differentiated by sex. In particular, female rats showed a compensatory enterotype response to an HFD compared to male rats.
Collapse
Affiliation(s)
- Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Heewon Nho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Eun Yu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Murphy CL, Barrett M, Pellanda P, Killeen S, McCourt M, Andrews E, O’ Riordain M, Shanahan F, O’Toole P. Mapping the colorectal tumor microbiota. Gut Microbes 2021; 13:1-10. [PMID: 34030582 PMCID: PMC8158024 DOI: 10.1080/19490976.2021.1920657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome in patients with colorectal cancer (CRC) is different than that of healthy controls. Previous studies have profiled the CRC tumor microbiome using a single biopsy. However, since the morphology and cellular subtype vary significantly within an individual tumor, the possibility of sampling error arises for the microbiome within an individual tumor. To test this hypothesis, seven biopsies were taken from representative areas on and off the tumor in five patients with CRC. The microbiome composition was strikingly similar across all samples from an individual. The variation in microbiome alpha-diversity was significantly greater between individuals' samples then within individuals. This is the first study, to our knowledge, that shows that the microbiome of an individual tumor is spatially homogeneous. Our finding strengthens the assumption that a single biopsy is representative of the entire tumor, and that microbiota changes are not limited to a specific area of the neoplasm.
Collapse
Affiliation(s)
- CL Murphy
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland,Departments of Gastroenterology and Medicine, Cork University Hospital, Cork, Ireland,CONTACT CL Murphy APC Microbiome, University College Cork, National University of Ireland, Cork, Ireland
| | - M Barrett
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland,School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - P Pellanda
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland,School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - S Killeen
- Department of Colorectal Surgery, Mercy University Hospital, Cork, Ireland,Department of Colorectal Surgery, Cork University Hospital, Cork, Ireland
| | - M McCourt
- Department of Colorectal Surgery, Cork University Hospital, Cork, Ireland
| | - E Andrews
- Department of Colorectal Surgery, Cork University Hospital, Cork, Ireland
| | - M O’ Riordain
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland,Department of Colorectal Surgery, Cork University Hospital, Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland,Departments of Gastroenterology and Medicine, Cork University Hospital, Cork, Ireland
| | - Pw O’Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland,School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| |
Collapse
|
34
|
Abdullah M, Sukartini N, Nursyirwan SA, Pribadi RR, Maulahela H, Utari AP, Muzellina VN, Wiraatmadja A, Renaldi K. Gut Microbiota Profiles in Early- and Late-Onset Colorectal Cancer: A Potential Diagnostic Biomarker in the Future. Digestion 2021; 102:823-832. [PMID: 34433172 DOI: 10.1159/000516689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Researchers believe the role of gut microbiota dysbiosis in the raised incidence of early-onset colorectal cancer (EOCRC). The development of EOCRC may be associated with microbiota dysbiosis either dependently or independently (combined with other risk factors). SUMMARY Recently, the rising of incidence and mortality of EOCRC have been noted. Some researchers are looking for risk factors influencing this fact. They hypothesize that it may be because of microbiota dysbiosis. Microbiota dysbiosis has been known to promote cancer development through immunity dysregulation and chronic inflammation. Microbiomes profile in late-onset colorectal cancer (LOCRC) among older patients has been documented, but there is still lack of data about microbial profiles among younger colorectal cancer (CRC) patients. This review tries to explain microbial profiles differences between EOCRC and LOCRC as a potential diagnostic biomarker in the future, and whether microbiota can have a role in EOCRC genesis. Key Messages: Microbiota does vary with age, and EOCRC may be associated with colonization of some specific bacteria. Further studies about gut microbiota profiles in EOCRC and LOCRC may provide a new insight on diagnostic biomarker of CRC.
Collapse
Affiliation(s)
- Murdani Abdullah
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia.,Human Cancer Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Ninik Sukartini
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Saskia Aziza Nursyirwan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Rabbinu Rangga Pribadi
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Hasan Maulahela
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Amanda Pitarini Utari
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Virly Nanda Muzellina
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Agustinus Wiraatmadja
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Kaka Renaldi
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
35
|
Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol 2021; 14:1247-1258. [PMID: 34040155 DOI: 10.1038/s41385-021-00413-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Oral mucosal disease (OMD), which is also called soft tissue oral disease, is described as a series of disorders or conditions affecting the mucosa and soft tissue in the oral cavity. Its etiology is unclear, but emerging evidence has implicated the influence of the composition of the oral mucosa and saliva-resident microbiota. In turn, this dysbiosis effects the immune response balance and epithelial barrier function, followed by the occurrence and progression of OMD. In addition, oral microbial dysbiosis is diverse in different types of diseases and different disease progressions, suggesting that key causal pathogens may exist in various oral pathologies. This narrative literature review primarily discusses the most recent findings focusing on how microbial dysbiosis communicates with mucosal adaptive immune cells and the epithelial barrier in the context of five representative OMDs, including oral candidiasis (OC), oral lichen planus (OLP), recurrent aphthous ulcer (RAU), oral leukoplakia (OLK), and oral squamous cell carcinoma (OSCC), to provide new insight into the pathogenetic mechanisms of OMDs.
Collapse
|
36
|
De Silva S, Tennekoon KH, Karunanayake EH. Interaction of Gut Microbiome and Host microRNAs with the Occurrence of Colorectal and Breast Cancer and Their Impact on Patient Immunity. Onco Targets Ther 2021; 14:5115-5129. [PMID: 34712050 PMCID: PMC8548058 DOI: 10.2147/ott.s329383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and colorectal cancers are two primary malignancies on which most of the research done worldwide investigates the potential genetic and environmental risk factors and thereby tries to develop therapeutic methods to improve prognosis. Breast cancer is the most diagnosed cancer type in women, while colorectal cancer is diagnosed in males as the third most and females as the second most cancer type. Though these two cancer types are predominantly seen in adult patients worldwide, in the current context, these malignancies are diagnosed at a younger age with a significant rate of incidents than previous. Such early-onset cancers are generally present at an advanced stage of the most aggressive type with a poor prognosis. In the past, the focus of the research was mainly on studying possible candidate genes to understand the onset. However, it is now recognized that genetics, epigenetics, and other environmental factors play a pivotal role in cancer susceptibility. Thus, most studies were diversified to study the behavior of host microRNAs, and the involvement of gut microbiota and good communication between them surfaced in the occurrence and state of the disease. It is understood that the impact of these factors affects the outcome of the disease. Out of the adverse outcomes identified relating to the disease, immunosuppression is one of the most concerning outcomes in the current world, where such individuals remain vulnerable to infections. Recent studies revealed that microbiome and microRNA could create a considerable impact on immunosuppression. This review focused on the behavior of host microRNAs and gut microbiome for the onset of the disease and progression, thereby influencing an individual's immunosuppression. Understanding the interactions among microRNA, microbiome, presentation of the disease, and impact on the immune system will be immensely useful for developing future therapeutic strategies based on targeting host microRNA and the patient's gut microbiome. Therapies such as inhibitory-miRNA therapies, miRNA mimic-based therapeutics, immune checkpoint blockade therapies, and bacteria-assisted tumor-targeted therapies help modulate cancer. At the same time, it paid equal attention to potential noninvasive biomarkers in diagnosis, prognosis, and therapeutics in both cancers.
Collapse
Affiliation(s)
- Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Eric Hamilton Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| |
Collapse
|
37
|
Dehghani N, Tafvizi F, Jafari P. Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. BIOIMPACTS 2021; 11:245-252. [PMID: 34631486 PMCID: PMC8494254 DOI: 10.34172/bi.2021.32] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/13/2020] [Accepted: 07/04/2020] [Indexed: 12/25/2022]
Abstract
![]()
Introduction: Nowadays, probiotic bacteria have been considered as a factor in the prevention and treatment of cancer, especially by induction of apoptosis. This study aimed to evaluate the cytotoxic, anti-proliferative, and apoptotic effects of the supernatant of probiotic Lactobacillus rhamnosus on HT-29 cell line.
Methods : Molecular identification of probiotic L. rhamnosus was carried out using specific primers of 16S rRNA gene and sequencing. HT-29 cells were treated with different concentrations of bacterial supernatants at 24, 48, and 72 hours. MTT assay, Annexin V-FITC, real-time PCR, cell cycle analysis, and DAPI staining tests were conducted to evaluate the induction of apoptosis. The level of cyclin D1 protein was measured by immunocytochemistry method.
Results: The supernatant of L. rhamnosus inhibited the growth of HT-29 cancer cells in a dose- and time-dependent manner. The results of flow cytometry confirmed apoptotic cell death. Probiotic bacterial supernatant caused up-regulation of pro-apoptotic genes including caspase-3, caspase-9, and Bax. In addition, they resulted in down-regulation of Bcl2 and a decrease in expression levels of cyclin D1, cyclin E, and ERBB2 genes. Cancer cells were arrested in the G0/G1 phase of the cell cycle. The results of immunocytochemistry showed significant down-regulation of cyclin D1 protein during the 48 hours treatment with bacterial supernatant compared to the untreated cells.
Conclusion: The supernatant of probiotic L. rhamnosus has a great potential to inhibit the proliferation of HT-29 cells and the induction of apoptosis. L. rhamnosus might be used as a biological anti-cancer factor in the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Najme Dehghani
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
38
|
Shams K, Larypoor M, Salimian J. The immunomodulatory effects of Candida albicans isolated from the normal gastrointestinal microbiome of the elderly on colorectal cancer. Med Oncol 2021; 38:140. [PMID: 34637027 DOI: 10.1007/s12032-021-01591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022]
Abstract
The association of gut microbiota with occurrence and development of colorectal cancer (CRC) has been reported in recent studies. Probiotics have been shown to mediate anti-cancer effects through immune system. The aim of this study was to evaluate the efficacy of Lactobacillus plantarum and Candida albicans in the suppression of azoxymethane-induced CRC in male Fischer 344 rats. 30 adult male Fischer 344 rats were divided into 6 distinct groups (n = 5 per group): non-treated animals, fat-food intake group, fat-food and carcinogen intake group, CRC cancer-induced rats treated with the chemotherapy drug, CRC-induced rats treated with Lactobacillus plantarum, and CRC-induced rats treated with Candida albicans. Identification of Candida albicans isolated from human feces was performed by microbiological, biochemical, and PCR methods. The serum levels of IFN-γ, IL-4, TGF-β, and TNF-α were measured by ELISA. Pathological studies were performed through hematoxylin and eosin (H&E) staining method. The data were analyzed using one-way ANOVA and Tukey's post-hoc analysis. Shrinking cancer cells with very dark nuclei were observed in CRC-induced rats treated with the chemotherapy drug, Lactobacillus plantarum, and Candida albicans indicating the occurrence of apoptosis. Serum levels of IFN-γ, IL-4, and TGF-β significantly decreased compared to the control group (p < 0.05). Lactobacillus plantarum and Candida albicans isolated from the gastrointestinal tract of the elderly and healthy individuals can efficiently improve CRC.
Collapse
Affiliation(s)
- Kimiya Shams
- Deparment of Biotechnology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohaddeseh Larypoor
- Deparment of Biotechnology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran. .,Islamic Azad University, North Tehran Branch, Hakymiyeh-Babaee Highway, Tehran, Iran.
| | - Jafar Salimian
- Departmentof Immunology, Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Cai S, Fan Y, Zhang B, Lin J, Yang X, Liu Y, Liu J, Ren J, Xu H. Appendectomy Is Associated With Alteration of Human Gut Bacterial and Fungal Communities. Front Microbiol 2021; 12:724980. [PMID: 34603252 PMCID: PMC8483179 DOI: 10.3389/fmicb.2021.724980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Recent research has revealed the importance of the appendix in regulating the intestinal microbiota and mucosal immunity. However, the changes that occur in human gut microbial communities after appendectomy have never been analyzed. We assessed the alterations in gut bacterial and fungal populations associated with a history of appendectomy. In this cross-sectional study, we investigated the association between appendectomy and the gut microbiome using 16S and ITS2 sequencing on fecal samples from 30 healthy individuals with prior appendectomy (HwA) and 30 healthy individuals without appendectomy (HwoA). Analysis showed that the gut bacterial composition of samples from HwA was less diverse than that of samples from HwoA and had a lower abundance of Roseburia, Barnesiella, Butyricicoccus, Odoribacter, and Butyricimonas species, most of which were short-chain fatty acids-producing microbes. The HwA subgroup analysis indicated a trend toward restoration of the HwoA bacterial microbiome over time after appendectomy. HwA had higher gut fungi composition and diversity than HwoA, even 5 years after appendectomy. Compared with those in samples from HwoA, the abundance correlation networks in samples from HwA displayed more complex fungal–fungal and fungal–bacterial community interactions. This study revealed a marked impact of appendectomy on gut bacteria and fungi, which was particularly durable for fungi.
Collapse
Affiliation(s)
- Shuntian Cai
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Institute for Microbial Ecology, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Institute for Microbial Ecology, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Institute for Microbial Ecology, Xiamen University, Xiamen, China
| | - Jinzhou Lin
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xiaoning Yang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Yunpeng Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Institute for Microbial Ecology, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Institute for Microbial Ecology, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Institute for Microbial Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Nouri R, Hasani A, Shirazi KM, Aliand MR, Sepehri B, Sotoodeh S, Hemmati F, Rezaee MA. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr Pharm Biotechnol 2021; 23:1257-1268. [PMID: 34514986 DOI: 10.2174/1389201022666210910094827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.
Collapse
Affiliation(s)
- Rogayeh Nouri
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Reza Aliand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Simin Sotoodeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | | |
Collapse
|
41
|
Roberto M, Carconi C, Cerreti M, Schipilliti FM, Botticelli A, Mazzuca F, Marchetti P. The Challenge of ICIs Resistance in Solid Tumours: Could Microbiota and Its Diversity Be Our Secret Weapon? Front Immunol 2021; 12:704942. [PMID: 34489956 PMCID: PMC8417795 DOI: 10.3389/fimmu.2021.704942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota and its functional interaction with the human body were recently returned to the spotlight of the scientific community. In light of the extensive implementation of newer and increasingly precise genome sequencing technologies, bioinformatics, and culturomic, we now have an extraordinary ability to study the microorganisms that live within the human body. Most of the recent studies only focused on the interaction between the intestinal microbiota and one other factor. Considering the complexity of gut microbiota and its role in the pathogenesis of numerous cancers, our aim was to investigate how microbiota is affected by intestinal microenvironment and how microenvironment alterations may influence the response to immune checkpoint inhibitors (ICIs). In this context, we show how diet is emerging as a fundamental determinant of microbiota’s community structure and function. Particularly, we describe the role of certain dietary factors, as well as the use of probiotics, prebiotics, postbiotics, and antibiotics in modifying the human microbiota. The modulation of gut microbiota may be a secret weapon to potentiate the efficacy of immunotherapies. In addition, this review sheds new light on the possibility of administering fecal microbiota transplantation to modulate the gut microbiota in cancer treatment. These concepts and how these findings can be translated into the therapeutic response to cancer immunotherapies will be presented.
Collapse
Affiliation(s)
- Michela Roberto
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Catia Carconi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Micaela Cerreti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Francesca Matilde Schipilliti
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Lu SSM, Mohammed Z, Häggström C, Myte R, Lindquist E, Gylfe Å, Van Guelpen B, Harlid S. Antibiotics Use and Subsequent Risk of Colorectal Cancer: A Swedish Nationwide Population-Based Study. J Natl Cancer Inst 2021; 114:38-46. [PMID: 34467395 PMCID: PMC8755503 DOI: 10.1093/jnci/djab125] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Background Antibiotics use may increase colorectal cancer (CRC) risk by altering the gut microbiota, with suggestive evidence reported. Our study aims to investigate antibiotics use in relation to subsequent CRC risk. Methods This is a nationwide, population-based study with a matched case-control design (first primary CRC cases and 5 matched, cancer-free controls). Complete-population data, extracted from Swedish national registers for the period 2005-2016, were used to calculate odds ratios and 95% confidence intervals. Results We included 40 545 CRC cases and 202 720 controls. Using the full dataset, we found a positive association between more frequent antibiotics use and CRC, excluding antibiotics prescribed within 2 years of diagnosis attenuated results toward the null. In site-specific analyses, excluding the 2-year washout, the positive association was confined to the proximal colon (adjusted odds ratio for very high use vs no use = 1.17, 95% confidence interval = 1.05 to 1.31). For rectal cancer, an inverse association, which appears to be driven by women, was observed. Quinolones and sulfonamides and/or trimethoprims were positively associated with proximal colon cancer, whereas a more general inverse association, across antibiotics classes, was observed for rectal cancer. We found no association between methenamine hippurate, a urinary tract antiseptic not affecting the gut microbiota, and CRC risk. Conclusions This register-based study covering the entire population of Sweden found a robust association between antibiotics use and higher risk of proximal colon cancer and an inverse association with rectal cancer in women. This study strengthens the evidence from previous investigations and adds important insight into site-specific colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sai San Moon Lu
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Zahraa Mohammed
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Christel Häggström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | | - Åsa Gylfe
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
43
|
Fan X, Jin Y, Chen G, Ma X, Zhang L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion 2021; 102:508-515. [PMID: 32932258 DOI: 10.1159/000508328] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gut microbiota is a diverse community of microbes that maintain the stability of the intestinal environment. Dysbiosis of the gut microbiota has been linked to gastrointestinal diseases, such as colorectal cancer (CRC) - a leading cause of death for cancer patients. SUMMARY Candidate pathogens have been identified using bacterial culture and high-throughput sequencing techniques. Currently, there is evidence to show that specific intestinal microbes drive CRC development and progression, yet their pathogenic mechanisms are still unclear. Key Messages: In this review, we describe the known healthy gut microbiota and its changes in CRC. We especially focus on exploring the pathogenic mechanisms of gut microbiota dysbiosis in CRC. This is crucial for explaining how gut microbiota dysbiosis drives the process of colorectal carcinogenesis and tumor progression. Evaluation of changes in the gut microbiota during CRC development and progression offers a new strategy for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China.,Department of Neurology, Taizhou Second People's Hospital, Taizhou, China
| | - Yuelei Jin
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Xueqiang Ma
- Department of Gastrointestinal Surgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China
| | - Lixia Zhang
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, China,
| |
Collapse
|
44
|
Alberti G, Mazzola M, Gagliardo C, Pitruzzella A, Fucarini A, Giammanco M, Tomasello G, Carini F. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer: new players? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:233-240. [PMID: 34282804 DOI: 10.5507/bp.2021.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-microorganism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dysregulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic strategies for treating these conditions.
Collapse
Affiliation(s)
- Giusi Alberti
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Margherita Mazzola
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Carola Gagliardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Palermo, Italy
| | - Alessandro Pitruzzella
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Alberto Fucarini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Marco Giammanco
- Department of Surgery, Oncologicical and Stomatological Sciences (Di.Chir.On.S), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Giovanni Tomasello
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Francesco Carini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| |
Collapse
|
45
|
Song CH, Kim N, Nam RH, Choi SI, Yu JE, Nho H, Surh YJ. Changes in Microbial Community Composition Related to Sex and Colon Cancer by Nrf2 Knockout. Front Cell Infect Microbiol 2021; 11:636808. [PMID: 34249773 PMCID: PMC8261249 DOI: 10.3389/fcimb.2021.636808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The frequency of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in male mice is higher than that in female mice. Previous studies have reported that 17β-estradiol inhibits tumorigenesis in males by modulating nuclear factor-erythroid 2-related factor 2 (Nrf2). This study aimed to investigate the changes in mouse gut microbiome composition based on sex, AOM/DSS-induced colorectal cancer (CRC), and Nrf2 genotype. The gut microbiome composition was determined by 16S rRNA gene sequencing fecal samples obtained at week 16 post-AOM administration. In terms of sex differences, our results showed that the wild-type (WT) male control mice had higher alpha diversity (i.e. Chao1, Shannon, and Simpson) than the WT female control mice. The linear discriminant analysis effect size (LEfSe) results revealed that the abundances of Akkermansia muciniphila and Lactobacillus murinus were higher in WT male control mice than in WT female controls. In terms of colon tumorigenesis, the alpha diversity of the male CRC group was lower than that of the male controls in both WT and Nrf2 KO, but did not show such changes in females. Furthermore, the abundance of A. muciniphila was higher in male CRC groups than in male controls in both WT and Nrf2 KO. The abundance of Bacteroides vulgatus was higher in WT CRC groups than in WT controls in both males and females. However, the abundance of L. murinus was lower in WT female CRC and Nrf2 KO male CRC groups than in its controls. The abundance of A. muciniphila was not altered by Nrf2 KO. In contrast, the abundances of L. murinus and B. vulgatus were changed differently by Nrf2 KO depending on sex and CRC. Interestingly, L. murinus showed negative correlation with tumor numbers in the whole colon. In addition, B. vulgatus showed positive correlation with inflammatory markers (i.e. myeloperoxidase and IL-1β levels), tumor numbers, and high-grade adenoma, especially, developed mucosal and submucosal invasive adenocarcinoma at the distal part of the colon. In conclusion, Nrf2 differentially alters the gut microbiota composition depending on sex and CRC induction.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong Eun Yu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Heewon Nho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases 2021; 9:diseases9030045. [PMID: 34201465 PMCID: PMC8293145 DOI: 10.3390/diseases9030045] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Current research in medicine in several parts of the world has attempted to establish a link between the occurrence of neurodegenerative pathologies, microbiota dysbiosis, and the incidence of obesity. The body’s response to different physicochemical factors has also been influenced by the proper assimilation of bioactive compounds contained in the food that is ingested. Oxidative stress is one of the major factors that directly affects the functioning of the human microbiota. The body’s reaction to this imbalance is crucial to the progression of inflammatory processes, which are based on molecular mechanisms. Microbial dysbiosis can result in a possibly permanent alteration in the physiological response. This review aims to highlight recent contributions made to alleviating human dysbiosis in degenerative diseases, especially for neurodegenerative pathologies based on the rising prevalence of obesity. We discuss the significance of both microbiota modulation and possible alleviations of pathologies by a modulatory function. We argue that pre- and probiotics (including phenolic compounds stimulating the favorable strain from the microbiota) are an effective alternative that can support the microbiota pattern’s modulation over time and the attenuation of indirect causes that determine dysbiosis. Molecular aspects are presented in support of the modulating role of the microbiota following the use of probiotics.
Collapse
|
47
|
Howell MC, Green R, McGill AR, Dutta R, Mohapatra S, Mohapatra SS. SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers (Basel) 2021; 13:2676. [PMID: 34071688 PMCID: PMC8198029 DOI: 10.3390/cancers13112676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mark C. Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S. Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
48
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Mohamed A, Menon H, Chulkina M, Yee NS, Pinchuk IV. Drug-Microbiota Interaction in Colon Cancer Therapy: Impact of Antibiotics. Biomedicines 2021; 9:biomedicines9030259. [PMID: 33807878 PMCID: PMC7999677 DOI: 10.3390/biomedicines9030259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Colon adenocarcinoma is one of the most common malignancies, and it is highly lethal. Chemotherapy plays an important role in the treatment of colon cancer at various stages of the disease. The gut microbiome has emerged as a key player in colon cancer development and progression, and it can also alter the therapeutic agent's efficacy and toxicities. Antibiotics can directly and/or indirectly affect the balance of the gut microbiome and, therefore, the clinical outcomes. In this article, we provided an overview of the composition of the gut microbiome under homeostasis and the mechanistic links between gut microbiota and colon cancer. The relationship between the use of oral antibiotics and colon cancer, as well as the impact of the gut microbiome on the efficacy and toxicities of chemotherapy in colon cancer, are discussed. Potential interventions to modulate microbiota and improve chemotherapy outcomes are discussed. Further studies are indicated to address these key gaps in the field and provide a scientific basis for the design of novel microbiota-based approaches for prevention/use as adjuvant therapeutics for patients with colon cancer.
Collapse
Affiliation(s)
- Ali Mohamed
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.M.); (H.M.)
| | - Harry Menon
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.M.); (H.M.)
| | - Marina Chulkina
- Mechanisms of Carcinogenesis Program, Division of Gastroenterology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nelson S. Yee
- Next-Generation Therapies Program, Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.S.Y.); (I.V.P.); Tel.: +1-717-531-8678 (N.S.Y.); +1-713-301-8025 (I.V.P.)
| | - Irina V. Pinchuk
- Mechanisms of Carcinogenesis Program, Division of Gastroenterology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
- Correspondence: (N.S.Y.); (I.V.P.); Tel.: +1-717-531-8678 (N.S.Y.); +1-713-301-8025 (I.V.P.)
| |
Collapse
|
50
|
Sumida K, Lau WL, Kovesdy CP, Kalantar-Zadeh K, Kalantar-Zadeh K. Microbiome modulation as a novel therapeutic approach in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:75-84. [PMID: 33148949 DOI: 10.1097/mnh.0000000000000661] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Gut dysbiosis has been implicated in the pathogenesis of chronic kidney disease (CKD). Interventions aimed at restoring gut microbiota have emerged as a potential therapeutic option in CKD. This review summarizes the current evidence on gut microbiota-targeted strategies in patients with CKD. RECENT FINDINGS A growing number of studies have shown that plant-based diets, low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment may lead to favorable alterations in the gut microbiota. Current evidence suggests that the implementation of both plant-based and low-protein diets has potential benefits for the primary prevention of CKD, and for slowing CKD progression, with minimal risk of hyperkalemia and/or cachexia. The use of prebiotics, probiotics, and synbiotics and laxatives may have beneficial effects on uremic toxin generation, but their evidence is limited for the prevention and treatment of CKD. Recent advances in diagnostic technologies (e.g., high-throughput sequencing and nanotechnology) could enhance rapid diagnosis, monitoring, and design of effective therapeutic strategies for mitigating gut dysbiosis in CKD. SUMMARY Plant-based and low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment represent novel gut microbiota-targeted strategies in the conservative management of CKD, which could improve clinical outcomes in CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|