1
|
Shah Hosseini R, Nouri SM, Bansal P, Hjazi A, Kaur H, Hussein Kareem A, Kumar A, Al Zuhairi RAH, Al-Shaheri NA, Mahdavi P. The p53/miRNA Axis in Breast Cancer. DNA Cell Biol 2024; 43:549-558. [PMID: 39423159 DOI: 10.1089/dna.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
One of the main health issues in the modern world is cancer, with breast cancer (BC) as one of the most common types of malignancies. Different environmental and genetic risk factors are involved in the development of BC. One of the primary genes implicated in cancer development is the p53 gene, which is also known as the "gatekeeper" gene. p53 is involved in cancer development by interacting with numerous pathways and signaling factors, including microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that regulate gene expression by binding to the 3' untranslated region of target mRNAs, resulting in their translational inhibition or degradation. If the p53 gene is mutated or degraded, it can contribute to the risk of BC by disrupting the expression of miRNAs. Similarly, the disruption of miRNAs causes the negative regulation of p53. Therefore, the p53/miRNA axis is a crucial pathway in the progression or prevention of BC, and understanding the regulation and function of this pathway may contribute to the development of new therapeutic strategies to help treat BC.
Collapse
Affiliation(s)
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | | | | | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Qian H, Maghsoudloo M, Kaboli PJ, Babaeizad A, Cui Y, Fu J, Wang Q, Imani S. Decoding the Promise and Challenges of miRNA-Based Cancer Therapies: An Essential Update on miR-21, miR-34, and miR-155. Int J Med Sci 2024; 21:2781-2798. [PMID: 39512697 PMCID: PMC11539376 DOI: 10.7150/ijms.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
MicroRNAs (miRNAs)-based therapies hold great promise for cancer treatment, challenges such as expression variability, off-target effects, and limited clinical effectiveness have led to the withdrawal of many clinical trials. This review investigates the setbacks in miRNA-based therapies by examining miR-21, miR-34, and miR-155, highlighting their functional complexity, off-target effects, and the challenges in delivering these therapies effectively. Moreover, It highlights recent advances in delivery methods, combination therapies, and personalized treatment approaches to overcome these challenges. This review highlights the intricate molecular networks involving miRNAs, particularly their interactions with other non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), emphasizing the pivotal role of miRNAs in cancer biology and therapeutic strategies. By addressing these hurdles, this review aims to steer future research toward harnessing the potential of miRNA therapies to target cancer pathways effectively, enhance anti-tumor responses, and ultimately improve patient outcomes in precision cancer therapy.
Collapse
Affiliation(s)
- Hongbo Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Yulan Cui
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Yue Y, Lu B, Ni G. Circ_0001495 influences the development of endometriosis through the miRNA-34c-5p/E2F3 axis. Reprod Biol 2024; 24:100876. [PMID: 38458026 DOI: 10.1016/j.repbio.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
Endometriosis is a chronic gynecological condition characterized by the presence of endometrial glands and stroma outside the uterine cavity., accounting for 7% of all female malignant tumors and 20%- 30% of malignant tumors of the female reproductive system. Multiple studies have shown that circular RNA (circRNA) has the potential to become a targeted target and marker for EM. However, the roles of circ_0001495 in EM are still unclear. Our research aims to reveal the molecular mechanism of circ_0001495 in EM. In this study, RT-PCR or western blot were conducted to determine mRNA and protein expression. cell viability, proliferation, migration, invasion, and apoptosis were assessed by CCK-8, EdU, wound healing, transwell, and flow cytometry analyses, respectively. Additionally, the targeting relationship between miR-34c-5p and circ_0001495 or E2F3 was confirmed through dual-luciferase reporter gene assay. We found significant overexpression of circ_0001495 in EM tissues and cells. Knockdown of circ_0001495 inhibited the proliferation, migration and invasion of ectopic endometrial stromal cells (EESCs) and increased cell apoptosis. Moreover, we found that circ_0001495 regulated E2F3 levels by interacting with miR-34c-5p in EESC. Furthermore, in vitro, miR-34c-5p inhibition or E2F3 overexpression could attenuate the effect of circ_0001495 silencing on EM progression. In addition, the vivo experiment demonstrated that inhibition of circ_0001495 could repress the development of endometriosis by regulating the miR-34c-5p/E2F3 axis. In conclusion, our study suggested that circ_0001495 promoted EM progression in vitro and in vivo through the miR-34c-5p/E2F3 axis, which might be a potential therapeutic target for EM.
Collapse
Affiliation(s)
- Yan Yue
- Anhui Medical University, Hefei, Anhui 230032, China; Department of Gynaecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, China; Department of Gynaecology, The First People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Bin Lu
- Department of Gynaecology, The First People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Guantai Ni
- Anhui Medical University, Hefei, Anhui 230032, China; Department of Gynaecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, China.
| |
Collapse
|
4
|
Yu M, Du H, Zhang C, Shi Y. miR-192 family in breast cancer: Regulatory mechanisms and diagnostic value. Biomed Pharmacother 2024; 175:116620. [PMID: 38653113 DOI: 10.1016/j.biopha.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in the role of the miRNA family in human cancer. The miRNA-192 family is a group of conserved small RNAs, including miR-192, miR-194, and miR-215. Recent studies have shown that the incidence and mortality of breast cancer have been increasing epidemiologically year by year, and it is urgent to clarify the pathogenesis of breast cancer and seek new diagnostic and therapeutic methods. There is increasing evidence that miR-192 family members may be involved in the occurrence and development of breast cancer. This review describes the regulatory mechanism of the miRNA-192 family affecting the malignant behavior of breast cancer cells and evaluates the value of the miRNA-192 family as a diagnostic and prognostic biomarker for breast cancer. It is expected that summarizing and discussing the relationship between miRNA-192 family members and breast cancer, it will provide a new direction for the clinical diagnosis and treatment of breast cancer and basic medical research.
Collapse
Affiliation(s)
- Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, PR China; Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| |
Collapse
|
5
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
6
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
7
|
Yahya SMM, Nabih HK, Elsayed GH, Mohamed SIA, Elfiky AM, Salem SM. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene. Breast Cancer Res Treat 2024; 204:133-149. [PMID: 38057687 PMCID: PMC10806220 DOI: 10.1007/s10549-023-07170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | | | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
8
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
De los Reyes M, Dettleff P, Palomino J, Peralta OA, Vergara A. Dynamic Expression of Follicle-Stimulating Hormone and Estrogen mRNA Receptors Associated with microRNAs 34a and -let-7c in Canine Follicles during the Estrous Cycle. Animals (Basel) 2024; 14:214. [PMID: 38254383 PMCID: PMC10812696 DOI: 10.3390/ani14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The genes encoding for estrogen receptor (ESR2) and follicle-stimulating hormone receptor (FSHR) play crucial roles in ovarian follicular development. This study aimed to determine the expression levels of miRNAs predicted against FSHR and ESR2 mRNAs in follicular cells related to their target genes during the estrous cycle in canines. Antral follicles were dissected from 72 ovaries following ovariohysterectomies. MiRNAs regulating FSHR and ESR2 genes were selected from miRNA databases, and mature miRNA and mRNA expression profiling was performed using real-time polymerase chain reaction (PCR). The best miRNA for each target gene was selected considering the quantitative PCR (qPCR) performance and target prediction probability, selecting only miRNAs with a binding p-value of 1.0, and choosing cfa-miR-34a and cfa-let-7c for FSHR and ESR2, respectively. The expression levels comparing the different phases of the estrous cycle were evaluated using ANOVA. Pearson correlations between the expression pattern of each miRNA and their target genes were performed. Each miRNA and its target genes were expressed in the granulosa cells in all estrous phases. FSHR remained low in anestrus and proestrus, increased (p < 0.05) to the highest level in estrus, and decreased (p < 0.05) in diestrus. ESR2 showed the same trend as FSHR, with the highest (p < 0.05) expression in estrus and the lowest (p < 0.05) in anestrus and proestrus. A tendency for an inverse relationship was observed between the expression of miR-34a and FSHR only in the anestrus phase, while an inverse correlation (r = -0.8) was found between miRNA-7c and ESR2 (p < 0.01). The expression profile of miR-34a and miR-let-7c and their predicted target genes of dog ovarian follicles throughout the estrous cycle observed in this study suggest a role in the transcriptional regulation of FSHR and ESR2, which is the first evidence of the involvement of these miRNAs in the canine follicular function.
Collapse
Affiliation(s)
- Monica De los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| | - Phillip Dettleff
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Jaime Palomino
- School of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O’Higgins University, Santiago 8370993, Chile;
| | - Oscar A. Peralta
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Ana Vergara
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| |
Collapse
|
10
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
11
|
Rezaei Z, Dastjerdi K, Allahyari A, ShahidSales S, Talebian S, Maharati A, Zangooie A, Zangouei AS, Sadri F, Sargazi S. Plasma microRNA-195, -34c, and - 1246 as novel biomarkers for the diagnosis of trastuzumab-resistant HER2-positive breast cancer patients. Toxicol Appl Pharmacol 2023; 475:116652. [PMID: 37557922 DOI: 10.1016/j.taap.2023.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Recently, miRNAs have been regarded as potential candidates for mediating therapeutic functions by targeting genes related to drug response. In this study, we suggested that plasma miRNAs may be correlated with response to trastuzumab in HER2-positive breast cancer patients. To determine whether miR-195, miR-23b-3p, miR-1246, and miR-34c-3p are involved in trastuzumab resistance, we screened their expressions in the BT-474 cell line, which was followed by plasma analysis from 20 trastuzumab-resistant HER2-positive breast cancer patients and 20 nonresistance subjects. Then, TargetScan, Pictar, and miRDB were applied to find the possible targets of the selected miRNAs. In addition, the expression status of admitted targets was evaluated. Our results showed that in resistant BT-474 cells, miR-1246, and miR-23b-3p were significantly upregulated, and miR-195-5p and miR-34c-3p were downregulated. In plasma analysis, we found miR-195-5p, miR-34c-3p, and miR-1246 meaningfully diminished in the resistant group, while the expression of miR-23b-3p was not statistically different. The expression levels of confirmed targets by qRT-PCR showed that the expression of RAF1, AKT3, c-MET, CCND1, PHLPP2, MYB, MAP2K1, and PTEN was significantly upregulated, while the expression of CCNG2 was significantly downregulated. The networks of miRNAs with their confirmed targets improved comprehension of miRNA-mediated therapeutic responses to trastuzumab and might be proposed for more characterization of miRNA functions. Moreover, these data indicated that miR-195-5p, miR-34c-3p, and miR-1246 could be possible biomarkers for prognosis and early detection of the trastuzumab-resistant group from the sensitive group of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
| | - Kazem Dastjerdi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran.
| | - Abolghasem Allahyari
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Sadri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
12
|
Asl ER, Sarabandi S, Shademan B, Dalvandi K, sheikhansari G, Nourazarian A. MicroRNA targeting: A novel therapeutic intervention for ovarian cancer. Biochem Biophys Rep 2023; 35:101519. [PMID: 37521375 PMCID: PMC10382632 DOI: 10.1016/j.bbrep.2023.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Ovarian cancer, a perilous form of cancer affecting the female reproductive system, exhibits intricate communication networks that contribute to its progression. This study aims to identify crucial molecular abnormalities linked to the disease to enhance diagnostic and therapeutic strategies. In particular, we investigate the role of microRNAs (miRNAs) as diagnostic biomarkers and explore their potential in treating ovarian cancer. By targeting miRNAs, which can influence multiple pathways and genes, substantial therapeutic benefits can be attained. In this review we want to shed light on the promising application of miRNA-based interventions and provide insights into the specific miRNAs implicated in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Sajed Sarabandi
- Department of Veterinary, Faculty of Medicine Sciences, Islamic Azad University of Karaj, Karaj, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Dalvandi
- Ministry of Health and Medical Education, Health Department, Tehran, Iran
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
13
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
14
|
Wu S, Wu Y, Deng S, Lei X, Yang X. Emerging roles of noncoding RNAs in human cancers. Discov Oncol 2023; 14:128. [PMID: 37439905 DOI: 10.1007/s12672-023-00728-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Studies have found that RNA encoding proteins only account for a small part of the total number, most RNA is non-coding RNA, and non-coding RNA may affect the occurrence and development of human cancers by affecting gene expression, therefore play an important role in human pathology. At present, ncRNAs studied include miRNA, circRNA, lncRNA, piRNA, and snoRNA, etc. After decades of research, the basic role of these ncRNAs in many cancers has been clear. As far as we know, the role of miRNAs in cancer is one of the hottest research directions, however, it is also found that the imbalance of ncRNAs will affect the occurrence of gastric cancer, breast cancer, lung cancer, meanwhile, it may also affect the prognosis of these cancers. Therefore, the study of ncRNAs in cancers may help to find new cancer diagnostic and treatment methods. Here, we reviewed the biosynthesis and characteristics of miRNA, cricRNA, and lncRNA etc., their roles in human cancers, as well as the mechanism through which these ncRNAs affect human cancers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Ruiz-Manriquez LM, Villarreal-Garza C, Benavides-Aguilar JA, Torres-Copado A, Isidoro-Sánchez J, Estrada-Meza C, Arvizu-Espinosa MG, Paul S, Cuevas-Diaz Duran R. Exploring the Potential Role of Circulating microRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. Int J Mol Sci 2023; 24:9984. [PMID: 37373139 PMCID: PMC10297903 DOI: 10.3390/ijms24129984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths among women worldwide. Neoadjuvant therapy (NAT) is increasingly being used to reduce tumor burden prior to surgical resection. However, current techniques for assessing tumor response have significant limitations. Additionally, drug resistance is commonly observed, raising a need to identify biomarkers that can predict treatment sensitivity and survival outcomes. Circulating microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have been shown to play a significant role in cancer progression as tumor inducers or suppressors. The expression of circulating miRNAs has been found to be significantly altered in breast cancer patients. Moreover, recent studies have suggested that circulating miRNAs can serve as non-invasive biomarkers for predicting response to NAT. Therefore, this review provides a brief overview of recent studies that have demonstrated the potential of circulating miRNAs as biomarkers for predicting the clinical response to NAT in BC patients. The findings of this review will strengthen future research on developing miRNA-based biomarkers and their translation into medical practice, which could significantly improve the clinical management of BC patients undergoing NAT.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64700, Mexico;
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, Monterrey 64700, Mexico;
| | | | - Andrea Torres-Copado
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - José Isidoro-Sánchez
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | |
Collapse
|
16
|
Shibata MA, Taniguchi K. Metastasis Inhibition. Int J Mol Sci 2023; 24:ijms24087123. [PMID: 37108286 PMCID: PMC10138681 DOI: 10.3390/ijms24087123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer metastasis is a common biological phenomenon observed in malignant tumors that can lead to death in affected individuals [...].
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | - Kohei Taniguchi
- Translational Research Program, Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| |
Collapse
|
17
|
Han TY, Hou LS, Li JX, Huan ML, Zhou SY, Zhang BL. Bone targeted miRNA delivery system for miR-34a with enhanced anti-tumor efficacy to bone-associated metastatic breast cancer. Int J Pharm 2023; 635:122755. [PMID: 36801480 DOI: 10.1016/j.ijpharm.2023.122755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Bone metastatic cancer is the most common occurrence in breast cancer, and the treatment is also facing great challenges. MicroRNA-34a (miRNA-34a) is a promising anti-cancer miRNA for gene therapy to bone metastatic cancer patients. However, the lack of specificity to bone and low accumulation at the site of bone tumor remains the major challenge when used bone-associated tumor. To solve this problem, a bone-targeted vector for delivery of miR-34a to bone metastatic breast cancer was constructed by using the commonly used gene vector branched polyethylenimine 25 k (BPEI 25 k) as the skeleton and linking with alendronate (ALN) moieties for bone targeting group. The constructed gene delivery system PCA/miR-34a can efficiently prevent miR-34a from degradation during blood circulation and enhance the specific bone delivery and distribution. PCA/miR-34a nanoparticles can be uptake into tumor cells through clathrin and caveolae-mediated endocytosis, and directly regulate the expression of oncogenes, thus promoting tumor cell apoptosis and relieving bone tissue erosion. The results of experiments in vitro and in vivo confirmed that the constructed bone-targeted miRNA delivery system PCA/miR-34a can enhance the anti-tumor efficacy in bone metastatic cancer, and provide a potential strategy for gene therapy in bone metastatic cancer.
Collapse
Affiliation(s)
- Tian-Yan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jia-Xin Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China.
| |
Collapse
|
18
|
Huang Z, Zhen S, Jin L, Chen J, Han Y, Lei W, Zhang F. miRNA-1260b Promotes Breast Cancer Cell Migration and Invasion by Downregulating CCDC134. Curr Gene Ther 2023; 23:60-71. [PMID: 36056852 DOI: 10.2174/1566523222666220901112314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Breast cancer (BRCA) is the most common type of cancer among women worldwide. MiR-1260b has been widely demonstrated to participate in multiple crucial biological functions of cancer tumorigenesis, but its functional effect and mechanism in human breast cancer have not been fully understood. METHODS qRT-PCR was used to detect miR-1260b expression in 29 pairs of breast cancer tissues and normal adjacent tissues. Besides, the expression level of miR-1260b in BRCA cells was also further validated by qRT-PCR. miR-1260b played its role in the prognostic process by using Kaplan-Meier curves. In addition, miR-1260b knockdown and target gene CCDC134 overexpression model was constructed in cell line MDA-MB-231. Transwell migration and invasion assay was performed to analyze the effect of miR-1260b and CCDC134 on the biological function of BRCA cells. TargetScan and miRNAWalk were used to find possible target mRNAs. The relationship between CCDC134 and immune cell surface markers was analyzed using TIMER and database and the XIANTAO platform. GSEA analysis was used to identify possible CCDC134-associated molecular mechanisms and pathways. RESULTS In the present study, miR-1260b expression was significantly upregulated in human breast cancer tissue and a panel of human breast cancer cell lines, while the secretory protein coiled-coil domain containing 134 (CCDC134) exhibited lower mRNA expression. High expression of miR-1260b was associated with poor overall survival among the patients by KM plot. Knockdown of miR-1260b significantly suppressed breast cancer cell migration and invasion and yielded the opposite result. In addition, overexpression of CCDC134 could inhibit breast cancer migration and invasion, and knockdown yielded the opposite result. There were significant positive correlations of CCDC134 with CD25 (IL2RA), CD80 and CD86. GSEA showed that miR-1260b could function through the MAPK pathway by downregulating CCDC134. CONCLUSION Collectively, these results suggested that miR-1260b might be an oncogene of breast cancer and might promote the migration and invasion of BRCA cells by down-regulating its target gene CCDC134 and activating MAPK signaling pathway as well as inhibiting immune function and causing immune escape in human breast cancer.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Shijian Zhen
- Department of Pathology, The First Affiliated Hospital of Hunan Traditional Chinese Medical College (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou 412000, China
| | - Liangzi Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jian Chen
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wen Lei
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Fuqing Zhang
- Department of Aenethesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
19
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
20
|
Stable Cavitation-Mediated Delivery of miR-126 to Endothelial Cells. Pharmaceutics 2022; 14:pharmaceutics14122656. [PMID: 36559150 PMCID: PMC9784098 DOI: 10.3390/pharmaceutics14122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
In endothelial cells, microRNA-126 (miR-126) promotes angiogenesis, and modulating the intracellular levels of this gene could suggest a method to treat cardiovascular diseases such as ischemia. Novel ultrasound-stimulated microbubbles offer a means to deliver therapeutic payloads to target cells and sites of disease. The purpose of this study was to investigate the feasibility of gene delivery by stimulating miR-126-decorated microbubbles using gentle acoustic conditions (stable cavitation). A cationic DSTAP microbubble was formulated and characterized to carry 6 µg of a miR-126 payload per 109 microbubbles. Human umbilical vein endothelial cells (HUVECs) were treated at 20−40% duty cycle with miR-126-conjugated microbubbles in a custom ultrasound setup coupled with a passive cavitation detection system. Transfection efficiency was assessed by RT-qPCR, Western blotting, and endothelial tube formation assay, while HUVEC viability was monitored by MTT assay. With increasing duty cycle, the trend observed was an increase in intracellular miR-126 levels, up to a 2.3-fold increase, as well as a decrease in SPRED1 (by 33%) and PIK3R2 (by 46%) expression, two salient miR-126 targets. Under these ultrasound parameters, HUVECs maintained >95% viability after 96 h. The present work describes the delivery of a proangiogenic miR-126 using an ultrasound-responsive cationic microbubble with potential to stimulate therapeutic angiogenesis while minimizing endothelial damage.
Collapse
|
21
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23:6696143. [PMID: 36094095 DOI: 10.1093/bib/bbac397] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
22
|
Banerjee S, Mandal AKA. Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Front Genet 2022; 13:995046. [PMID: 36276982 PMCID: PMC9582282 DOI: 10.3389/fgene.2022.995046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer comprises 30% of all cancer cases among the world’s women population. MicroRNAs are small, endogenous, non-coding RNAs that regulate cell proliferating and apoptotic pathways by modulating expressions of related genes. Phytochemicals like epigallocatechin-3-gallate (EGCG) are known to have a chemotherapeutic effect on cancer often through the regulation of microRNAs. The aim is to find out the key known and novel miRNAs, which are controlled by EGCG in breast cancer cell line MDA-MB-231. Next-generation sequencing (NGS) revealed 1,258 known and 330 novel miRNAs from untreated and 83 μM EGCG (IC50 value of EGCG) treated cells. EGCG modulated 873 known and 47 novel miRNAs in the control vs. treated sample. The hypothesis of EGCG being a great modulator of miRNAs that significantly control important cancer-causing pathways has been established by analyzing with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Analysis Through Evolutionary Relationships (PANTHER) database. Validation of known and novel miRNA expression differences in untreated vs. treated cells was done using qPCR. From this study, a few notable miRNAs were distinguished that can be used as diagnostics as well as prognostic markers for breast cancer.
Collapse
|
23
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
24
|
MicroRNA-34c-5p exhibits anticancer properties in gastric cancer by targeting MAP2K1 to inhibit cell proliferation, migration, and invasion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7375661. [PMID: 36203485 PMCID: PMC9532111 DOI: 10.1155/2022/7375661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Gastric cancer(GC)is one of the deadliest digestive tract tumors worldwide,existing studies suggest that dysregulated expression of microRNAs (miRNAs) plays an important role in the pathogenesis and progression of GC. This study aimed to investigate the expression, biological function, and downstream mechanism of miR-34c-5p in GC, provide new targets for gastric cancer diagnosis and treatment. Methods The expression of miR-34c-5p in GC tissues and cell lines was examined by RT-qPCR. Cell wound healing, transwell and cell cloning assays were used to detect the effect of miR-34c-5p on the migration and invasion abilities, respectively, of GC cells. Western blot was performed to detect the expression of related proteins. Bioinformatics analysis was used to predict the binding of MAP2K1 to miR-34c-5p and the targeting relationship was confirmed by dual luciferase reporter assay. Results The expression level of miR-34c-5p was significantly decreased in GC tissues and cell lines. miR-34c-5p overexpression inhibited migration, invasion, and colony formation of gastric cancer cells, the related protein E-cadherin expression was significantly increased and N-cadherin, vimentin, and PCNA expression were significantly decreased, while miR-34c-5p knockdown exerted the opposite effects. In addition, the targeting relationship between miR-34c-5p and MAP2K1 was predicted and confirmed, and further confirmed by rescue experiments that MAP2K1 alleviated the inhibitory effect of miR-34c-5p in GC. Conclusion MiR-34c-5p is lowly expressed in GC, and it can target MAP2K1 to exert inhibitory effects on GC proliferation, invasion, and migration. These findings provide a promising biomarker and a potential therapeutic target for gastric cancer.
Collapse
|
25
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
26
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
27
|
Engineering tumor-derived small extra cellular vesicles to encapsulate miR-34a, effectively inhibits 4T1 cell proliferation, migration, and gene expression. Med Oncol 2022; 39:93. [PMID: 35568745 DOI: 10.1007/s12032-022-01685-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
Tumor cells produce small extra cellular vesicles-(tsEV) massively, which act as cancer messengers that may also have anti-cancer effects. Based on this knowledge, we hypothesized that we can benefit from 4T1-derived sEVs to amplify the anti-cancer effects of miR-34a-replacement therapy in 4T1 cells. Supernatant of 4T1 cultured cells gathered after 24 h of exposure to serum-free media. tsEVs purified by commercial kit and characterized by transmission and scanning electron microscopy, dynamic light scattering, and bicinchoninic acid assay. Modified CaCl2 method applied for miR-34a loading in tsEV (tsEV-miR) and loading confirmation evaluated by the relative expression of miR-34a. MTT, annexin V/PI, cell cycle, scratch test, and real-time PCR were performed for proliferation, apoptosis, invasion, and relative expression of miR-34a target genes after treatment with tsEV/tsEV-miR, respectively. The results indicated that tsEV-miR provides a time-dose-dependent anti-proliferative effect versus tsEV/control group. tsEV-miR could induce apoptosis and arrest the cell cycle at G0/G1 phase, and moreover, it effectively halted the invasion capability of 4T1 cells. Treatment with tsEV-miR down-regulated miR-34a target genes, including B-cell lymphoma-2, vascular endothelial growth factor and its receptor, matrix metalloproteinase-2 and -9, and interleukin-6. Engineered tsEVs can affect different aspects of 4T1 cancer cells including proliferation, apoptosis, cell cycle, migration, and cancer-related gene expression profile. In this regard, tsEV could be considered a proper vehicle for miR-34a replacement therapy and could exacerbate its anti-cancer effects in triple-negative breast cancer. Indeed, TNBC can be targeted by multiple angles by its weapon.
Collapse
|
28
|
Fan H, Li Y, Yuan F, Lu L, Liu J, Feng W, Zhang HG, Chen SY. Up-regulation of microRNA-34a mediates ethanol-induced impairment of neural crest cell migration in vitro and in zebrafish embryos through modulating epithelial-mesenchymal transition by targeting Snail1. Toxicol Lett 2022; 358:17-26. [PMID: 35038560 PMCID: PMC9058190 DOI: 10.1016/j.toxlet.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
Prenatal ethanol exposure can impair neural crest cell (NCC) development, including NCC survival, differentiation and migration, contributing to the craniofacial dysmorphology in Fetal Alcohol Spectrum Disorders (FASD). Epithelial-mesenchymal transition (EMT) plays an important role in regulating the migration of NCCs. The objective of this study is to determine whether ethanol exposure can suppress NCC migration through inhibiting EMT and whether microRNA-34a (miR-34a) is involved in the ethanol-induced impairment of EMT in NCCs. We found that exposure to 100 mM ethanol significantly inhibited the migration of NCCs. qRT-PCR and Western Blot analysis revealed that exposure to ethanol robustly reduced the mRNA and protein expression of Snail1, a critical transcriptional factor that has a pivotal role in the regulation of EMT. Ethanol exposure also significantly increased the mRNA expression of the Snail1 target gene E-cadherin1 and inhibited EMT in NCCs. We also found that exposure to ethanol significantly elevated the expression of miR-34a that targets Snail1 in NCCs. In addition, down-regulation of miR-34a prevented ethanol-induced repression of Snail1 and diminished ethanol-induced upregulation of Snail1 target gene E-cadherin1 in NCCs. Inhibition of miR-34a restored EMT and prevented ethanol-induced inhibition of NCC migration in vitro and in zebrafish embryos in vivo. These results demonstrate that ethanol-induced upregulation of miR-34a contributes to the impairment of NCC migration through suppressing EMT by targeting Snail1.
Collapse
Affiliation(s)
- Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA,These authors contributed equally
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA,These authors contributed equally
| | - Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA,Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA,Robley Rex Veterans Affairs Medical Center, Louisville, KY 40292, USA
| | - Shao-yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA,University of Louisville Alcohol Research Center, Louisville, KY 40292, USA,To whom correspondence should be sent: Shao-yu Chen, Ph.D., Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 Phone: (502) 852-8677 FAX: (502) 852-8927.
| |
Collapse
|
29
|
Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean Model of the Proliferative Role of the lncRNA XIST in Non-Small Cell Lung Cancer Cells. BIOLOGY 2022; 11:biology11040480. [PMID: 35453680 PMCID: PMC9024590 DOI: 10.3390/biology11040480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
Abstract
The long non-coding RNA X inactivate-specific transcript (lncRNA XIST) has been verified as an oncogenic gene in non-small cell lung cancer (NSCLC) whose regulatory role is largely unknown. The important tumor suppressors, microRNAs: miR-449a and miR-16 are regulated by lncRNA XIST in NSCLC, these miRNAs share numerous common targets and experimental evidence suggests that they synergistically regulate the cell-fate regulation of NSCLC. LncRNA XIST is known to sponge miR-449a and miR-34a, however, the regulatory network connecting all these non-coding RNAs is still unknown. Here we propose a Boolean regulatory network for the G1/S cell cycle checkpoint in NSCLC contemplating the involvement of these non-coding RNAs. Model verification was conducted by comparison with experimental knowledge from NSCLC showing good agreement. The results suggest that miR-449a regulates miR-16 and p21 activity by targeting HDAC1, c-Myc, and the lncRNA XIST. Furthermore, our circuit perturbation simulations show that five circuits are involved in cell fate determination between senescence and apoptosis. The model thus allows pinpointing the direct cell fate mechanisms of NSCLC. Therefore, our results support that lncRNA XIST is an attractive target of drug development in tumor growth and aggressive proliferation of NSCLC, and promising results can be achieved through tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| | - Daner A. Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| |
Collapse
|
30
|
Androgen Receptor as an Emerging Feasible Biomarker for Breast Cancer. Biomolecules 2022; 12:biom12010072. [PMID: 35053220 PMCID: PMC8774219 DOI: 10.3390/biom12010072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 02/08/2023] Open
Abstract
Biomarkers can be used for diagnosis, prognosis, and prediction in targeted therapy. The estrogen receptor α (ERα) and human epidermal growth factor receptor 2 (HER2) are standard biomarkers used in breast cancer for guiding disease treatment. The androgen receptor (AR), a nuclear hormone receptor, contributes to the development and progression of prostate tumors and other cancers. With increasing evidence to support that AR plays an essential role in breast cancer, AR has been considered a useful biomarker in breast cancer, depending on the context of breast cancer sub-types. The existing survival analyses suggest that AR acts as a tumor suppressor in ER + ve breast cancers, serving as a favorable prognostic marker. However, AR functions as a tumor promoter in ER-ve breast cancers, including HER2 + ve and triple-negative (TNBC) breast cancers, serving as a poor prognostic factor. AR has also been shown to be predictive of the potential of response to adjuvant hormonal therapy in ER + ve breast cancers and to neoadjuvant chemotherapy in TNBC. However, conflicting results do exist due to intrinsic molecular differences between tumors and the scoring method for AR positivity. Applying AR expression status to guide treatment in different breast cancer sub-types has been suggested. In the future, AR will be a feasible biomarker for breast cancer. Clinical trials using AR antagonists in breast cancer are active. Targeting AR alone or other therapeutic agents provides alternatives to existing therapy for breast cancer. Therefore, AR expression will be necessary if AR-targeted treatment is to be used.
Collapse
|
31
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
32
|
Nguyen VT, Le TTK, Than K, Tran DH. Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities. Sci Rep 2021; 11:21071. [PMID: 34702958 PMCID: PMC8548500 DOI: 10.1038/s41598-021-00677-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Predicting beneficial and valuable miRNA-disease associations (MDAs) by doing biological laboratory experiments is costly and time-consuming. Proposing a forceful and meaningful computational method for predicting MDAs is essential and captivated many computer scientists in recent years. In this paper, we proposed a new computational method to predict miRNA-disease associations using improved random walk with restart and integrating multiple similarities (RWRMMDA). We used a WKNKN algorithm as a pre-processing step to solve the problem of sparsity and incompletion of data to reduce the negative impact of a large number of missing associations. Two heterogeneous networks in disease and miRNA spaces were built by integrating multiple similarity networks, respectively, and different walk probabilities could be designated to each linked neighbor node of the disease or miRNA node in line with its degree in respective networks. Finally, an improve extended random walk with restart algorithm based on miRNA similarity-based and disease similarity-based heterogeneous networks was used to calculate miRNA-disease association prediction probabilities. The experiments showed that our proposed method achieved a momentous performance with Global LOOCV AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, respectively. And the best AUC and AUPR values under fivefold cross-validation of 0.9855 and 0.8642 which are proven by statistical tests, respectively. In comparison with other previous related methods, it outperformed than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR values. In case studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms diseases, it inferred 1, 12 and 7 new associations out of top 40 predicted associated miRNAs for each disease, respectively. All of these new inferred associations have been confirmed in different databases or literatures.
Collapse
Affiliation(s)
- Van Tinh Nguyen
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
- Faculty of Information Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Vietnam
| | - Thi Tu Kien Le
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
| | - Khoat Than
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dang Hung Tran
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
33
|
Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, Lakhani HV, Sodhi K. A Review of miRNAs as Biomarkers and Effect of Dietary Modulation in Obesity Associated Cognitive Decline and Neurodegenerative Disorders. Front Mol Neurosci 2021; 14:756499. [PMID: 34690698 PMCID: PMC8529023 DOI: 10.3389/fnmol.2021.756499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a progressive increase in the prevalence of obesity and its comorbidities such as type 2 diabetes and cardiovascular diseases worldwide. Recent studies have suggested that the crosstalk between adipose tissue and central nervous system (CNS), through cellular mediators and signaling pathways, may causally link obesity with cognitive decline and give rise to neurodegenerative disorders. Several mechanisms have been proposed in obesity, including inflammation, oxidative stress, insulin resistance, altered lipid and cholesterol homeostasis, which may result in neuroinflammation, altered brain insulin signaling, amyloid-beta (Aβ) deposition and neuronal cell death. Since obesity is associated with functional and morphological alterations in the adipose tissues, the resulting peripheral immune response augments the development and progression of cognitive decline and increases susceptibility of neurodegenerative disorders, such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Studies have also elucidated an important role of high fat diet in the exacerbation of these clinical conditions. However, the underlying factors that propel and sustain this obesity associated cognitive decline and neurodegeneration, remains highly elusive. Moreover, the mechanisms linking these phenomena are not well-understood. The cumulative line of evidence have demonstrated an important role of microRNAs (miRNAs), a class of small non-coding RNAs that regulate gene expression and transcriptional changes, as biomarkers of pathophysiological conditions. Despite the lack of utility in current clinical practices, miRNAs have been shown to be highly specific and sensitive to the clinical condition being studied. Based on these observations, this review aims to assess the role of several miRNAs and aim to elucidate underlying mechanisms that link obesity with cognitive decline and neurodegenerative disorders. Furthermore, this review will also provide evidence for the effect of dietary modulation which can potentially ameliorate cognitive decline and neurodegenerative diseases associated with obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Komal Sodhi
- Department of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
34
|
Vishnubalaji R, Alajez NM. Epigenetic regulation of triple negative breast cancer (TNBC) by TGF-β signaling. Sci Rep 2021; 11:15410. [PMID: 34326372 PMCID: PMC8322425 DOI: 10.1038/s41598-021-94514-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
TGFβ signaling plays crucial role during development and cancer, however the role for TGFβ signaling in regulating the noncoding part of the human genome in triple negative breast cancer (TNBC) is still being unraveled. Herein, we provide the transcriptional landscape of TNBC in response to TGFβ activation and subsequent inhibition employing SB431542, selective TGFβ1 Receptor ALK5 Inhibitor. Our data revealed 72 commonly upregulated [fold change (FC) ≥ 2.0], including PLAU, TPM1, TAGLN, COL1A1, TGFBI, and SNAI1, and 53 downregulated (FC ≤ 2.0) protein coding genes in BT-549 and MDA-MB-231 models in response to TGFβ1 activation. Alignment to the geocode (V33) identified 41 upregulated (FC ≥ 2.0) and 22 downregulated (FC ≤ 2.0) long non-coding RNA (lncRNA) in response to TGFβ1 activation, which were inhibited by concurrent treatment with SB431542. To place our data from the in vitro models into their clinical context, we identified AC015909.1, AC013451.1, CYP1B1-AS1, AC004862.1, LINC01824, AL138828.1, B4GALT1-AS1, AL353751.1, AC090826.3, AC104695.4, ADORA2A-AS1, PTPRG-AS1, LINC01943, AC026954.3, TPM1-AS, ZFPM2-AS1, AC007362.1, AC112721.2, MALAT1, AL513314.2, AC112721.1, AC010343.3, LINC01711, and MAP3K2-DT lncRNA expression to positively correlate with TGFβ1 expression in a cohort of 360 TNBC patients. To provide mechanistic insight into lncRNA regulation by TGFβ signaling, SMAD2/3 ChIp-Seq data from BT-549 TNBC model retrieved from Gene Expression Omnibus (GEO) revealed direct binding of SMAD2/SMAD3 to the promoter of AC112721.1, AC112721.2, MALAT1, HHIP-AS1, LINC00472, and SLC7A11, suggesting their direct regulation by TGFβ1/SMAD2/SMAD3 pathway. Interestingly, AC112721.1, AC112721.2 exhibited higher expression in TNBC compared to normal breast tissue suggesting a possible role for those lncRNA in TNBC biology. Our miRNA analysis in the BT-549 model in response to exogenous TGFB1 revealed several affected miRNAs (2.0 ≤ FC ≤ 2.0), whose expression pattern was reversed in the presence of SB431542, suggesting those miRNA as plausible targets for TGFβ regulation. In particular, we observed hsa-miR-1275 to be downregulated in response to TGFB1 which was highly predicted to regulate PCDH1, FIBCD1, FXYD7, GDNF, STC1, EDN1, ZSWIM4, FGF1, PPP1R9B, NUAK1, PALM2AKAP2, IGFL3, and SPOCK1 whose expression were upregulated in response to TGFβ1 stimulus. On the other hand, hsa-miR-181b-5p was among the top upregulated miRNAs in response to TGFB1, which is also predicted to regulate CDKN1B, TNFRSF11B, SIM1, and ARSJ in the BT-549 model. Taken together, our data is the first to provide such in depth analysis of lncRNA and miRNA epigenetic changes in response to TGFβ signaling in TNBC.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, 00000, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, 00000, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
35
|
Hua Z, White J, Zhou J. Cancer stem cells in TNBC. Semin Cancer Biol 2021; 82:26-34. [PMID: 34147641 DOI: 10.1016/j.semcancer.2021.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is a broad collection of breast cancer that tests negative for estrogen receptors (ER), progesterone receptors (PR), and excess human epidermal growth factor receptor 2 (HER2) protein. TNBC is considered to have poorer prognosis than other types of breast cancer because of a lack of effective therapeutic targets. The success of precision cancer therapies relies on the clarification of key molecular mechanisms that drive tumor growth and metastasis; however, TNBC is highly heterogeneous in terms of their cellular lineage composition and the molecular nature within each individual case. In particular, the rare and sometimes slow cycling cancer stem cells (CSCs) can provide effective means for TNBC to resist various treatments. Single cell analysis technologies, including single-cell RNA-seq (scRNA-seq) and proteomics, provide an avenue to unravel patient-level intratumoral heterogeneity by identifying CSCs populations, CSC biomarkers and the range of tumor microenvironment cellular constituents that contribute to tumor growth. This review discusses the emerging evidence for the role of CSCs in driving TNBC incidence and the therapeutic implications in manipulating molecular signaling against this rare cell population for the control of this deadly disease.
Collapse
Affiliation(s)
- Zhan Hua
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jason White
- Tuskegee University, Center for Cancer Research, Tuskegee, AL, 36830, USA
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
36
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
37
|
Xu X, Dong Y, Ma N, Kong W, Yu C, Gong L, Chen J, Ren J. MiR-337-3p lowers serum LDL-C level through targeting PCSK9 in hyperlipidemic mice. Metabolism 2021; 119:154768. [PMID: 33775647 DOI: 10.1016/j.metabol.2021.154768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reducing serum low-density lipoprotein cholesterol (LDL-C) in hyperlipemia is recognized as an effective strategy to minimize the risk of atherosclerotic cardiovascular disease (ASCVD). MiR-337-3p has already been discovered to play regulatory roles in tumor proliferation and metastasis, adipocyte browning and ischemic brain injury, etc. However, the association between miR-337-3p and LDL-C is unknown. METHODS Gene Expression Omnibus (GEO) dataset and two hyperlipidemic murine models were used to analyze the potential relationship between miR-337-3p and LDL-C. AAV-mediated liver-directed miRNA overexpression in high fat diet (HFD)-fed mouse model was used to examine the effect of miR-337-3p on LDL-C and WB/RT-PCR/ELISA/luciferase assays were used to investigate the underlying mechanism. RESULTS The expressions of miR-337-3p were obviously lower in multiple hyperlipidemic mouse models and had a negative correlation with serum LDL-C levels. After confirming the effect of miR-337-3p on the improvement of serum LDL-C in vivo, we discovered PCSK9 might be a possible target of miR-337-3p, which was further proved by in vitro experiments. MiR-337-3p could directly interact with both the PCSK9 3'UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, the result from DiI-LDL uptake assay under the knockdown of PCSK9 demonstrated that miR-337-3p promoting the absorption of LDL-C in HepG2 cells was dependent on PCSK9, and the result from LDLR-/- mouse model indicated that miR-337-3p regulating LDL-C was dependent on PCSK9/LDLR pathway. CONCLUSION We discovered a new function of miR-337-3p in regulating PCSK9 expression and LDL-C absorption, suggesting miR-337-3p might be a new therapeutic target for the development of antihyperlipidemic drug.
Collapse
Affiliation(s)
- Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yunxia Dong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Weiwen Kong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
38
|
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13:cancers13112680. [PMID: 34072348 PMCID: PMC8198729 DOI: 10.3390/cancers13112680] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is a complex disease associated with deregulation of numerous genes. In addition, redundant cellular pathways limit efficiency of monotarget drugs in cancer therapy. MicroRNAs are a class of gene expression regulators, which often function by targeting multiple genes. This feature makes them a double-edged sword (a) as attractive targets for anti-tumor therapy and concomitantly (b) as risky targets due to their potential side effects on healthy tissues. As for conventional antitumor drugs, nanocarriers have been developed to circumvent the problems associated with miRNA delivery to tumors. In this review, we highlight studies that have established the pre-clinical proof-of concept of miRNAs as relevant therapeutic targets in oncology. Particular attention was brought to new strategies based on nanovectorization of miRNAs as well as to the perspectives for their applications. Abstract The discovery of microRNAs (miRNAs) in 1993 has challenged the dogma of gene expression regulation. MiRNAs affect most of cellular processes from metabolism, through cell proliferation and differentiation, to cell death. In cancer, deregulated miRNA expression leads to tumor development and progression by promoting acquisition of cancer hallmark traits. The multi-target action of miRNAs, which enable regulation of entire signaling networks, makes them attractive tools for the development of anti-cancer therapies. Hence, supplementing downregulated miRNA by synthetic oligonucleotides or silencing overexpressed miRNAs through artificial antagonists became a common strategy in cancer research. However, the ultimate success of miRNA therapeutics will depend on solving pharmacokinetic and targeted delivery issues. The development of a number of nanocarrier-based platforms holds significant promises to enhance the cell specific controlled delivery and safety profile of miRNA-based therapies. In this review, we provide among the most comprehensive assessments to date of promising nanomedicine platforms that have been tested preclinically, pertaining to the treatment of selected solid tumors including lung, liver, breast, and glioblastoma tumors as well as endocrine malignancies. The future challenges and potential applications in clinical oncology are discussed.
Collapse
Affiliation(s)
- Soha Reda El Sayed
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Justine Cristante
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Laurent Guyon
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Josiane Denis
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Olivier Chabre
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Nadia Cherradi
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Correspondence: ; Tel.: +33-(0)4-38783501; Fax: +33-(0)4-38785058
| |
Collapse
|
39
|
Chen L, Zhu X, Han B, Ji L, Yao L, Wang Z. High Expression of microRNA-223 Indicates a Good Prognosis in Triple-Negative Breast Cancer. Front Oncol 2021; 11:630432. [PMID: 33928027 PMCID: PMC8078593 DOI: 10.3389/fonc.2021.630432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose MicroRNAs can influence many biological processes and have shown promise as cancer biomarkers. Few studies have focused on the expression of microRNA-223 (miR-223) and its precise role in breast cancer (BC). We aimed to examine the expression level of miR-223 and its prognostic value in BC. Methods Tissue microarray (TMA)-based miRNA detection in situ hybridization (ISH) with a locked nucleic acid (LNA) probe was used to detect miR-223 expression in 450 BC tissue samples. Overall survival (OS) and disease-free survival (DFS) were compared between two groups using the Kaplan-Meier method and Cox regression model. Results OS and DFS were prolonged in the high miR-223 expression group compared to the low miR-223 expression group (p < 0.0001 and p = 0.017, respectively), especially in patients with the triple-negative breast cancer (TNBC) subtype (p = 0.046 and p < 0.001, respectively). Univariate and multivariate Cox regression analyses revealed that TNM stage (p = 0.008), the molecular subtype (p = 0.049), and miR-223 (p < 0.001) were independently associated with OS and DFS. External validation was performed with the METABRIC and The Cancer Genome Atlas (TCGA) databases via online webtools and was consistent with the data described above. Conclusions This study provides evidence that high miR-223 expression at diagnosis is associated with improved DFS and OS for BC patients, especially those with the TNBC subtype. miR-223 is a valid and independent prognostic biomarker in BC.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiuzhi Zhu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boyue Han
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
40
|
Coppola A, Ilisso CP, Stellavato A, Schiraldi C, Caraglia M, Mosca L, Cacciapuoti G, Porcelli M. S-Adenosylmethionine Inhibits Cell Growth and Migration of Triple Negative Breast Cancer Cells through Upregulating MiRNA-34c and MiRNA-449a. Int J Mol Sci 2020; 22:ijms22010286. [PMID: 33396625 PMCID: PMC7795242 DOI: 10.3390/ijms22010286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most common malignancies worldwide and shows maximum invasiveness and a high risk of metastasis. Recently, many natural compounds have been highlighted as a valuable source of new and less toxic drugs to enhance breast cancer therapy. Among them, S-adenosyl-L-methionine (AdoMet) has emerged as a promising anti-cancer agent. MicroRNA (miRNA or miR)-based gene therapy provides an interesting antitumor approach to integrated cancer therapy. In this study, we evaluated AdoMet-induced modulation of miRNA-34c and miRNA-449a expression in MDA-MB-231 and MDA-MB-468 TNBC cells. We demonstrated that AdoMet upregulates miR-34c and miR-449a expression in both cell lines. We found that the combination of AdoMet with miR-34c or miR-449a mimic strongly potentiated the pro-apoptotic effect of the sulfonium compound by a caspase-dependent mechanism. For the first time, by video time-lapse microscopy, we showed that AdoMet inhibited the in vitro migration of MDA-MB-231 and MDA-MB-468 cells and that the combination with miR-34c or miR-449a mimic strengthened the effect of the sulfonium compound through the modulation of β-catenin and Small Mother Against Decapentaplegic (SMAD) signaling pathways. Our results furnished the first evidence that AdoMet exerts its antitumor effects in TNBC cells through upregulating the expression of miR-34c and miR-449a.
Collapse
Affiliation(s)
- Alessandra Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Concetta Paola Ilisso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Antonietta Stellavato
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (C.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (C.S.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| | - Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
- Correspondence: (L.M.); (G.C.)
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
- Correspondence: (L.M.); (G.C.)
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (C.P.I.); (M.C.); (M.P.)
| |
Collapse
|
41
|
Malavia N, Kuche K, Ghadi R, Jain S. A bird's eye view of the advanced approaches and strategies for overshadowing triple negative breast cancer. J Control Release 2020; 330:72-100. [PMID: 33321156 DOI: 10.1016/j.jconrel.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer. It is characterized by the absence of estrogen, progesterone and human epidermal growth factor receptors. The main issue with TNBC is that it exhibits poor prognosis, high risk of relapse, short progression-free survival and low overall survival in patients. This is because the conventional therapy used for managing TNBC has issues pertaining to poor bioavailability, lower cellular uptake, increased off-target effects and development of resistance. To overcome such pitfalls, several other approaches are explored. In this context, the present manuscript showcases three of the most widely used approaches which are (i) nanotechnology-based approach; (ii) gene therapy approach and (iii) Phytochemical-based approach. The ultimate focus is to present and explain the insightful reports based on these approaches. Further, the review also expounds on the identified molecular targets and novel targeting ligands which are explored for managing TNBC effectively. Thus, in a nutshell, the review tries to highlight these existing treatment approaches which might inspire for future development of novel therapies with a potential of overshadowing TNBC.
Collapse
Affiliation(s)
- Nilesh Malavia
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India.
| |
Collapse
|
42
|
Vakhshiteh F, Rahmani S, Ostad SN, Madjd Z, Dinarvand R, Atyabi F. Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: A new approach for drug delivery. Life Sci 2020; 266:118871. [PMID: 33309716 DOI: 10.1016/j.lfs.2020.118871] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
AIMS Exosomes hold great promise as bio-inspired delivery vehicles. Mesenchymal stem cells (MSCs) are recognized for their potential to yield huge quantities of exosomes. We aimed to investigate the potential use of modified exosomes derived from genetically modified dental pulp MSCs (DPSCs) as a carrier to deliver tumor suppressor miR-34a to repress proliferation of breast carcinoma cells. MATERIALS AND METHODS miR-34a-overexpressing DPSCs were prepared using XMIRXpress-34a lentivectors. The anticancer effects of the miR-34a-loaded exosomes were evaluated on breast carcinoma cells through apoptosis, migration, and invasion assays. Given the structural similarity between exosomes and liposomes, we compared the exosome-mediated miRNA delivery efficiency with that of liposomes. KEY FINDINGS Our data demonstrated that genetically modified DPSCs were capable of secretion of exosomes enriched with therapeutic miRNAs and presented the feasibility of application of exosome-based vehicle for gene delivery. SIGNIFICANCE We showed the potential of MSC-derived exosomes as a tool for delivery of miRNAs in vitro. Nevertheless, optimizing gene-loading approaches is required before exosomes can be intended as a miRNA carrier for therapeutic applications.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahmani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Magura J, Moodley R, Mackraj I. The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7. J Biomol Struct Dyn 2020; 40:1791-1800. [DOI: 10.1080/07391102.2020.1833757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Judie Magura
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu–Natal, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| |
Collapse
|
44
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
45
|
Valcourt DM, Day ES. Dual Regulation of miR-34a and Notch Signaling in Triple-Negative Breast Cancer by Antibody/miRNA Nanocarriers. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:290-298. [PMID: 32622330 PMCID: PMC7332498 DOI: 10.1016/j.omtn.2020.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the three most common receptors present on other subtypes, leaving it unsusceptible to current targeted or hormonal therapies. In this study, we introduce an alternative treatment strategy for TNBC that exploits its overexpression of Notch1 receptors and its underexpression of the tumor suppressive microRNA (miRNA) miR-34a. Studies have shown that introducing mimics of miR-34a to TNBC cells effectively inhibits cancer growth, but miR-34a cannot be administered in the clinic without a carrier. To enable delivery of miR-34a to TNBC cells, we encapsulated miR-34a mimics in poly(lactic-co-glycolic acid) nanoparticles (NPs) that were functionalized with Notch1 antibodies to produce N1-34a-NPs. In addition to binding Notch1 receptors overexpressed on the surface of TNBC cells, the antibodies in this formulation enable suppression of Notch signaling through signal cascade interference. Herein, we present the results of in vitro experiments that demonstrate N1-34a-NPs can regulate Notch signaling and downstream miR-34a targets in TNBC cells to induce senescence and reduce cell proliferation and migration. These studies demonstrate that NP-mediated co-delivery of miR-34a and Notch1 antibodies is a promising alternative treatment strategy for TNBC, warranting further optimization and in vivo investigation in future studies.
Collapse
Affiliation(s)
- Danielle M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716, USA; Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA; Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE 19713, USA.
| |
Collapse
|
46
|
Yang L, Zhu X, Ni Y, Wu D, Tian Y, Chen Z, Li M, Zhang H, Liang D. MicroRNA-34c Inhibits Osteogenic Differentiation and Valvular Interstitial Cell Calcification via STC1-Mediated JNK Pathway in Calcific Aortic Valve Disease. Front Physiol 2020; 11:829. [PMID: 32982764 PMCID: PMC7489094 DOI: 10.3389/fphys.2020.00829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic valve disease (CAVD), a common heart valve disease, is increasingly prevalent worldwide and causes high morbidity and mortality. Here, we aimed to investigate a possible role for miR-34c in the development of osteogenic differentiation during CAVD and to find out the underlying mechanisms. Valvular interstitial cells (VICs) were isolated from the clinical aortic valve tissue samples of CAVD patients and patients with acute aortic dissection and collected. Then, RT-qPCR was performed to determine miR-34c expression and western blot analysis was applied to confirm the relevant protein expression in these VICs. Dual luciferase reporter gene assay was applied to confirm the relation between miR-34c and STC1. Alkaline phosphatase (ALP) staining and alizarin red staining was performed to further confirm the degree of calcification in these samples. MiR-34c was lowly expressed and STC1 was highly expressed in the CAVD tissues. Furthermore, STC1 was the target of miR-34c and was negatively regulated by miR-34c. Overexpression of miR-34c in VICs was concomitant with suppression of both STC1 expression and phosphorylation level of c-Jun N-terminal kinase (JNK). In addition, significant decrease of bone morphogenetic protein-2 (BMP2) and osteocalcin, as well as the decrease of calcification degree were also observed in VICs with miR-34c overexpressed. Taken together, miR-34c could inhibit osteogenic differentiation and calcification of VICs by suppressing the STC1/JNK signaling pathway in CAVD, making miR-34c a novel therapeutic target for the treatment of CAVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
47
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Multifunctional Roles of miR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications. Diagnostics (Basel) 2020; 10:diagnostics10080563. [PMID: 32764498 PMCID: PMC7459507 DOI: 10.3390/diagnostics10080563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.
Collapse
|
49
|
Akshaya RL, Rohini M, Selvamurugan N. Regulation of Breast Cancer Progression by Noncoding RNAs. Curr Cancer Drug Targets 2020; 20:757-767. [PMID: 32652909 DOI: 10.2174/1568009620666200712144103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Breast cancer (BC) is the cardinal cause of cancer-related deaths among women across the globe. Our understanding of the molecular mechanisms underlying BC invasion and metastasis remains insufficient. Recent studies provide compelling evidence on the prospective contribution of noncoding RNAs (ncRNAs) and the association of different interactive mechanisms between these ncRNAs with breast carcinogenesis. MicroRNAs (small ncRNAs) and lncRNAs (long ncRNAs) have been explored extensively as classes of ncRNAs in the pathogenesis of several malignancies, including BC. OBJECTIVE In this review, we aim to provide a better understanding of the involvement of miRNAs and lncRNAs and their underlying mechanisms in BC development and progression that may assist the development of monitoring biomarkers and therapeutic strategies to effectively combat BC. CONCLUSION These ncRNAs play critical roles in cell growth, cell cycle regulation, epithelialmesenchymal transition (EMT), invasion, migration, and apoptosis among others, and were observed to be highly dysregulated in several cancers. The miRNAs and lncRNAs were observed to interact with each other through several mechanisms that governed the expression of their respective targets and could act either as tumor suppressors or as oncogenes, playing a crucial part in breast carcinogenesis.
Collapse
Affiliation(s)
- Ravishkumar L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
50
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|