1
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
2
|
Han S, Fan H, Zhong G, Ni L, Shi W, Fang Y, Wang C, Wang L, Song L, Zhao J, Tang M, Yang B, Li L, Bai X, Zhang Q, Liang T, Xu Y, Feng XH, Ding C, Fang D, Zhao B. Nuclear KRT19 is a transcriptional corepressor promoting histone deacetylation and liver tumorigenesis. Hepatology 2025; 81:808-822. [PMID: 38557414 DOI: 10.1097/hep.0000000000000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.
Collapse
Affiliation(s)
- Shixun Han
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haonan Fan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guoxuan Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Ni
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhao Shi
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yushan Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenliang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Li Wang
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lang Song
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Li Li
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhui Xu
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chen Ding
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dong Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| |
Collapse
|
3
|
Liang L, Pang JS, Gao RZ, Que Q, Wu YQ, Peng JB, Bai XM, Qin Q, Tang QQ, Li LP, He Y, Yang H. Development and validation of a combined radiomic and clinical model based on contrast-enhanced ultrasound for preoperative prediction of CK19-positive hepatocellular carcinoma. Abdom Radiol (NY) 2025:10.1007/s00261-025-04799-x. [PMID: 39907719 DOI: 10.1007/s00261-025-04799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE We aimed to develop and validate a combined model integrating radiomic features derived from Contrast-Enhanced Ultrasound (CEUS) images and clinical parameters for preoperative prediction of CK19-positive status in hepatocellular carcinoma (HCC). METHODS A total of 434 patients who underwent CEUS and surgical resection from January 2020 to December 2023 were included. Patients were randomly divided into a training cohort (n = 304) and a validation cohort (n = 130). Radiomic features were extracted from multiphase CEUS images, including two-dimensional ultrasound (US), arterial, portal venous, and delayed phases, and combined to derive a Radscore model. Subsequently, a Combined Model was constructed using the Radscore and clinical parameters. Model performance was assessed using calibration, discrimination, and clinical utility. RESULTS Multivariate logistic regression analysis identified Radscore (OR = 10.054, 95% CI: 5.931-19.120, p < 0.001) and AFP levels > 200 ng/mL (OR = 5.027, 95% CI: 2.089-12.784, p < 0.001) as significant predictors in the combined model. The AUC (Area Under the Curve) for the Combined Model was 0.954 in the training cohort and 0.927 in the validation cohort, compared to 0.939 and 0.917 for the Radscore Model alone. Calibration curves demonstrated strong concordance between predicted and actual outcomes. Decision curve analysis (DCA) showed that both the Radscore Model and the Combined Model exhibited good net benefits across a wide range of threshold values in both the training and validation cohorts. CONCLUSION The Radscore based on CEUS, combined with the serum markers AFP > 200 ng/L to construct a Combined Model, shows good predictive performance for CK19 + hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Li Liang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jin-Shu Pang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiao Que
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu-Quan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jin-Bo Peng
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Mei Bai
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiong Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quan-Quan Tang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Peng Li
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Gu Y, Jin K, Gao S, Sun W, Yin M, Han J, Zhang Y, Wang X, Zeng M, Sheng R. A preoperative nomogram with MR elastography in identifying cytokeratin 19 status of hepatocellular carcinoma. Br J Radiol 2025; 98:210-219. [PMID: 39657213 DOI: 10.1093/bjr/tqae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES Developing a nomogram integrating MR elastography (MRE)-based tumour stiffness and contrast-enhanced MRI in identifying cytokeratin 19 (CK19) status of hepatocellular carcinoma (HCC) preoperatively. METHODS One hundred twenty CK19-negative HCC and 39 CK19-positive HCC patients undergoing curative resection were prospectively evaluated. All received MRE and contrast-enhanced MRI. Clinical and MRI tumour features were compared. Univariate and multivariate logistic regression analyses identified independent predictors for CK19 status. Receiver operating characteristic curve analysis evaluated diagnostic performance. A nomogram was established with calibration and decision curve analysis. RESULTS Multivariate analysis revealed serum alpha fetoprotein (AFP) level (P < 0.001), targetoid appearance (P = 0.007), and tumour stiffness (P = 0.011) as independent significant variables for CK19-positive HCC. The area under the curve for tumour stiffness was 0.729 (95% confidence interval [CI] 0.653, 0.796). Combining these features, a nomogram-based model achieved an area under the curve value of 0.844 (95% CI 0.778, 0.897), with sensitivity, specificity, and accuracy of 76.92%, 85.00%, and 83.02%, respectively. Calibration and decision curve analyses demonstrated good agreement and optimal net benefit. CONCLUSIONS MRE-measured tumour stiffness aids in predicting CK19 status in HCC. The combined nomogram incorporating tumour stiffness, targetoid appearance, and AFP provides a reliable biomarker for CK19-positive HCC. ADVANCES IN KNOWLEDGE MRE-measured tumour stiffness can be used to predict CK19 status in HCC. The nomogram, which integrates tumour stiffness, targetoid appearance, and AFP levels, has shown improved diagnostic performance. It offers a comprehensive preoperative tool for clinical decision-making, further advancing personalized treatment strategies in HCC management.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Minyan Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jing Han
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
5
|
Yu ZC, Fang ZK, Yu Y, Liu SY, Wang KD, Shi ZJ, Jin LM, Huang XK, Lu Y, Shen GL, Liu JW, Huang DS, Zhang CW, Liang L. The Clinical Characteristics, Patterns of Recurrence, and Long-Term Survival Outcomes of Dual-Phenotype Hepatocellular Carcinoma After Curative Liver Resection. J Hepatocell Carcinoma 2025; 12:183-192. [PMID: 39902378 PMCID: PMC11789503 DOI: 10.2147/jhc.s493094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Background & Aims Dual-phenotype hepatocellular carcinoma (DPHCC) is discernible from classical HCC (CHCC) in its morphology and is characterized by the co-expression of both CHCC and cholangiocyte markers. This study aimed to clarify the difference between DPHCC and CHCC after surgery. Methods Patients with HCC after surgery were collected. The clinical characteristics, patterns of recurrence, and survival outcomes of patients with DPHCC and CHCC were compared. Multivariate analyses were used to determine the independent risk factors that influence the prognosis of patients. Results Patients with DPHCC (n = 141) account for 26% of the total patients (n = 541). Compared to patients with CHCC, patients with DPHCC are significantly associated with incomplete capsules, microvascular invasion, and poor differentiation (all P < 0.05). Compared to patients with CHCC, the 5-year overall survival (OS) (56% vs 43%) and recurrence-free survival (RFS) (35% vs 28%) are lower in patients with DPHCC. Meanwhile, among patients with tumor recurrence after surgery, patients with DPHCC have a higher proportion of advanced-stage tumors, and extrahepatic metastasis (all P < 0.05). Moreover, multivariate analysis showed that DPHCC is an independent risk factor for both OS (HR 1.399, 95% CI 1.061-1.845, P = 0.017) and RFS (HR 1.313, 95% CI 1.033-1.669, P = 0.026). Conclusion DPHCC, an aggressive HCC subtype with poor differentiation and high invasiveness, shows inferior RFS and OS post-liver resection compared to CHCC. Clinicians' recognition and addressing of its unique challenges can improve DPHCC patients' prognosis and QoL.
Collapse
Affiliation(s)
- Zi-Chen Yu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zheng-Kang Fang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Si-Yu Liu
- Department of Laboratory Medicine, The Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Zhejiang University Lishui Hospital, Lishui, Zhejiang, People’s Republic of China
| | - Kai-Di Wang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of the second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhe-Jin Shi
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of the second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li-Ming Jin
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiao-Kun Huang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yi Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Guo-Liang Shen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun-Wei Liu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Dong-Sheng Huang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Cheng-Wu Zhang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Liang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Yang C, Xiang W, Wu Z, Li N, Xie G, Huang J, Zeng L, Yu H, Xiang B. CK19 protein expression: the best cutoff value on the prognosis and the prognosis model of hepatocellular carcinoma. BMC Cancer 2025; 25:55. [PMID: 39789507 PMCID: PMC11720332 DOI: 10.1186/s12885-024-13399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVE In clinical practice, CK19 can be an important predictor for the prognosis of HCC. Due to the high incidence and mortality rates of HCC, more effective and practical prognostic prediction models need to be developed urgently. METHODS A total of 1,168 HCC patients, who underwent radical surgery at the Guangxi Medical University Cancer Hospital, between January 2014 and July 2019, were recruited, and their clinicopathological data were collected. Among the clinicopathological data, the optimal cutoff value of CK19-positive HCC was determined by calculating the area under the curve (AUC) using survival analysis and time-dependent receiver operating characteristic (timeROC) curve analysis. The predictors were screened using univariate and multivariate COX regression and least absolute shrinkage and selection operator (LASSO) regression to construct nomogram prediction models, and their predictive potentials were assessed using calibration curves and AUC values. RESULTS The 0% positive rate of CK19 was considered the optimal cutoff value to predict the poor prognosis of CK19-positive HCC. The survival analysis of 335 CK19-positive HCC showed no significant statistical differences in the overall survival (OS) and disease-free survival (DFS) of CK19-positive HCC patients. A five-factor risk (CK19, CA125, Edmondson, BMI, and tumor number) scoring model and an OS nomograph model were constructed and established, and the OS nomograph model showed a good predictive performance and was subsequently verified. CONCLUSION A 0% expression level of CK19 protein may be an optimal threshold for predicting the prognosis of CK19-positive HCC. Based on this, CK19 marker a good nomogram model was constructed to predict HCC prognosis.
Collapse
Affiliation(s)
- Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China
| | - Wanyan Xiang
- The First Clinical Medical College of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Zongze Wu
- The First Clinical Medical College of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Nannan Li
- Department of Ultrasound, Guangxi Zhuang Autonomous Region Workers' Hospital, Nanning, Guangxi Province, 530021, China
| | - Guoliang Xie
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China
| | - Juntao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China
| | - Lixia Zeng
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
| | - Hongping Yu
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China.
- Tumor Prevention and Control Office, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China.
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China.
- Guangxi Hepatocellular Carcinoma Diagnosis and Treatment Engineering Technology Research Center, Nanning, Guangxi Province, 530021, China.
- Regional Key Laboratory for Early Prevention and Treatment of High Incidence Tumor, Ministry of Education, Nanning, Guangxi Province, 530021, China.
| |
Collapse
|
7
|
Taher MY, Hassouna E, El Hadidi A, El-aassar O, Fathy Bakosh M, Said Shater M. Serum CYFRA 21-1 and CK19-2G2 as Predictive Biomarkers of Response to Transarterial Chemoembolization in Hepatitis C-related Hepatocellular Carcinoma Among Egyptians: A Prospective Study. J Clin Exp Hepatol 2025; 15:102405. [PMID: 39309220 PMCID: PMC11414665 DOI: 10.1016/j.jceh.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background and aim Cytokeratin 19 (CK19)-positive HCC is a subtype of hepatocellular carcinoma (HCC) with poor biological behavior and resistance to different treatments including transarterial chemoembolization (TACE). The current study aimed to investigate the predictive value of serum CK 19 fragment 21-1 (CYFRA 21-1) and serum CK 19 fragment 2G2 (CK 19-2G2) for TACE response in patients with hepatitis C virus (HCV)-related HCC. Methods This prospective study assessed the pretreatment serum CYFRA 21-1 and CK 19-2G2 levels in 64 patients with HCV-related naïve HCC who underwent TACE to predict 1-year overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). Additionally, 40 healthy individuals were included as controls. Pretreatment alpha-fetoprotein (AFP) was also measured for comparison. Results After exclusions, 60 patients completed TACE sessions, and the 1-year OS was 52%, and ORR post TACE was 71.8%. HCC patients with elevated levels of CYFRA 21-1, CK 19-2G2, or baseline AFP measuring ≥400 ng/ml have decreased 1-year OS and PFS after TACE. Serum CK19-2G2 was an independent predictor of 1-year OS using multivariate hazard regression analysis. Pretreatment normal serum CYFRA 21-1 levels (P = 0.047), serum AFP measuring <400 ng/ml (P = 0.016), and lower AST (P = 0.002) were independent predictors of ORR to TACE using multivariate logistic regression analysis. The predictive ability of pretreatment elevated serum CYFRA 21-1, AFP measuring ≥400 ng/ml, AFP + CYFRA 21-1, AFP + CK 19-2G2, or AFP + CYFRA 21-1+ CK19-2G2 to predict nonresponse (progressive disease) to TACE (area under the curve = 0.795, 0.690, 0.830, 0.725, and 0.850, respectively). Conclusions This study demonstrated that incorporating the measurement of serum CYFRA 21-1 or CK19-2G2 levels, along with AFP, during the initial diagnosis can aid in predicting poor 1-year OS, PFS, and ORR to TACE in patients with HCV-related HCC.
Collapse
Affiliation(s)
- Mohamed Y. Taher
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Ehab Hassouna
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Abeer El Hadidi
- Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Omar El-aassar
- Diagnostic and Interventional Radiology, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Fathy Bakosh
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Said Shater
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
8
|
Chen J, Li H, Zhuo J, Lin Z, Hu Z, He C, Wu X, Jin Y, Lin Z, Su R, Sun Y, Wang R, Sun J, Wei X, Zheng S, Lu D, Xu X. Impact of immunosuppressants on tumor pulmonary metastasis: new insight into transplantation for hepatocellular carcinoma. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0267. [PMID: 39718153 PMCID: PMC11667780 DOI: 10.20892/j.issn.2095-3941.2024.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Pulmonary metastasis is a life-threatening complication for patients with hepatocellular carcinoma (HCC) undergoing liver transplantation (LT). In addition to the common mechanisms underlying tumor metastasis, another inevitable factor is that the application of immunosuppressive agents, including calcineurin inhibitors (CNIs) and rapamycin inhibitors (mTORis), after transplantation could influence tumor recurrence and metastasis. In recent years, several studies have reported that mTORis, unlike CNIs, have the capacity to modulate the tumorigenic landscape post-liver transplantation by targeting metastasis-initiating cells and reshaping the pulmonary microenvironment. Therefore, we focused on the effects of immunosuppressive agents on the lung metastatic microenvironment and how mTORis impact tumor growth in distant organs. This revelation has provided profound insights into transplant oncology, leading to a renewed understanding of the use of immunosuppressants after LT for HCC.
Collapse
Affiliation(s)
- Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Zuyuan Lin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiru Jin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhanyi Lin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310063, China
| | - Rongsen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiancai Sun
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310022, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| |
Collapse
|
9
|
Yin Y, Zhang W, Chen Y, Zhang Y, Shen X. Radiomics predicting immunohistochemical markers in primary hepatic carcinoma: Current status and challenges. Heliyon 2024; 10:e40588. [PMID: 39660185 PMCID: PMC11629216 DOI: 10.1016/j.heliyon.2024.e40588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Primary hepatic carcinoma, comprising hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (cHCC-CCA), ranks among the most common malignancies worldwide. The heterogeneity of tumors is a primary factor impeding the efficacy of treatments for primary hepatic carcinoma. Immunohistochemical markers may play a potential role in characterizing this heterogeneity, providing significant guidance for prognostic analysis and the development of personalized treatment plans for the patients with primary hepatic carcinoma. Currently, primary hepatic carcinoma immunohistochemical analysis primarily relies on invasive techniques such as surgical pathology and tissue biopsy. Consequently, the non-invasive preoperative acquisition of primary hepatic carcinoma immunohistochemistry has emerged as a focal point of research. As an emerging non-invasive diagnostic technique, radiomics possesses the potential to extensively characterize tumor heterogeneity. It can predict immunohistochemical markers associated with hepatocellular carcinoma preoperatively, demonstrating significant auxiliary utility in clinical guidance. This article summarizes the progress in using radiomics to predict immunohistochemical markers in primary hepatic carcinoma, addresses the challenges faced in this field of study, and anticipates its future application prospects.
Collapse
Affiliation(s)
- Yunqing Yin
- The Second Clinical Medical College, Jinan University, China
| | - Wei Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yanhui Chen
- Department of Intervention, Shenzhen Bao'an People's Hospital, Shenzhen, 518100, Guangdong, China
| | - Yanfang Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xinying Shen
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
10
|
Zheng W, Chen X, Xiong M, Zhang Y, Song Y, Cao D. Clinical-Radiologic Morphology-Radiomics Model on Gadobenate Dimeglumine-Enhanced MRI for Identification of Highly Aggressive Hepatocellular Carcinoma: Temporal Validation and Multiscanner Validation. J Magn Reson Imaging 2024; 60:2643-2654. [PMID: 38375988 DOI: 10.1002/jmri.29293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Highly aggressive hepatocellular carcinoma (HCC) is characterized by high tumor recurrence and poor outcomes, but its definition and imaging characteristics have not been clearly described. PURPOSE To develop and validate a fusion model on gadobenate dimeglumine-enhanced MRI for identifying highly aggressive HCC. STUDY TYPE Retrospective. POPULATION 341 patients (M/F = 294/47) with surgically resected HCC, divided into a training cohort (n = 177), temporal validation cohort (n = 77), and multiscanner validation cohort (n = 87). FIELD STRENGTH/SEQUENCE 3T, dynamic contrast-enhanced MRI with T1-weighted volumetric interpolated breath-hold examination gradient-echo sequences, especially arterial phase (AP) and hepatobiliary phase (HBP, 80-100 min). ASSESSMENT Clinical factors and diagnosis assessment based on radiologic morphology characteristics associated with highly aggressive HCCs were evaluated. The radiomics signatures were extracted from AP and HBP. Multivariable logistic regression was performed to construct clinical-radiologic morphology (CR) model and clinical-radiologic morphology-radiomics (CRR) model. A nomogram based on the optimal model was established. Early recurrence-free survival (RFS) was evaluated in actual groups and risk groups calculated by the nomogram. STATISTICAL TESTS The performance was evaluated by receiver operating characteristic curve (ROC) analysis, calibration curves analysis, and decision curves. Early RFS was evaluated by using Kaplan-Meier analysis. A P value <0.05 was considered statistically significant. RESULTS The CRR model incorporating corona enhancement, cloud-like hyperintensity on HBP, and radiomics signatures showed the highest diagnostic performance. The area under the curves (AUCs) of CRR were significantly higher than those of the CR model (AUC = 0.883 vs. 0.815, respectively, for the training cohort), 0.874 vs. 0.769 for temporal validation, and 0.892 vs. 0.792 for multiscanner validation. In both actual and risk groups, highly and low aggressive HCCs showed statistically significant differences in early recurrence. DATA CONCLUSION The clinical-radiologic morphology-radiomics model on gadobenate dimeglumine-enhanced MRI has potential to identify highly aggressive HCCs and non-invasively obtain prognostic information. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Meilian Xiong
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd, Shanghai, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Vij M, Raju LP, Jothimani D, Subbiah K, Simon E, Gowrishankar G, Rajalingam R, Kaliamoorthy I, Rammohan A, Rela M. Clinicopathological Characteristics of Neutrophil-Rich Hepatocellular Carcinoma: An Uncommon Subtype of Primary Liver Cancer. Int J Surg Pathol 2024:10668969241291882. [PMID: 39533751 DOI: 10.1177/10668969241291882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Introduction. Neutrophil-rich hepatocellular carcinoma (HCC) is an extremely uncommon subtype of HCC with an overall incidence of <1%. Neutrophil-rich HCC shows poor cellular differentiation and sarcomatoid transformation in most patients. There is prominent neutrophilic inflammatory cell infiltration in the tumor. These tumors are associated with poor prognosis, high rate of recurrence, and metastasis. Methods. Herein, we investigated 4 patients with neutrophil-rich HCC reported at our center. Clinical, radiological, and pathological findings were reviewed. Immunophenotypic characterization of the tumors were done. Granulocyte colony-stimulating factor (G-CSF), programmed cell death ligand 1 (PD-L1), and mismatch repair immunostains were performed in all 4 tumors. Results. We report 4 neutrophil-rich HCCs in 3 male patients and one female patient with an age range of 43 to 64 years. Three underwent living donor liver transplantation and one underwent right hepatectomy. Tumor measured 0.5 cm to 12 cm in maximum dimension. Histologically, tumors demonstrated moderate to marked cellular pleomorphism. Spindle cell transformation was noted in 3 tumors. Three tumors showed vascular invasion, and one tumor showed bile duct invasion. Immunopositivity for Hep Par-1, arginase-1, and glypican-3 was present in all tumors. Tumors also expressed stemness markers including KRT19 and EpCAM. Cytoplasmic positivity for G-CSF and immunoexpression of PD-L1 was demonstrated. We also report proficient mismatch repair by immunohistochemistry in all tumors. Conclusion. Neutrophil-rich HCC is an aggressive primary liver cancer which demonstrates stemness-related features. Programmed cell death ligand 1 expression in tumor cells suggests distinct immunogenic features and potential role of anti-PD-L1 therapies in inoperable disease.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Lexmi Priya Raju
- Department of Pathology, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Dinesh Jothimani
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Komalavalli Subbiah
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Evangeline Simon
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | | | - Rajesh Rajalingam
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Ou Z, Fu S, Yi J, Huang J, Zhu W. Diagnostic value of expressions of cancer stem cell markers for adverse outcomes of hepatocellular carcinoma and their associations with prognosis: A Bayesian network meta‑analysis. Oncol Lett 2024; 28:536. [PMID: 39290959 PMCID: PMC11406626 DOI: 10.3892/ol.2024.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
The expression of cancer stem cell (CSC) markers adversely affect the survival prognosis of patients with hepatocellular carcinoma (HCC), but it is not clear which cancer stem cell marker has the best predictive effect on the survival prognosis and diagnostic value indicators of patients with HCC. Therefore, the present study performed a network meta-analysis to compare the prognostic and diagnostic value of the expressions of several CSC markers for patients with HCC and to identify the most efficient CSC marker. Studies on the associations of positive CSC markers with the overall survival (OS) rate, disease-free survival (DFS) rate, recurrence-free survival (RFS) rate, recurrence rate, differentiation, microvascular invasion and metastasis in patients with HCC were included in the network meta-analysis following searches on the PubMed, Embase, Elsevier and The Cochrane Library databases from January 1, 2013 to November 17, 2023. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess the quality assessment of studies, and R (version 4.3.1), Stata (version 15.0) and Review Manager (version 5.3) were used for analysis. A total of 37 studies involving 3,980 participants were included. For patients with HCC, simultaneous positivity of cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM) was the strongest predictor of the OS rate [surface under the cumulative ranking curve (SUCRA), 78.65%], positive keratin 19 (K19) was the strongest predictor of the RFS and DFS rates (SUCRA, 98.93 and 84.95%, respectively), and simultaneous positivity of EpCAM and cluster of differentiation (CD)90 was the strongest predictor of the recurrence rate (SUCRA, 5.61%). In addition, positivity of CD56, K19 and CD133 had the best diagnostic efficacy for poor differentiation [superiority index, 7.4498; 95% confidence interval (CI): 0.3333, 13.0000], microvascular invasion (superiority index, 8.4777; 95% CI: 0.2308, 17.0000), and metastasis (superiority index, 5.6097; 95% CI: 0.3333, 11.0000), respectively. In conclusion, no single CSC marker possessed the best predictive effect on all indexes of survival prognosis and diagnosis of patients with HCC. In terms of survival prognosis, simultaneous positivity of CK19 and EpCAM demonstrated the strongest predictive effect on the OS rate, suggesting an association with a low OS rate in patients with HCC; positive K19 revealed the strongest predictive effect on the RFS rate and DFS rate, suggesting an association with low RFS and DFS rates in patients with HCC; and simultaneous positivity of EpCAM and CD90 had the strongest predictive effect on the recurrence rate, suggesting a high recurrence rate in patients with HCC patients. In terms of diagnostic value, CD56, K19 and CD133 were the strongest predictors of poor differentiation, microvascular invasion and metastasis, respectively. In the future, well-designed randomized controlled trials are required to further confirm these findings.
Collapse
Affiliation(s)
- Zhengrong Ou
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Shoushuo Fu
- Department of Respiratory and Critical Care Medicine, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Jian Yi
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Jingxuan Huang
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| | - Weidong Zhu
- Ward Two, Department of General Surgery, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, P.R. China
| |
Collapse
|
13
|
Zhu D, Yang W, Zhou HF, Shi HB, Liu S, Shao ZF, Zhou WZ. Prognostic implications of CK19 positivity in patients with early recurrent hepatocellular carcinoma after hepatic resection undergoing transarterial chemoembolization. BMC Gastroenterol 2024; 24:347. [PMID: 39363264 PMCID: PMC11451204 DOI: 10.1186/s12876-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND This study aimed to compare the survival outcomes of transarterial chemoembolization (TACE) between patients with early recurrent hepatocellular carcinoma (rHCC) after hepatic resection, stratified by cytokeratin (CK) 19 expression. METHODS A retrospective analysis was conducted on 63 patients with early rHCC after hepatic resection who underwent TACE between January 2017 and December 2021. Patients were divided into two groups based on CK19 expression: CK19-negative (n=31) and CK19-positive (n=32). Overall survival (OS) and progression-free survival (PFS) were compared between the two groups using the Kaplan-Meier method and log-rank test. Cox regression analysis was performed to identify independent risk factors for OS and PFS. RESULTS The CK19-negative group demonstrated a significantly longer median OS compared to the CK19-positive group (635 days vs. 432 days, p=0.013). Similarly, the CK19-negative group had a longer median PFS than the CK19-positive group (291 days vs. 117 days, p=0.014). Multivariate Cox analysis identified Child-Pugh A grade, CK19-negative expression, and increased TACE sessions as protective factors for OS. No severe TACE-related adverse events were observed. CONCLUSION In patients with early rHCC after hepatic resection, those with CK19-positive expression had poorer survival outcomes following TACE compared to CK19-negative patients. These findings suggest the need for additional therapies to improve survival in CK19-positive individuals.
Collapse
Affiliation(s)
- Di Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Wei Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Hai-Feng Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Ze-Feng Shao
- Department of Interventional Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Wei-Zhong Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing, 210029, China.
| |
Collapse
|
14
|
Chiu V, Yee C, Main N, Stevanovski I, Watt M, Wilson T, Angus P, Roberts T, Shackel N, Herath C. Oncogenic plasmid DNA and liver injury agent dictates liver cancer development in a mouse model. Clin Sci (Lond) 2024; 138:1227-1248. [PMID: 39254423 PMCID: PMC11427747 DOI: 10.1042/cs20240560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Primary liver cancer is an increasing problem worldwide and is associated with significant mortality. A popular method of modeling liver cancer in mice is plasmid hydrodynamic tail vein injection (HTVI). However, plasmid-HTVI models rarely recapitulate the chronic liver injury which precedes the development of most human liver cancer. We sought to investigate how liver injury using thioacetamide contributes to the pathogenesis and progression of liver cancer in two oncogenic plasmid-HTVI-induced mouse liver cancer models. Fourteen-week-old male mice received double-oncogene plasmid-HTVI (SB/AKT/c-Met and SB/AKT/NRas) and then twice-weekly intraperitoneal injections of thioacetamide for 6 weeks. Liver tissue was examined for histopathological changes, including fibrosis and steatosis. Further characterization of fibrosis and inflammation was performed with immunostaining and real-time quantitative PCR. RNA sequencing with pathway analysis was used to explore novel pathways altered in the cancer models. Hepatocellular and cholangiocellular tumors were observed in mice injected with double-oncogene plasmid-HTVI models (SB/AKT/c-Met and SB/AKT/NRas). Thioacetamide induced mild fibrosis and increased alpha smooth muscle actin-expressing cells. However, the combination of plasmids and thioacetamide did not significantly increase tumor size, but increased multiplicity of small neoplastic lesions. Cancer and/or liver injury up-regulated profibrotic and proinflammatory genes while metabolic pathway genes were mostly down-regulated. We conclude that the liver injury microenvironment can interact with liver cancer and alter its presentation. However, the effects on cancer development vary depending on the genetic drivers with differing active oncogenic pathways. Therefore, the choice of plasmid-HTVI model and injury agent may influence the extent to which injury promotes liver cancer development.
Collapse
Affiliation(s)
- Vincent Chiu
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Christine Yee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Nathan Main
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Igor Stevanovski
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Matthew Watt
- School of Biomedical Sciences, University of Melbourne, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Monash University, Victoria, Australia
| | - Peter Angus
- Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Tara Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Nicholas Shackel
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Chandana Herath
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
- Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
方 威, 肖 慧, 王 爽, 林 晓, 陈 超. [A deep learning model based on magnetic resonance imaging and clinical feature fusion for predicting preoperative cytokeratin 19 status in hepatocellular carcinoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1738-1751. [PMID: 39505342 PMCID: PMC11744095 DOI: 10.12122/j.issn.1673-4254.2024.09.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To establish a deep learning model for testing the feasibility of combining magnetic resonance imaging (MRI) deep learning features with clinical features for preoperative prediction of cytokeratin 19 (CK19) status of hepatocellular carcinoma (HCC). METHODS A retrospective experiment was conducted based on the data of 116 HCC patients with confirmed CK19 status. A single sequence multi-scale feature fusion deep learning model (MSFF-IResnet) and a multi-scale and multimodality feature fusion model (MMFF-IResnet) were established based on the hepatobiliary phase (HBP), diffusion weighted imaging (DWI) sequences of enhanced MRI images, and the clinical features significantly correlated with CK19 status. The classification performance of the models were evaluated to assess the effectiveness of the deep learning models for predicting CK19 status of HCC before surgery. RESULTS Multivariate analysis showed that an increased neutrophil-to-lymphocyte ratio (P=0.029) and incomplete tumor capsule (P=0.028) were independent predictors of CK19 expression in HCC. The deep learning models improved by multi-scale feature fusion and multi-modality feature fusion methods achieved better classification results than the traditional machine learning models and baseline models, and the final MMFF-IResnet model showed the best classification performance with an AUC of 84.2%, an accuracy of 80.6%, a sensitivity of 80.1% and a specificity of 81.2%. CONCLUSION The multi-scale and multi-modality feature fusion model based on MRI and clinical parameters is capable of predicting CK19 status of HCC, demonstrating the feasibility of combining deep learning methods with MRI and clinical features for preoperative prediction of CK19 status.
Collapse
Affiliation(s)
- 威扬 方
- 南方医科大学生物医学工程学院,广东 广州 510500School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 广东顺德创新设计研究院,广东 佛山 528300Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - 慧 肖
- 南方医科大学生物医学工程学院,广东 广州 510500School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - 爽 王
- 广东顺德创新设计研究院,广东 佛山 528300Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - 晓明 林
- 广东顺德创新设计研究院,广东 佛山 528300Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - 超敏 陈
- 南方医科大学生物医学工程学院,广东 广州 510500School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Thongpon P, Intuyod K, Chomwong S, Pongking T, Klungsaeng S, Muisuk K, Charoenram N, Sitthirach C, Thanan R, Pinlaor P, Pinlaor S. Curcumin synergistically enhances the efficacy of gemcitabine against gemcitabine-resistant cholangiocarcinoma via the targeting LAT2/glutamine pathway. Sci Rep 2024; 14:16059. [PMID: 38992159 PMCID: PMC11239878 DOI: 10.1038/s41598-024-66945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is often diagnosed late, leading to incomplete tumor removal, drug resistance and reduced chemotherapy efficacy. Curcumin has the potential for anti-cancer activity through various therapeutic properties and can improve the efficacy of chemotherapy. We aimed to investigate the synergistic effect of a combination of curcumin and gemcitabine against CCA, targeting the LAT2/glutamine pathway. This combination synergistically suppressed proliferation in gemcitabine-resistant CCA cells (KKU-213BGemR). It also resulted in a remarkable degree of CCA cell apoptosis and cell cycle arrest, characterized by a high proportion of cells in the S and G2/M phases. Knockdown of SLC7A8 decreased the expressions of glutaminase and glutamine synthetase, resulting in inhibited cell proliferation and sensitized CCA cells to gemcitabine treatment. Moreover, in vivo experiments showed that a combination curcumin and gemcitabine significantly reduced tumor size, tumor growth rate and LAT2 expression in a gemcitabine-resistant CCA xenograft mouse model. Suppression of tumor progression in an orthotopic CCA hamster model provided strong support for clinical application. In conclusion, curcumin synergistically enhances gemcitabine efficacy against gemcitabine-resistant CCA by induction of apoptosis, partly via inhibiting LAT2/glutamine pathway. This approach may be an alternative strategy for the treatment of gemcitabine-resistant in CCA patients.
Collapse
Affiliation(s)
- Phonpilas Thongpon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sasitorn Chomwong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Naruechar Charoenram
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chutima Sitthirach
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
17
|
Taher MY, Hassouna EM, El-Hadidi AS, El-Aassar OS, Bakosh MF. Predictive Value of Serum CYFRA 21-1 and CK19-2G2 for Tumor Aggressiveness and Overall Survival in Hepatitis C-Related Hepatocellular Carcinoma Among Egyptians: A Prospective Study. J Gastrointest Cancer 2024; 55:749-758. [PMID: 38231289 DOI: 10.1007/s12029-023-01012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Cytokeratin 19 fragment 21-1 (CYFRA 21-1) and cytokeratin 19 fragment 2G2 (CK 19-2G2) are two soluble fragments of cytokeratin 19 (CK 19) that can be detected in serum. CK 19-positive hepatocellular carcinoma (HCC) is characterized by an aggressive behavior and a poor outcome. This study aimed to assess the prognostic value of serum CYFRA 21-1 and CK 19-2G2 in predicting tumor aggressiveness and overall survival (OS) in patients with hepatic C virus (HCV)-related HCC. METHODS The current study included 138 patients with HCV-related HCC recruited from the Hepatobiliary and Interventional Radiology Units at Alexandria's main university hospitals and 40 healthy individuals as controls. Patients were assessed for clinical, radiological tumor characteristics, and aggressiveness index. Baseline serum CYFRA 21-1 and CK 19-2G2 levels were measured by enzyme-linked immunosorbent assay. RESULTS Elevated CYFRA 21-1 levels were associated with tumors size ≥ 5 cm (p < 0.001), malignant portal vein thrombosis (mPVT) (p < 0.001), distant metastasis (p = 0.030), ill-defined/infiltrative pattern (p = 0.010), and aggressiveness index > 4 (p = 0.045). Elevated CK19-2G2 levels were not associated with any clinical or radiological characteristics. Either or both elevated serum CYFRA 21-1 and CK 19-2G2 in combination with alpha-feto protein (AFP) ≥ 400 ng/ml have a better predictability for mPVT and ill-defined/infiltrative patterns (sensitivity (10-25%) and specificity (96-100%)). Elevated levels of CYFRA 21-1, CK 19-2G2, or AFP ≥ 400 ng/ml were associated with decreased 1-year OS. CONCLUSIONS Either or both elevated serum CYFRA 21-1 and CK 19-2G2 levels when added to AFP ≥ 400 ng/ml are specific but less sensitive biomarkers for predicting tumor aggressiveness. These biomarkers can be used independently to predict reduced 1-year OS in Egyptian patients with HCV-related HCC.
Collapse
Affiliation(s)
- Mohamed Yousry Taher
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ehab Mostafa Hassouna
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer Shawky El-Hadidi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Omar Sameh El-Aassar
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Fathy Bakosh
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
18
|
El-Derby AM, Khedr MA, Ghoneim NI, Gabr MM, Khater SM, El-Badri N. Plasma-derived extracellular matrix for xenofree and cost-effective organoid modeling for hepatocellular carcinoma. J Transl Med 2024; 22:487. [PMID: 38773585 PMCID: PMC11110239 DOI: 10.1186/s12967-024-05230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.
Collapse
Affiliation(s)
- Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry M Khater
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
19
|
Al Haddad M, El-Mezayen HA, El-Kassas M, Metwally F, El-Sharkawy A. Clinical Utility of Cytokeratins for Accurate Diagnosis of Hepatocellular Carcinoma Among Hepatitis C Virus High-Risk Patients. Asian Pac J Cancer Prev 2024; 25:1325-1332. [PMID: 38679993 PMCID: PMC11162728 DOI: 10.31557/apjcp.2024.25.4.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and a global health problem. It is often diagnosed at advanced stage where hopeless for effective therapies. Identification of more reliable biomarkers for early detection of HCC is urgently needed. Cytokeratins are a marker of hepatic progenitor cells and act as a key player in tumor invasion. Herein, we sought to develop a novel score based on the combination of cytokeratin 18 (CK18) and cytokeratin 19 (CK19) with routine laboratory tests for accurate detection of HCC. MATERIAL & METHODS Serum CK18, CK 19, α-fetoprotein, albumin and platelets count were assayed in HCC patients (75), liver cirrhosis patients (55) and healthy control (20). Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named CK-HCC = CK 19 (ng/ml)×0.001+ CK18 (ng/ml)×0.004 + AFP (U/L)×5.4 - Platelets count (×109)/L×0.003 - Albumin (g/L)×0.27-36 was developed. CK-HCC score produces AUC of 0.919 for differentiating patients with HCC from those with liver cirrhosis with sensitivity and specificity of a cut-off 1.3 (i.e., less than 1.3 the case is considered cirrhotic, whereas above 1.3 it is considered HCC. CONCLUSION CK-HCC score could replace AFP during screening of HCV patients and early detection of HCC.
Collapse
Affiliation(s)
| | | | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt.
| | - Fateheya Metwally
- Department of Environmental and Occupational Medicine, National Research Center, Giza, Egypt.
| | - Aml El-Sharkawy
- Department of Clinical Pathology, Damietta Cancer Institute, Damietta, Egypt.
| |
Collapse
|
20
|
Gay MD, Drda JC, Chen W, Huang Y, Yassin AA, Duka T, Fang H, Shivapurkar N, Smith JP. Implicating the cholecystokinin B receptor in liver stem cell oncogenesis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G291-G309. [PMID: 38252699 PMCID: PMC11211039 DOI: 10.1152/ajpgi.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.
Collapse
Affiliation(s)
- Martha D Gay
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jack C Drda
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Yimeng Huang
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Amal A Yassin
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Tetyana Duka
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Hongbin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, United States
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
21
|
Yang CL, Song R, Hu JW, Huang JT, Li NN, Ni HH, Li YK, Zhang J, Lu Z, Zhou M, Wang JD, Li MJ, Zhan GH, Peng T, Yu HP, Qi LN, Wang QY, Xiang BD. Integrating single-cell and bulk RNA sequencing reveals CK19 + cancer stem cells and their specific SPP1 + tumor-associated macrophage niche in HBV-related hepatocellular carcinoma. Hepatol Int 2024; 18:73-90. [PMID: 38159218 DOI: 10.1007/s12072-023-10615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Cytokeratin 19-positive cancer stem cells (CK19 + CSCs) and their tumor-associated macrophages (TAMs) have not been fully explored yet in the hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN Single-cell RNA sequencing was performed on the viable cells obtained from 11 treatment-naïve HBV-associated HCC patients, including 8 CK19 + patients, to elucidate their transcriptomic landscape, CK19 + CSC heterogeneity, and immune microenvironment. Two in-house primary HCC cohorts (96 cases-related HBV and 89 cases with recurrence), TCGA external cohort, and in vitro and in vivo experiments were used to validate the results. RESULTS A total of 64,581 single cells derived from the human HCC and adjacent normal tissues were sequenced, and 11 cell types were identified. The result showed that CK19 + CSCs were phenotypically and transcriptionally heterogeneous, co-expressed multiple hepatics CSC markers, and were positively correlated with worse prognosis. Moreover, the SPP1 + TAMs (TAM_SPP1) with strong M2-like features and worse prognosis were specifically enriched in the CK19 + HCC and promoted tumor invasion and metastasis by activating angiogenesis. Importantly, matrix metalloproteinase 9 (MMP9) derived from TAM_SPP1, as the hub gene of CK19 + HCC, was activated by the VEGFA signal. CONCLUSIONS This study revealed the heterogeneity and stemness characteristics of CK19 + CSCs and specific immunosuppressive TAM_SPP1 in CK19 + HCC. The VEGFA signal can activate TAM_SPP1-derived MMP9 to promote the invasion and metastasis of CK19 + HCC tumors. This might provide novel insights into the clinical treatment of HCC patients.
Collapse
Affiliation(s)
- Cheng-Lei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Rui Song
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jun-Wen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jun-Tao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Nan-Nan Li
- Department of Ultrasound, Guangxi Zhuang Autonomous Region Workers' Hospital, Nanning, 530021, Guangxi Province, China
| | - Hang-Hang Ni
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Yuan-Kuan Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Zhan Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Min Zhou
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jun-Duo Wang
- The First Clinical Medical School, Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Min-Jun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Guo-Hua Zhan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Hong-Ping Yu
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Province, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China.
| | - Qiu-Yan Wang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuang Yong Road, Nanning, 530021, Guangxi Province, China.
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China.
| |
Collapse
|
22
|
Zhang L, Chen J, Lai X, Zhang X, Xu J. Dual-phenotype hepatocellular carcinoma: correlation of MRI features with other primary hepatocellular carcinoma and differential diagnosis. Front Oncol 2024; 13:1253873. [PMID: 38273849 PMCID: PMC10808764 DOI: 10.3389/fonc.2023.1253873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Objectives Dual-phenotype hepatocellular carcinoma (DPHCC) is a rare subtype of hepatocellular carcinoma characterized by high invasiveness and a poor prognosis. The study aimed to compare clinical and magnetic resonance imaging (MRI) features of DPHCC with that of non-DPHCC and intrahepatic cholangiocarcinoma (ICC), exploring the most valuable features for diagnosing DPHCC. Methods A total of 208 cases of primary liver cancer, comprising 27 DPHCC, 113 non-DPHCC, and 68 ICC, who undergone gadoxetic acid-enhanced MRI, were enrolled in this study. The clinicopathologic and MRI features of all cases were summarized and analyzed. Univariate and multivariate logistic regression analyses were conducted to identify the predictors. Kaplan-Meier survival analysis was used to evaluate the 1-year and 2-year disease-free survival (DFS) and overall survival (OS) rates in the cohorts. Results In the multivariate analysis, the absence of tumor capsule (P = 0.046; OR = 9.777), persistent enhancement (P = 0.006; OR = 46.941), arterial rim enhancement (P = 0.011; OR = 38.211), and target sign on DWI image (P = 0.021; OR = 30.566) were identified as independently significant factors for distinguishing DPHCC from non-DPHCC. Serum alpha-fetoprotein (AFP) >20 μg/L (P = 0.036; OR = 67.097) and hepatitis B virus (HBV) positive (P = 0.020; OR = 153.633) were independent significant factors for predicting DPHCC compared to ICC. The 1-year and 2-year DFS rates for patients in the DPHCC group were 65% and 50%, respectively, whereas those for the non-DPHCC group were 80% and 60% and for the ICC group were 50% and 29%, respectively. The 1-year and 2-year OS rates for patients in the DPHCC group were 74% and 60%, respectively, whereas those for the non-DPHCC group were 87% and 70% and for the ICC group were 55% and 37%, respectively. Kaplan-Meier survival analysis revealed significant differences in the 1-year and 2-year OS rates between the DPHCC and non-DPHCC groups (P = 0.030 and 0.027) as well as between the DPHCC and ICC groups (P = 0.029 and 0.016). Conclusion In multi-parameter MRI, combining the assessment of the absence of tumor capsule, persistent enhancement, arterial rim enhancement, and target sign on DWI image with clinical data such as AFP >20 μg/L and HBV status may support in the diagnosis of DPHCC and differentiation from non-DPHCC and ICC. Accurate preoperative diagnosis facilitates the selection of personalized treatment options.
Collapse
Affiliation(s)
- Liqing Zhang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jing Chen
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Xufeng Lai
- Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xiaoqian Zhang
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Jianfeng Xu
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
23
|
Zhou L, Chen Y, Li Y, Wu C, Xue C, Wang X. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 13:1323534. [PMID: 38234405 PMCID: PMC10792117 DOI: 10.3389/fonc.2023.1323534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background Radiomics have been increasingly used in the clinical management of hepatocellular carcinoma (HCC), such as markers prediction. Ki-67 and cytokeratin 19 (CK-19) are important prognostic markers of HCC. Radiomics has been introduced by many researchers in the prediction of these markers expression, but its diagnostic value remains controversial. Therefore, this review aims to assess the diagnostic value of radiomics in predicting Ki-67 and CK-19 expression in HCC. Methods Original studies were systematically searched in PubMed, EMBASE, Cochrane Library, and Web of Science from inception to May 2023. All included studies were evaluated by the radiomics quality score. The C-index was used as the effect size of the performance of radiomics in predicting Ki-67and CK-19 expression, and the positive cutoff values of Ki-67 label index (LI) were determined by subgroup analysis and meta-regression. Results We identified 34 eligible studies for Ki-67 (18 studies) and CK-19 (16 studies). The most common radiomics source was magnetic resonance imaging (MRI; 25/34). The pooled C-index of MRI-based models in predicting Ki-67 was 0.89 (95% CI:0.86-0.92) in the training set, and 0.87 (95% CI: 0.82-0.92) in the validation set. The pooled C-index of MRI-based models in predicting CK-19 was 0.86 (95% CI:0.81-0.90) in the training set, and 0.79 (95% CI: 0.73-0.84) in the validation set. Subgroup analysis suggested Ki-67 LI cutoff was a significant source of heterogeneity (I 2 = 0.0% P>0.05), and meta-regression showed that the C-index increased as Ki-67 LI increased. Conclusion Radiomics shows promising diagnostic value in predicting positive Ki-67 or CK-19 expression. But lacks standardized guidelines, which makes the model and variables selection dependent on researcher experience, leading to study heterogeneity. Therefore, standardized guidelines are warranted for future research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023427953.
Collapse
Affiliation(s)
- Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiheng Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoyong Wu
- Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen, China
| | - Chongxiang Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xihong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Staffeldt L, Mattert G, Riecken K, Rövenstrunk G, Volkmar A, Heumann A, Moustafa M, Jücker M, Fehse B, Schumacher U, Lüth S, Kah J. Generating Patient-Derived HCC Cell Lines Suitable for Predictive In Vitro and In Vivo Drug Screening by Orthotopic Transplantation. Cells 2023; 13:82. [PMID: 38201286 PMCID: PMC10778205 DOI: 10.3390/cells13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) results in high mortality due to ineffective systemic therapy. Human immortalized cell lines are commonly used to study anti-tumor effects in the context of new anti-tumor therapies and tumor biology. As immortalized cell lines have limited biological relevance and heterogeneity compared to primary cells, patient-derived tumor tissues, and corresponding immune cells are the gold standards for studying the complexity of individual tumor entities. However, culturing primary HCC cells has a low success rate. Here, we aimed to establish a reproducible approach to preserve the patient-derived liver cancer cells for in vitro and in vivo studies. The underlying study aimed to establish an in vitro pre-screening platform to test treatment options' effectivity and dosage, e.g., for new substances, autologous modified immune cells, or combined therapies in HCC. We initially employed 15 surgical resection specimens from patients with different HCC entities for isolation and preservation. The isolated liver cancer cells from four HCC-diagnosed patients were used for orthotopic transplantation into the healthy liver of immunodeficient mice, allowing them to grow for six months before human liver cancer cells were isolated and cultured. As a result, we generated and characterized four new primary-like liver cancer cell lines. Compared to immortalized HCC cell lines, freshly generated liver cancer cells displayed individual morphologies and heterogeneous protein-level characteristics. We assessed their ability to proliferate, migrate, form spheroids, and react to common medications compared to immortalized HCC cell lines. All four liver cancer cell lines exhibit strong migration and colony-forming characteristics in vitro, comparable to extensively investigated immortalized HCC cell lines. Moreover, the four etiological different liver cancer cell lines displayed differences in the response to 5-FU, Sorafenib, Axitinib, and interferon-alpha treatment, ranking from non-responders to responders depending on the applicated medication. In sum, we generated individual patient-derived liver cancer cell lines suitable for predictive in vitro drug screenings and for xenograft transplantations to realize the in vivo investigation of drug candidates. We overcame the low cultivation success rate of liver cancer cells derived from patients and analyzed their potential to serve a pre-clinical model.
Collapse
Affiliation(s)
- Lisa Staffeldt
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (U.S.)
| | - Gregor Mattert
- Brandenburg Medical School, Center for Translational Medicine, 14770 Brandenburg an der Havel, Germany; (G.M.); (G.R.)
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Götz Rövenstrunk
- Brandenburg Medical School, Center for Translational Medicine, 14770 Brandenburg an der Havel, Germany; (G.M.); (G.R.)
| | - Anika Volkmar
- Brandenburg Medical School, Center for Translational Medicine, 14770 Brandenburg an der Havel, Germany; (G.M.); (G.R.)
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mohamed Moustafa
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Boris Fehse
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel Partner Site, 38124 Braunschweig, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (U.S.)
- Medical School Berlin, Mecklenburgische Straße 57, 14197 Berlin, Germany
| | - Stefan Lüth
- Brandenburg Medical School, Center for Translational Medicine, 14770 Brandenburg an der Havel, Germany; (G.M.); (G.R.)
- Department of Gastroenterology, University Hospital Brandenburg, 14770 Brandenburg an der Havel, Germany
| | - Janine Kah
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (U.S.)
- Brandenburg Medical School, Center for Translational Medicine, 14770 Brandenburg an der Havel, Germany; (G.M.); (G.R.)
- Department of Gastroenterology, University Hospital Brandenburg, 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
25
|
Hansen HH, Pors S, Andersen MW, Vyberg M, Nøhr-Meldgaard J, Nielsen MH, Oró D, Madsen MR, Lewinska M, Møllerhøj MB, Madsen AN, Feigh M. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci Rep 2023; 13:23056. [PMID: 38155202 PMCID: PMC10754821 DOI: 10.1038/s41598-023-50328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a major cause of hepatocellular carcinoma (HCC), however, it is not resolved if compounds in late-stage clinical development for NASH may have additional therapeutic benefits in NASH-driven HCC (NASH-HCC). Here, we profiled monotherapy with semaglutide (glucagon-like-receptor-1 receptor agonist) and lanifibranor (pan-peroxisome proliferator-activated receptor agonist) in a diet-induced obese (DIO) mouse model of NASH-HCC. Disease progression was characterized in male C57BL/6 J mice fed the GAN (Gubra Amylin NASH) diet high in fat, fructose and cholesterol for 12-72 weeks (n = 15 per group). Other GAN DIO-NASH-HCC mice fed the GAN diet for 54 weeks and with biopsy-confirmed NASH (NAFLD Activity Score ≥ 5) and advanced fibrosis (stage F3) received vehicle (n = 16), semaglutide (30 nmol/kg, s.c., n = 15), or lanifibranor (30 mg/kg, p.o., n = 15) once daily for 14 weeks. GAN DIO-NASH-HCC mice demonstrated progressive NASH, fibrosis and HCC burden. Tumors presented with histological and molecular signatures of poor prognostic HCC. Consistent with clinical trial outcomes in NASH patients, both lanifibranor and semaglutide improved NASH while only lanifibranor reduced fibrosis in GAN DIO-NASH-HCC mice. Notably, only semaglutide reduced tumor burden in GAN DIO-NASH-HCC mice. In conclusion, the GAN DIO-NASH-HCC mouse is a clinical translational model of NASH-HCC. Semaglutide improves both NASH and tumor burden in GAN DIO-NASH-HCC mice, highlighting the suitability of this preclinical model for profiling novel drug therapies targeting NASH-HCC.
Collapse
Affiliation(s)
| | - Susanne Pors
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | | | | | | | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| |
Collapse
|
26
|
Qin Q, Deng LP, Chen J, Ye Z, Wu YY, Yuan Y, Song B. The value of MRI in predicting hepatocellular carcinoma with cytokeratin 19 expression: a systematic review and meta-analysis. Clin Radiol 2023; 78:e975-e984. [PMID: 37783612 DOI: 10.1016/j.crad.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
AIM To evaluate the overall diagnostic performance of magnetic resonance imaging (MRI), different image features, and different image analysis methods in predicting hepatocellular carcinoma (HCC) with cytokeratin 19 (CK19) expression. MATERIALS AND METHODS A systematic literature search was performed to identify studies using MRI to predict HCC with CK19 expression between 2012 and 2023. Data were extracted to calculate the pooled sensitivity and specificity. Overall diagnostic performance was assessed using areas under the summary receiver operating characteristic curve (AUC). Subgroup analyses were conducted for specific image features and according to image analysis methods (traditional image feature, radiomics, and combined methods). Z-test statistics was used to analyse the differences in diagnostic performance between combined and individual methods. RESULTS Eleven studies with 14 datasets (1,278 lesions from 1,264 patients) were included. The overall pooled sensitivity, specificity, and AUC with corresponding 95% confidence intervals were estimated to be 0.72 (0.55, 0.85), 0.88 (0.80, 0.93), and 0.89 (0.86, 0.91) for MRI in predicting HCC with CK19 expression. Combined methods had higher sensitivity than image feature methods (0.86 versus 0.54, p=0.001), with no difference in specificity (0.85 versus 0.87, p=0.641). There were no significant differences between radiomics and combined methods regarding sensitivity (p=0.796) and specificity (p=0.535), respectively. CONCLUSION MRI shows moderate sensitivity and high specificity in identifying HCC with CK19 expression. The application of radiomics can improve the sensitivity of MRI in identifying HCC with CK19 expression.
Collapse
Affiliation(s)
- Q Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L P Deng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Z Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Y Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - B Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
27
|
Jantawong C, Chamgramol Y, Intuyod K, Priprem A, Pairojkul C, Klungsaeng S, Dangtakot R, Pongking T, Sitthirach C, Pinlaor P, Waraasawapati S, Pinlaor S. Curcumin-loaded nanocomplexes alleviate the progression of fluke-related cholangiocarcinoma in hamsters. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Curcumin-loaded nanocomplexes (CNCs) previously demonstrated lower toxicity and extended release better than is the case for free curcumin. Here, we evaluated the efficacy of CNCs against opisthorchiasis-associated cholangiocarcinoma (CCA) in hamsters.
Method
Dose optimization (dose and frequency) was performed over a 1-month period using hamsters, a model that is widely used for study of opisthorchiasis-associated cholangiocarcinoma. In the main experimental study, CCA was induced by a combination of fluke, Opisthorchis viverrini (OV), infection and N-nitrosodimethylamine (NDMA) treatment. Either blank (empty) nanocomplexes (BNCs) or different concentrations of CNCs (equivalent to 10 and 20 mg cur/kg bw) were given to hamsters thrice a week for 5 months. The histopathological changes, biochemical parameters, and the expression of inflammatory/oncogenic transcription factors were investigated. In addition, the role of CNCs in attenuating CCA genesis, as seen in an animal model, was also confirmed in vitro using CCA cell lines.
Results
The optimization study revealed that treatment with CNCs at a dose equivalent to 10 mg cur/kg bw, thrice a week for 1 month, led to a greater reduction of inflammation and liver injury induced in hamsters by OV + NDMA than did treatments at other dose rates. Oral administration with CNCs (10 mg cur/kg bw), thrice a week for 5 months, significantly increased survival rate, reduced CCA incidence, extent of tumor development, cholangitis, bile duct injury and cholangiofibroma. In addition, this treatment decreased serum ALP and ALT activities and suppressed expression of NF-κB, FOXM1, HMGB1, PCNA and formation of 8-nitroguanine. Treatment of CCA cell lines with CNCs also reduced cell proliferation and colony formation, similar to those treated with NF-κB and/or FOXM1 inhibitors.
Conclusion
CNCs (10 mg cur/kg bw) attenuate the progression of fluke-related CCA in hamsters partly via a NF-κB and FOXM1-mediated pathway.
Collapse
|
28
|
Septiana WL, Ayudyasari W, Gunardi H, Pawitan JA, Balachander GM, Yu H, Antarianto RD. Liver organoids cocultured on decellularized native liver scaffolds as a bridging therapy improves survival from liver failure in rabbits. In Vitro Cell Dev Biol Anim 2023; 59:747-763. [PMID: 38110841 DOI: 10.1007/s11626-023-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 12/20/2023]
Abstract
The present study aimed to develop viable liver organoids using decellularized native liver scaffolds and evaluate the efficacy of human liver organoid transplantation in a rabbit model of cirrhosis. Liver organoids were formed by coculture of hepatocyte-like cells derived from the human-induced pluripotent stem cells with three other cell types. Twelve 3-mo-old New Zealand White Rabbits underwent a sham operation, bile duct ligation, or biliary duct ligation followed by liver organoid transplantation. Liver organoid structure and function before and after transplantation were evaluated using histological and molecular analyses. A survival analysis using the Kaplan-Meier method was performed to determine the cumulative probability of survival according to liver organoid transplantation with significantly greater overall survival observed in rabbits that underwent liver organoid transplantation (P = 0.003, log-rank test). The short-term group had higher hepatic expression levels of ALB and CYP3A mRNA and lower expression levels of AST mRNA compared to the long-term group. The short-term group also had lower collagen deposition in liver tissues. Transplantation of human liver organoids cocultured in decellularized native liver scaffold into rabbits that had undergone bile duct ligation improved short-term survival and hepatic function. The results of the present study highlight the potential of liver organoid transplantation as a bridging therapy in liver failure; however, rejection and poor liver organoid function may limit the long-term efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Wahyunia Likhayati Septiana
- Program Doktor Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Gunadarma, Depok, Indonesia
| | - Wulan Ayudyasari
- Department of Surgery, Fakultas Kedokteran Universitas Indonesia, Jakarta, Indonesia
| | - Hardian Gunardi
- Department of Surgery, Fakultas Kedokteran Universitas Indonesia, Jakarta, Indonesia
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Fakultas Kedokteran Universitas Indonesia, Jl Salemba Raya No 6. Jakarta Pusat 10430, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology (IPT TK Sel Punca), Dr. Cipto Mangunkusumo General Hospital (RSCM), Jakarta, Indonesia
| | - Gowri Manohari Balachander
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India, 221005
| | - Hanry Yu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India, 221005
- Institute of Bioengineering & Bioimaging, A*STAR, 31 Biopolis Way, #07-01, Singapore, 138669, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore, 138602, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Radiana Dhewayani Antarianto
- Department of Histology, Fakultas Kedokteran Universitas Indonesia, Jl Salemba Raya No 6. Jakarta Pusat 10430, Jakarta, Indonesia.
- Stem Cell and Tissue Engineering Research Cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta, Indonesia.
| |
Collapse
|
29
|
Jiang NZ, Bai MZ, Huang CF, Ma ZL, Zhong RY, Fu WK, Gao L, Tian L, Mi NN, Ma HD, Lu YW, Zhang ZA, Zhao JY, Yu HY, Zhang BP, Zhang XZ, Ren YX, Zhang C, Zhang Y, Yue P, Lin YY, Meng WB. First report on establishment and characterization of the extrahepatic cholangiocarcinoma sarcoma cell line CBC2T-2. World J Gastroenterol 2023; 29:5683-5698. [PMID: 38077157 PMCID: PMC10701331 DOI: 10.3748/wjg.v29.i41.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma sarcoma is extremely rare in clinical practice. These cells consist of both epithelial and mesenchymal cells. Patient-derived cell lines that maintain tumor characteristics are valuable tools for studying the molecular mechanisms associated with carcinosarcoma. However, cholangiocarcinoma sarcoma cell lines are not available in cell banks. AIM To establish and characterize a new extrahepatic cholangiocarcinoma sarcoma cell line, namely CBC2T-2. METHODS We conducted a short tandem repeat (STR) test to confirm the identity of the CBC2T-2 cell line. Furthermore, we assessed the migratory and invasive properties of the cells and performed clonogenicity assay to evaluate the ability of individual cells to form colonies. The tumorigenic potential of CBC2T-2 cells was tested in vivo using non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The cells were injected subcutaneously and tumor formation was observed. In addition, immunohistochemical analysis was carried out to examine the expression of epithelial marker CK19 and mesenchymal marker vimentin in both CBC2T-2 cells and xenografts. The CBC2T-2 cell line was used to screen the potential therapeutic effects of various clinical agents in patients with cholangiocarcinoma sarcoma. Lastly, whole-exome sequencing was performed to identify genetic alterations and screen for somatic mutations in the CBC2T-2 cell line. RESULTS The STR test showed that there was no cross-contamination and the results were identical to those of the original tissue. The cells showed round or oval-shaped epithelioid cells and mesenchymal cells with spindle-shaped or elongated morphology. The cells exhibited a high proliferation ratio with a doubling time of 47.11 h. This cell line has migratory, invasive, and clonogenic abilities. The chromosomes in the CBC2T-2 cells were polyploidy, with numbers ranging from 69 to 79. The subcutaneous tumorigenic assay confirmed the in vivo tumorigenic ability of CBC2T-2 cells in NOD/SCID mice. CBC2T-2 cells and xenografts were positive for both the epithelial marker, CK19, and the mesenchymal marker, vimentin. These results suggest that CBC2T-2 cells may have both epithelial and mesenchymal characteristics. The cells were also used to screen clinical agents in patients with cholangiocarcinoma sarcoma, and a combination of paclitaxel and gemcitabine was found to be the most effective treatment option. CONCLUSION We established the first human cholangiocarcinoma sarcoma cell line, CBC2T-2, with stable biogenetic traits. This cell line, as a research model, has a high clinical value and would facilitate the understanding of the pathogenesis of cholangiocarcinoma sarcoma.
Collapse
Affiliation(s)
- Ning-Zu Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ming-Zhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chong-Fei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ze-Long Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ru-Yang Zhong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Kang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Liang Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ning-Ning Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hai-Dong Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ya-Wen Lu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zi-Ang Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jin-Yu Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hai-Ying Yu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Bao-Ping Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xian-Zhuo Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yan-Xian Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yong Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ping Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yan-Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Bo Meng
- Department of General Surgery, The First Hospital of Lanzhou University and Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
30
|
Jayakumar MN, Muhammad JS, Dutta M, Donakonda S. Comprehensive In silico analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small-molecule inhibitors for the treatment of cholangiocarcinoma. Comput Biol Med 2023; 166:107572. [PMID: 37844407 DOI: 10.1016/j.compbiomed.2023.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Cholangiocarcinoma (CCA) is a subtype of liver cancer with increasing incidence, poor prognosis, and limited treatment modalities. It is, therefore, imperative to identify novel therapeutic targets for better management of the disease. Chaperones are known to be significant regulators of carcinogenesis, however, their role in CCA remains unclear. This study aims to screen chaperones involved in CCA pathogenesis and identify drugs targeting key chaperones to improve the therapeutic response to the disease. To achieve this, first we mined the literature to create an atlas of human chaperone proteins. Next, their expression in CCA was determined by publicly available datasets of patients at mRNA and protein levels. In addition, our analysis involving protein-protein interaction and pathway analysis of eight key dysregulated chaperones revealed that they control crucial cancer-related pathways. Furthermore, topology analysis of the CCA network identified crystallin alpha-B protein (CRYAB) and prolyl-4-hydroxylase subunit 2 (P4HA2) as novel therapeutic targets for the disease. Finally, drug repurposing of 286 clinically approved anti-cancer drugs against these two chaperones performed by molecular docking and molecular dynamics simulations showed that tucatinib and regorafenib had a modulatory effect on them and could be potential inhibitors of CRYAB and P4HA2, respectively. Overall, our study, for the first time, provides insights into the pan-chaperone expression in CCA and explains the pathways that might drive CCA pathogenesis. Further, our identification of potential therapeutic targets and their inhibitors could provide new and complementary approaches to CCA treatment.
Collapse
Affiliation(s)
- Manju Nidagodu Jayakumar
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani Dubai Campus, Academic City, Dubai, 345055, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani Dubai Campus, Academic City, Dubai, 345055, United Arab Emirates.
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, 81675, Germany.
| |
Collapse
|
31
|
Kadi D, Yamamoto MF, Lerner EC, Jiang H, Fowler KJ, Bashir MR. Imaging prognostication and tumor biology in hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:284-299. [PMID: 37710379 PMCID: PMC10565542 DOI: 10.17998/jlc.2023.08.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy, and represents a significant global health burden with rising incidence rates, despite a more thorough understanding of the etiology and biology of HCC, as well as advancements in diagnosis and treatment modalities. According to emerging evidence, imaging features related to tumor aggressiveness can offer relevant prognostic information, hence validation of imaging prognostic features may allow for better noninvasive outcomes prediction and inform the selection of tailored therapies, ultimately improving survival outcomes for patients with HCC.
Collapse
Affiliation(s)
- Diana Kadi
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Marilyn F. Yamamoto
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Emily C. Lerner
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kathryn J. Fowler
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Mustafa R. Bashir
- Department of Radiology, Duke University, Durham, NC, USA
- Division of Hepatology, Department of Medicine, Duke University, Durham, NC, USA
- Center for Advanced Magnetic Resonance Development, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Li Y, Lou J, Hong S, Hou D, Lv Y, Guo Z, Wang K, Xu Y, Zhai Y, Liu H. The role of heavy metals in the development of colorectal cancer. BMC Cancer 2023; 23:616. [PMID: 37400750 PMCID: PMC10316626 DOI: 10.1186/s12885-023-11120-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE To investigate the relationship among 18 heavy metals, microsatellite instability (MSI) status, ERCC1, XRCC1 (rs25487), BRAF V600E and 5 tumor markers and their role in the development of colorectal cancer (CRC). METHODS A total of 101 CRC patients and 60 healthy controls were recruited in the present study. The levels of 18 heavy metals were measured by ICP-MS. MSI status and the genetic polymorphism were determined by PCR (FP205-02, Tiangen Biochemical Technology Co., Ltd., Beijing, China) and Sanger sequencing. Spearman's rank correlation was used to analyze the relationship among various factors. RESULTS The level of selenium (Se) was lower in the CRC group compared with the control group (p < 0.01), while vanadium (V), arsenic (As), tin (Sn), barium (Ba) and lead (Pb) were higher (p < 0.05), chromium (Cr) and copper (Cu) were significantly higher (p < 0.0001) in the CRC group than those in the control group. Multivariate logistic regression analysis indicated that Cr, Cu, As and Ba were the risk factors for CRC. In addition, CRC was positively correlated with V, Cr, Cu, As, Sn, Ba and Pb, but negatively correlated with Se. MSI was positively correlated with BRAF V600E, but negatively correlated with ERCC1. BRAF V600E was positively correlated with antimony (Sb), thallium (Tl), CA19-9, NSE, AFP and CK19. XRCC1 (rs25487) was found to be positively correlated with Se but negatively correlated with Co. The levels of Sb and Tl were significantly higher in the BRAF V600E positive group compared to the negative group. The mRNA expression level of ERCC1 was significantly higher (P = 0.035) in MSS compared to MSI. And there was a significant correlation between XRCC1 (rs25487) polymorphism and MSI status (P<0.05). CONCLUSION The results showed that low level of Se and high levels of V, As, Sn, Ba, Pb, Cr, and Cu increased the risk of CRC. Sb and Tl may cause BRAF V600E mutations, leading to MSI. XRCC1 (rs25487) was positively correlated with Se but negatively correlated with Co. The expression of ERCC1 may be related to MSS, while the XRCC1 (rs25487) polymorphism is related to MSI.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Jingwei Lou
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Shaozhong Hong
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Dengfeng Hou
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Yufeng Zhai
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China.
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
33
|
El-Sharkawy A, Atef S, Abdel-Megied A, Eldaly U, Elsherbiny ES, Metwally FM, El-Mezayen H. Circulating Tumor Cells in Breast Cancer: A Step Toward Precision Medicine for Real-Time Monitoring of Metastasis. Asian Pac J Cancer Prev 2023; 24:1725-1730. [PMID: 37247294 PMCID: PMC10495910 DOI: 10.31557/apjcp.2023.24.5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND/AIMS Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive score based on degradation of glycosaminoglycans in the extracellular matrix for assessment of metastasis in patients with breast cancer. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of Metastases in patients with breast cancer. MATERIAL & METHODS Cytokeratin 18 (CK18), Cytokeratin 19 (CK19) and CA15.3 were assayed in metastatic breast cancer patients (88), non-metastatic breast cancer patients (129) and healthy control (32). Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named CTC-MBS = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1. CTC-MBS score produces AUC of 1 for differentiate patients with metastatic breast cancer from those with non-metastatic breast cancer with sensitivity and specificity of a cut-off 0 (i.e., less than 0 the case is considered metastatic, whereas above 0 it is considered non-metastatic. CONCLUSION CTC-MBS score is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer and could replace CA15.3 during screening and follow-up of breast cancer patients.
Collapse
Affiliation(s)
- Aml El-Sharkawy
- Clinical Pathology Department, Damietta Cancer Institute, Damietta, Egypt.
| | - Salwa Atef
- Chemistry Department, Faculty of Science, Menoufia University, Shebin el-kom, Egypt.
| | - Ahmed Abdel-Megied
- Chemistry Department, Faculty of Science, Menoufia University, Shebin el-kom, Egypt.
| | - Usama Eldaly
- Medical Oncology Department, Damietta Cancer Institute, Damietta, Egypt.
| | | | - Fateheya M. Metwally
- Environmental and Occupational Medicine Department, National Research Center, Giza, Egypt.
| | | |
Collapse
|
34
|
Burciu C, Șirli R, Bende R, Popa A, Vuletici D, Miuțescu B, Rațiu I, Popescu A, Sporea I, Dănilă M. A Statistical Approach to the Diagnosis and Prediction of HCC Using CK19 and Glypican 3 Biomarkers. Diagnostics (Basel) 2023; 13:diagnostics13071253. [PMID: 37046471 PMCID: PMC10092964 DOI: 10.3390/diagnostics13071253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Various statistical models predict the probability of developing hepatocellular carcinoma (HCC) in patients with cirrhosis, with GALAD being one of the most extensively studied scores. Biomarkers like alpha-fetoprotein (AFP), AFP-L3, and des-g-carboxyprothrombin (DCP) are widely used alone or in conjunction with ultrasound to screen for HCC. Our study aimed to compare the effectiveness of Cytokeratin 19 (CK19) and Glypican-3 (GPC3) as standalone biomarkers and in a statistical model to predict the likelihood of HCC. We conducted a monocentric prospective study involving 154 participants with previously diagnosed liver cirrhosis, divided into two groups: 95 patients with confirmed HCC based on clinical, biological, and imaging features and 59 patients without HCC. We measured the levels of AFP, AFP-L3, DCP, GPC3, and CK19 in both groups. We used univariate and multivariate statistical analyses to evaluate the ability of GPC3 and CK19 to predict the presence of HCC and incorporated them into a statistical model—the GALKA score—which was then compared to the GALAD score. AFP performed better than AFP-F3, DCP, GPC3, and CK19 in predicting the presence of HCC in our cohort. Additionally, GPC3 outperformed CK19. We used multivariate analysis to compute the GALKA score to predict the presence of HCC. Using these predictors, the following score was formulated: 0.005*AFP-L3 + 0.00069*AFP + 0.000066*GPC3 + 0.01*CK19 + 0.235*Serum Albumin—0.277. The optimal cutoff was >0.32 (AUROC = 0.98, sensitivity: 96.8%, specificity: 93%, positive predictive value—95.8%, negative predictive value—94.8%). The GALKA score had a similar predictive value to the GALAD score for the presence of HCC. In conclusion, AFP, AFP-L3, and DCP were the best biomarkers for predicting the likelihood of HCC. Our score performed well overall and was comparable to the GALAD score.
Collapse
Affiliation(s)
- Călin Burciu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Roxana Șirli
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
- Correspondence:
| | - Renata Bende
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Alexandru Popa
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Deiana Vuletici
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Bogdan Miuțescu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Iulia Rațiu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Alina Popescu
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| | - Mirela Dănilă
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 30041 Timisoara, Romania
| |
Collapse
|
35
|
Bahsoun A, Hussain HK. A Step Closer to Personalized Treatment of Hepatocellular Carcinoma. Acad Radiol 2023; 30:853-854. [PMID: 36973116 DOI: 10.1016/j.acra.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Affiliation(s)
- Aymen Bahsoun
- American University of Beirut, Beirut, Lebanon; University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
36
|
Pagarigan AKL, Mendoza PGL. Adult hepatoblastoma: making the challenging distinction from hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:219-224. [PMID: 37384033 PMCID: PMC10202245 DOI: 10.17998/jlc.2023.02.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/30/2023]
Abstract
Hepatoblastoma is an exceptionally rare malignancy in adults with just over 70 non-pediatric cases reported in literature. Recounted is a case of a 49-year-old female who presented with acute right upper quadrant abdominal pain, elevated serum alpha fetoprotein and a large liver mass on imaging. Hepatectomy was performed under clinical suspicion of hepatocellular carcinoma. Immunomorphologic characteristics of the tumor proved consistent with hepatoblastoma of mixed epithelial and mesenchymal type. Hepatocellular carcinoma remains to be the primary differential diagnosis for adult hepatoblastoma, however, distinguishing between these two neoplasms requires close histomorphologic assessment and immunohistochemical profiling as clinical, radiologic and gross pathologic findings typically overlap. Making this distinction is highly crucial in the timely initiation of surgical and chemotherapeutic interventions for this inherently aggressive and rapidly fatal disease.
Collapse
Affiliation(s)
- Allison Kaye L. Pagarigan
- Department of Pathology and Laboratory Medicine, National Kidney and Transplant Institute, Quezon City, Philippines
| | - Paulo Giovanni L. Mendoza
- Department of Pathology and Laboratory Medicine, National Kidney and Transplant Institute, Quezon City, Philippines
| |
Collapse
|
37
|
Gadoxetic Acid-Enhanced MRI-Based Radiomics Signature: A Potential Imaging Biomarker for Identifying Cytokeratin 19-Positive Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:5424204. [PMID: 36814805 PMCID: PMC9940957 DOI: 10.1155/2023/5424204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Purpose One subtype of hepatocellular carcinoma (HCC), with cytokeratin 19 expression (CK19+), has shown to be more aggressive and has a poor prognosis. However, CK19+ is determined by immunohistochemical examination using a surgically resected specimen. This study is aimed at establishing a radiomics signature based on preoperative gadoxetic acid-enhanced MRI for predicting CK19 status in HCC. Patients and Methods. Clinicopathological and imaging data were retrospectively collected from patients who underwent hepatectomy between February 2015 and December 2020. Patients who underwent gadoxetic acid-enhanced MRI and had CK19 results of histopathological examination were included. Radiomics features of the manually segmented lesion during the arterial, portal venous, and hepatobiliary phases were extracted. The 10 most reproducible and robust features at each phase were selected for construction of radiomics signatures, and their performance was evaluated by analyzing the area under the curve (AUC). The goodness of fit of the model was assessed by the Hosmer-Lemeshow test. Results A total of 110 patients were included. The incidence of CK19(+) HCC was 17% (19/110). Alpha fetoprotein was the only significant clinicopathological variable different between CK19(-) and CK19(+) groups. A majority of the selected radiomics features were wavelet filter-derived features. The AUCs of the three radiomics signatures based on arterial, portal venous, and hepatobiliary phases were 0.70 (95% CI: 0.56-0.83), 0.83 (95% CI: 0.73-0.92), and 0.89 (95% CI: 0.82-0.96), respectively. The three radiomics signatures were integrated, and the fusion signature yielded an AUC of 0.92 (95% CI: 0.86-0.98) and was used as the final model for CK19(+) prediction. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the fusion signature was 0.84, 0.89, 0.88, 0.62, and 0.96, respectively. The Hosmer-Lemeshow test showed a good fit of the fusion signature (p > 0.05). Conclusion The established radiomics signature based on preoperative gadoxetic acid-enhanced MRI could be an accurate and potential imaging biomarker for HCC CK19(+) prediction.
Collapse
|
38
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
39
|
Powell NR, Silvola RM, Howard JS, Badve S, Skaar TC, Ipe J. Quantification of spatial pharmacogene expression heterogeneity in breast tumors. Cancer Rep (Hoboken) 2023; 6:e1686. [PMID: 35906899 PMCID: PMC9875649 DOI: 10.1002/cnr2.1686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapeutic drug concentrations vary across different regions of tumors and this is thought to be involved in development of chemotherapy resistance. Insufficient drug delivery to some regions of the tumor may be due to spatial differences in expression of genes involved in the disposition, transport, and detoxification of drugs (pharmacogenes). Therefore, in this study, we analyzed the spatial expression of 286 pharmacogenes in six breast cancer tissues using the recently developed Visium spatial transcriptomics platform to (1) determine if these pharmacogenes are expressed heterogeneously across tumor tissue and (2) to determine which pharmacogenes have the most spatial expression heterogeneity. METHODS AND RESULTS The spatial transcriptomics technology sequences the transcriptome of 55 um diameter barcoded sections (spots) across a tissue sample. We analyzed spatial gene expression profiles of four biobank-sourced breast tumor samples in addition to two breast tumor sample datasets from 10× Genomics. We define heterogeneity as the interquartile range of read counts. Collectively, we identified 8887 spots in tumor regions, 3814 in stroma, 44 in lymphocytes, and 116 in normal regions based on pathologist annotation of the tissues. We showed statistically significant differences in expression of pharmacogenes in tumor regions compared to surrounding non-tumor regions. We also observed that the most heterogeneously expressed genes within tumor regions were involved in reactive oxygen species (ROS) handling and detoxification mechanisms. GPX4, GSTP1, MGST3, SOD1, CYP4Z1, CYB5R3, GSTK1, and NAT1 showed the most heterogeneous expression within tumor regions. CONCLUSIONS The heterogeneous expression of these pharmacogenes may have important implications for cancer therapy due to their ability to impact drug distribution and efficacy throughout the tumor. Our results suggest that chemoresistance caused by expression of GPX4, GSTP1, MGST3, and SOD1 may be intrinsic, not acquired, since the heterogeneity is not specific to chemotherapy-treated samples or cell type. Additionally, we identified candidate chemoresistance pharmacogenes that can be further tested through focused follow-up studies.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rebecca M. Silvola
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - John S. Howard
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sunil Badve
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Todd C. Skaar
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Joseph Ipe
- Department of Medicine, Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
40
|
Zhang L, Zhou H, Zhang X, Ding Z, Xu J. A radiomics nomogram for predicting cytokeratin 19-positive hepatocellular carcinoma: a two-center study. Front Oncol 2023; 13:1174069. [PMID: 37182122 PMCID: PMC10174303 DOI: 10.3389/fonc.2023.1174069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives We aimed to construct and validate a radiomics-based nomogram model derived from gadoxetic acid-enhanced magnetic resonance (MR) images to predict cytokeratin (CK) 19-positive (+) hepatocellular carcinoma (HCC) and patients' prognosis. Methods A two-center and time-independent cohort of 311 patients were retrospectively enrolled (training cohort, n = 168; internal validation cohort, n = 72; external validation cohort, n = 71). A total of 2286 radiomic features were extracted from multisequence MR images with the uAI Research Portal (uRP), and a radiomic feature model was established. A combined model was established by incorporating the clinic-radiological features and the fusion radiomics signature using logistic regression analysis. Receiver operating characteristic curve (ROC) was used to evaluate the predictive efficacy of these models. Kaplan-Meier survival analysis was used to assess 1-year and 2-year progression-free survival (PFS) and overall survival (OS) in the cohort. Results By combining radiomic features extracted in DWI phase, arterial phase, venous and delay phase, the fusion radiomics signature achieved AUCs of 0.865, 0.824, and 0.781 in the training, internal, and external validation cohorts. The final combined clinic-radiological model showed higher AUC values in the three datasets compared with the fusion radiomics model. The nomogram based on the combined model showed satisfactory prediction performance in the training (C-index, 0.914), internal (C-index, 0.855), and external validation (C-index, 0.795) cohort. The 1-year and 2-year PFS and OS of the patients in the CK19+ group were 76% and 73%, and 78% and 68%, respectively. The 1-year and 2-year PFS and OS of the patients in the CK19-negative (-) group were 81% and 77%, and 80% and 74%, respectively. Kaplan-Meier survival analysis showed no significant differences in 1-year PFS and OS between the groups (P = 0.273 and 0.290), but it did show differences in 2-year PFS and OS between the groups (P = 0.032 and 0.040). Both PFS and OS were lower in CK19+ patients. Conclusion The combined model based on clinic-radiological radiomics features can be used for predicting CK19+ HCC noninvasively to assist in the development of personalized treatment.
Collapse
Affiliation(s)
- Liqing Zhang
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heshan Zhou
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Zhang
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhongxiang Ding, ; Jianfeng Xu,
| | - Jianfeng Xu
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
- *Correspondence: Zhongxiang Ding, ; Jianfeng Xu,
| |
Collapse
|
41
|
Lu M, Qu Q, Xu L, Zhang J, Liu M, Jiang J, Shen W, Zhang T, Zhang X. Prediction for Aggressiveness and Postoperative Recurrence of Hepatocellular Carcinoma Using Gadoxetic Acid-Enhanced Magnetic Resonance Imaging. Acad Radiol 2022; 30:841-852. [PMID: 36577606 DOI: 10.1016/j.acra.2022.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the predictive value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) features on the pathologic grade, microvascular invasion (MVI), and cytokeratin-19 (CK19) expression in hepatocellular carcinomas (HCC), and to evaluate their association with postoperative recurrence of HCC. MATERIALS AND METHODS This retrospective study included 147 patients with surgically confirmed HCCs who underwent gadoxetic-enhanced MRI. The lesions were evaluated quantitatively in terms of the relative enhancement ratio (RER), and qualitatively based on imaging features and clinical parameters. Logistic regression analyses were performed to investigate the value of these parameters in predicting the pathologic grade, MVI, and CK19 in HCC. Predictive factors for postoperative recurrence were determined using a Cox proportional hazards model. RESULTS Peritumoral enhancement (odds ratio [OR], 3.396; p = 0.025) was an independent predictor of high pathologic grades. Serum protein induced by vitamin K absence or antagonist (PIVKA) level > 40 mAU/mL (OR, 3.763; p = 0.018) and peritumoral hypointensity (OR, 4.343; p = 0.003) were independent predictors of MVI. Predictors of CK19 included serum alpha-fetoprotein (AFP) level > 400 ng/mL (OR, 4.576; p = 0.005), rim enhancement (OR, 5.493; p = 0.024), and lower RER (OR, 0.013; p = 0.011). Peritumoral hypointensity (hazard ratio [HR], 1.957; p = 0.027) and poor pathologic grades (HR, 2.339; p = 0.043) were independent predictors of recurrence. CONCLUSION We demonstrated the value of preoperative gadoxetic-enhanced MRI in predicting aggressive pathological features of HCC. Poor pathologic grades and peritumoral hypointensity may independently predict the recurrence of HCC.
Collapse
Affiliation(s)
- Mengtian Lu
- Nantong University, Nantong, Jiangsu, China; Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Qi Qu
- Nantong University, Nantong, Jiangsu, China; Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Jiyun Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Wei Shen
- Philips Healthcare Shanghai, Shanghai, China.
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, NO. 60 Youth Middle Road, Chongchuan District, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
42
|
ZNF3 regulates proliferation, migration and invasion through MMP1 and TWIST in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1889-1896. [PMID: 36789689 PMCID: PMC10157515 DOI: 10.3724/abbs.2022187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with a high incidence and mortality worldwide. Currently, the underlying molecular mechanisms of CRC are still unclear. Zinc finger protein 3 (ZNF3) is a zinc-finger transcription factor that has been reported as a candidate for breast cancer prognosis, suggesting its involvement in the regulation of tumorigenesis. However, the association between ZNF3 and CRC remains unknown. To investigate the role of ZNF3 in CRC, we first analyze the correlation between ZNF3 expression and CRC, and the results demonstrate that ZNF3 is highly expressed in CRC tissue and cells, which is associated with the age of CRC patients. In vitro studies show that ZNF3 overexpression promotes CRC cell migration. Compared to control cells, knockdown of ZNF3 markedly suppresses CRC cell proliferation, migration and invasion and promotes G0/G1 phase cell cycle arrest. The expressions of the EMT-related markers TWIST and MMP1 are significantly decreased when ZNF3 is silenced. Additionally, overexpression of MMP1 and TWIST exacerbates CRC cell proliferation, accelerates the S phase cell cycle in ZNF3-knockdown SW480 cells, and increases cell migration and invasion through Transwell chambers. These data suggest that ZNF3 is involved in cellular proliferation, migration and invasion by regulating MMP1 and TWIST in CRC cells.
Collapse
|
43
|
Liu B, Fang X, Kwong DLW, Zhang Y, Verhoeft K, Gong L, Zhang B, Chen J, Yu Q, Luo J, Tang Y, Huang T, Ling F, Fu L, Yan Q, Guan XY. Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:182. [PMID: 35610614 PMCID: PMC9131684 DOI: 10.1186/s13046-022-02401-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Background Previous in vitro hepatocyte differentiation model showed that TROY was specifically expressed in liver progenitor cells and a small proportion of hepatocellular carcinoma cells, suggesting that TROY may participate in hepatocellular carcinoma (HCC) stemness regulation. Here, we aim to investigate the role and mechanism of TROY in HCC pathogenesis. Method Bioinformatics analysis of the TCGA dataset has been used to identify the function and mechanism of TROY. Spheroid, apoptosis, and ALDH assay were performed to evaluate the stemness functions. Validation of the downstream pathway was based on Western blot, co-immunoprecipitation, and double immunofluorescence. Results HCC tissue microarray study found that a high frequency of TROY-positive cells was detected in 53/130 (40.8%) of HCC cases, which was significantly associated with poor prognosis and tumor metastasis. Functional studies revealed that TROY could promote self-renewal, drug resistance, tumorigenicity, and metastasis of HCC cells. Mechanism study found that TROY could interact with PI3K subunit p85α, inducing its polyubiquitylation and degradation. The degradation of p85α subsequently activate PI3K/AKT/TBX3 signaling and upregulated pluripotent genes expression including SOX2, NANOG, and OCT4, and promoted EMT in HCC cells. Interestingly, immune cell infiltration analysis found that upregulation of TROY in HCC tissues was induced by TGF-β1 secreted from CAFs. PI3K inhibitor wortmannin could effectively impair tumor stemness to sorafenib. Conclusion We demonstrated that TROY is an HCC CSC marker and plays an important role in HCC stemness regulation. Targeting TROY-positive CSCs with PI3K inhibitor wortmannin combined with chemo- or targeted drugs might be a novel therapeutic strategy for HCC patients. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02401-6.
Collapse
|
44
|
Zhang L, Qi Q, Li Q, Ren S, Liu S, Mao B, Li X, Wu Y, Yang L, Liu L, Li Y, Duan S, Zhang L. Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: A multicenter study. Front Oncol 2022; 12:994456. [PMID: 36119507 PMCID: PMC9478580 DOI: 10.3389/fonc.2022.994456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The purpose of this study was to investigate the preoperative prediction of Cytokeratin (CK) 19 expression in patients with hepatocellular carcinoma (HCC) by machine learning-based ultrasomics. Methods We retrospectively analyzed 214 patients with pathologically confirmed HCC who received CK19 immunohistochemical staining. Through random stratified sampling (ratio, 8:2), patients from institutions I and II were divided into training dataset (n = 143) and test dataset (n = 36), and patients from institution III served as external validation dataset (n = 35). All gray-scale ultrasound images were preprocessed, and then the regions of interest were then manually segmented by two sonographers. A total of 1409 ultrasomics features were extracted from the original and derived images. Next, the intraclass correlation coefficient, variance threshold, mutual information, and embedded method were applied to feature dimension reduction. Finally, the clinical model, ultrasonics model, and combined model were constructed by eXtreme Gradient Boosting algorithm. Model performance was assessed by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Results A total of 12 ultrasomics signatures were used to construct the ultrasomics models. In addition, 21 clinical features were used to construct the clinical model, including gender, age, Child-Pugh classification, hepatitis B surface antigen/hepatitis C virus antibody (positive/negative), cirrhosis (yes/no), splenomegaly (yes/no), tumor location, tumor maximum diameter, tumor number, alpha-fetoprotein, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutamyl-transpeptidase, albumin, total bilirubin, conjugated bilirubin, creatinine, prothrombin time, fibrinogen, and international normalized ratio. The AUC of the ultrasomics model was 0.789 (0.621 – 0.907) and 0.787 (0.616 – 0.907) in the test and validation datasets, respectively. However, the performance of the combined model covering clinical features and ultrasomics signatures improved significantly. Additionally, the AUC (95% CI), sensitivity, specificity, and accuracy were 0.867 (0.712 – 0.957), 0.750, 0.875, 0.861, and 0.862 (0.703 – 0.955), 0.833, 0.862, and 0.857 in the test dataset and external validation dataset, respectively. Conclusion Ultrasomics signatures could be used to predict the expression of CK19 in HCC patients. The combination of clinical features and ultrasomics signatures showed excellent effects, which significantly improved prediction accuracy and robustness.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shunhua Liu
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Mao
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xin Li
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuejin Wu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lanling Yang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Luwen Liu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaqiong Li
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| |
Collapse
|
45
|
Critical Investigation of the Usability of Hepatoma Cell Lines HepG2 and Huh7 as Models for the Metabolic Representation of Resectable Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14174227. [PMID: 36077764 PMCID: PMC9454736 DOI: 10.3390/cancers14174227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold standard. In this study, we characterized the metabolic profiles of primary human hepatoma cells (PHCs), HCLs and primary human hepatocytes (PHHs) to determine their differentiation states. PHCs and PHHs (HCC-PHHs) were isolated from surgical specimens of HCC patients and their energy metabolism was compared to PHHs from non-HCC patients and the HepG2 and Huh7 cells at different levels (transcript, protein, function). Our analyses showed successful isolation of PHCs with a purity of 50–73% (CK18+). The transcript data revealed that changes in mRNA expression levels had already occurred in HCC-PHHs. While many genes were overexpressed in PHCs and HCC-PHHs, the changes were mostly not translated to the protein level. Downregulated metabolic key players of PHCs revealed a correlation with malign transformation and were predominantly pronounced in multilocular HCC. Therefore, HCLs failed to reflect these expression patterns of PHCs at the transcript and protein levels. The metabolic characteristics of PHCs are closer to those of HCC-PHHs than to HCLs. This should be taken into account for future optimized tumor metabolism research.
Collapse
|
46
|
Macias RIR, Cardinale V, Kendall TJ, Avila MA, Guido M, Coulouarn C, Braconi C, Frampton AE, Bridgewater J, Overi D, Pereira SP, Rengo M, Kather JN, Lamarca A, Pedica F, Forner A, Valle JW, Gaudio E, Alvaro D, Banales JM, Carpino G. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 2022; 71:1669-1683. [PMID: 35580963 DOI: 10.1136/gutjnl-2022-327099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) group, University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Guido
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cedric Coulouarn
- UMR_S 1242, COSS, Centre de Lutte contre le Cancer Eugène Marquis, INSERM University of Rennes 1, Rennes, France
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Lamarca
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Alejandro Forner
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,BCLC group, Liver Unit, Hospital Clínic Barcelona. IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jesus M Banales
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| |
Collapse
|
47
|
Katabathina VS, Khanna L, Surabhi VR, Minervini M, Shanbhogue K, Dasyam AK, Prasad SR. Morphomolecular Classification Update on Hepatocellular Adenoma, Hepatocellular Carcinoma, and Intrahepatic Cholangiocarcinoma. Radiographics 2022; 42:1338-1357. [PMID: 35776676 DOI: 10.1148/rg.210206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hepatocellular adenomas (HCAs), hepatocellular carcinomas (HCCs), and intrahepatic cholangiocarcinomas (iCCAs) are a highly heterogeneous group of liver tumors with diverse pathomolecular features and prognoses. High-throughput gene sequencing techniques have allowed discovery of distinct genetic and molecular underpinnings of these tumors and identified distinct subtypes that demonstrate varied clinicobiologic behaviors, imaging findings, and complications. The combination of histopathologic findings and molecular profiling form the basis for the morphomolecular classification of liver tumors. Distinct HCA subtypes with characteristic imaging findings and complications include HNF1A-inactivated, inflammatory, β-catenin-activated, β-catenin-activated inflammatory, and sonic hedgehog HCAs. HCCs can be grouped into proliferative and nonproliferative subtypes. Proliferative HCCs include macrotrabecular-massive, TP53-mutated, scirrhous, clear cell, fibrolamellar, and sarcomatoid HCCs and combined HCC-cholangiocarcinoma. Steatohepatitic and β-catenin-mutated HCCs constitute the nonproliferative subtypes. iCCAs are classified as small-duct and large-duct types on the basis of the level of bile duct involvement, with significant differences in pathogenesis, molecular signatures, imaging findings, and biologic behaviors. Cross-sectional imaging modalities, including multiphase CT and multiparametric MRI, play an essential role in diagnosis, staging, treatment response assessment, and surveillance. Select imaging phenotypes can be correlated with genetic abnormalities, and identification of surrogate imaging markers may help avoid genetic testing. Improved understanding of morphomolecular features of liver tumors has opened new areas of research in the targeted therapeutics and management guidelines. The purpose of this article is to review imaging findings of select morphomolecular subtypes of HCAs, HCCs, and iCCAs and discuss therapeutic and prognostic implications. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Lokesh Khanna
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Venkateswar R Surabhi
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Marta Minervini
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Krishna Shanbhogue
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Anil K Dasyam
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Srinivasa R Prasad
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| |
Collapse
|
48
|
Zanotti S, Boot GF, Coto-Llerena M, Gallon J, Hess GF, Soysal SD, Kollmar O, Ng CKY, Piscuoglio S. The Role of Chronic Liver Diseases in the Emergence and Recurrence of Hepatocellular Carcinoma: An Omics Perspective. Front Med (Lausanne) 2022; 9:888850. [PMID: 35814741 PMCID: PMC9263082 DOI: 10.3389/fmed.2022.888850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) typically develops from a background of cirrhosis resulting from chronic inflammation. This inflammation is frequently associated with chronic liver diseases (CLD). The advent of next generation sequencing has enabled extensive analyses of molecular aberrations in HCC. However, less attention has been directed to the chronically inflamed background of the liver, prior to HCC emergence and during recurrence following surgery. Hepatocytes within chronically inflamed liver tissues present highly activated inflammatory signaling pathways and accumulation of a complex mutational landscape. In this altered environment, cells may transform in a stepwise manner toward tumorigenesis. Similarly, the chronically inflamed environment which persists after resection may impact the timing of HCC recurrence. Advances in research are allowing an extensive epigenomic, transcriptomic and proteomic characterization of CLD which define the emergence of HCC or its recurrence. The amount of data generated will enable the understanding of oncogenic mechanisms in HCC from the CLD perspective and provide the possibility to identify robust biomarkers or novel therapeutic targets for the treatment of primary and recurrent HCC. Importantly, biomarkers defined by the analysis of CLD tissue may permit the early detection or prevention of HCC emergence and recurrence. In this review, we compile the current omics based evidence of the contribution of CLD tissues to the emergence and recurrence of HCC.
Collapse
Affiliation(s)
- Sofia Zanotti
- Anatomic Pathology Unit, IRCCS Humanitas University Research Hospital, Milan, Italy
| | - Gina F. Boot
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gabriel F. Hess
- Clarunis, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Savas D. Soysal
- Clarunis, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Otto Kollmar
- Clarunis, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Bern Center for Precision Medicine, Bern, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- *Correspondence: Salvatore Piscuoglio
| |
Collapse
|
49
|
Cheng YH, Ko YC, Ku HJ, Huang CC, Yao YC, Liao YT, Chen YT, Huang SF, Huang LR. Novel Paired Cell Lines for the Study of Lipid Metabolism and Cancer Stemness of Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:821224. [PMID: 35721518 PMCID: PMC9204282 DOI: 10.3389/fcell.2022.821224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
There are few well-characterized syngeneic murine models for hepatocellular carcinoma (HCC), which limits immunological studies and the development of immunotherapies for HCC. We previously established an oncogene-induced spontaneous HCC mouse model based on transposon-mediated oncogene (AKT and NRASV12) insertion into the genome of hepatocytes to induce tumorigenesis. Two tumor clones with different levels of lipid droplets (LDs) showed similar in vitro growth but distinctive in vivo phenotypes, including divergent proliferative capability and varying induction of myeloid-derived suppressor cells (MDSCs). The two clones showed distinct gene expression related to lipid metabolism, glycolysis, and cancer stemness. Endogenous fatty acid (FA) synthesis and exogenous monounsaturated fatty acid (MUFA) consumption promoted both tumor proliferation and cancer stemness, and upregulated c-Myc in the HCC cell lines. Moreover, the LDhi HCC cell line expressed a higher level of type II IL-4 receptor, which promoted tumor proliferation through binding IL-4 or IL-13. The chromosomal DNA of two tumor clones, NHRI-8-B4 (LDhi) and NHRI-1-E4 (LDlo) showed five identical AKT insertion sites in chromosomes 9, 10, 13, 16 and 18 and two NRAS integration sites in chromosomes 2 and 3. Herein, we describe two novel HCC cell lines with distinct features of lipid metabolism related to cancer stemness and differential interplay with the immune system, and present this syngeneic HCC mouse model as a practical tool for the study of cancer stemness and discovery of new therapies targeting liver cancers.
Collapse
Affiliation(s)
- Yun-Hsin Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Chieh Ko
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiang-Ju Ku
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chun Huang
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ching Yao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Tzu Liao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
CK19 Predicts Recurrence and Prognosis of HBV Positive HCC. J Gastrointest Surg 2022; 26:341-351. [PMID: 34506016 DOI: 10.1007/s11605-021-05107-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/01/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cytokeratin is associated with the recurrence and metastasis of some cancers and tends to increase the malignancy of the disease. It is getting more and more attention in cancer research. Abnormal expression of cytokeratin 19 (CK19) has been reported as an important prognostic factor in cancers. CK19 is a marker of bile duct cells, liver progenitor cells (HPCs), and early hepatoblasts, and its expression is associated with poor prognosis in patients diagnosed with hepatocellular carcinoma (HCC). The purpose of this study was to evaluate the predictive value of CK19 for tumor recurrence after radical resection in patients with hepatitis B virus (HBV) positive HCC. METHODS This study was a retrospective study conducted in two institutions. A total of 674 patients with HBV positive HCC who underwent radical HCC resection from January 2010 to May 2020 were included in this study. Chi-square test or Fisher's exact test was used to compare the classification variables and continuous variables were compared by t-test or Wilcoxon rank sum test. Cox regression model was used for univariate and multi-variable survival analyses. Based on the results of the multi-variable analyses of Cox regression, the nomogram of 2-year recurrence-free survival (RFS) was plotted. The model was validated internally in the Hangzhou cohort (training set) and then externally in the Lanzhou cohort (test set) and the effectiveness of the model was tested. RESULTS For all 674 patients, 223 cases (33.1%) were positive and 451 cases (66.9%) were negative for CK19. The 2-year RFS rate was higher in patients with CK19 negative than in patients with CK19 positive. In the training set, correlation analysis showed that CK19 expression was correlated with preoperative potassium (P value(P) = 0.030), satellite nodules (P < 0.001) and microvascular invasion (P = 0.020). In the test set, CK19 expression was correlated with postoperative platelet (P = 0.038), satellite nodules (P = 0.003), microvascular invasion (P = 0.011), and maximum tumor size (P = 0.039). Univariate Cox regression correlation analyses showed that CK19 expression was correlated with preoperative potassium (P value(P) = 0.030), satellite nodules (P < 0.001), and microvascular invasion (P = 0.020). Training and test sets showed that postoperative platelet (> 300/L), CK19, satellite nodules in the training set, microvascular invasion, maximum tumor size, and tumor boundary were adverse factors for predicting RFS. Multi-variable analyses showed that in the training set, postoperative platelet > 300/L (hazard ratios (HR) = 2.753, 95% confidence interval (95%CI):1.234-6.142, P = 0.013), CK19 (HR = 1.410, 95%CI:1.006-1.976, P = 0.046), satellite nodule (HR = 1.476, 95%CI:1.026-2.120, P = 0.036), microvascular invasion (HR = 2.927, 95%CI:2.006-4.146, P < 0.001), incomplete tumor capsule (HR = 1.539, 95%CI:1.012-2.341, P = 0.044) were independent prognostic indicator of poor RFS. In the test set, postoperative platelet > 300/L (HR = 2.816, 95%CI:1.043-7.603, P = 0.041), CK19 (HR = 1.586, 95%CI:1.016-2.475, P = 0.042), satellite nodule (HR = 1.706, 95%CI:1.067-2.728, P = 0.026), microvascular invasion (HR = 1.611, 95%CI:1.034-2.510, P = 0.035), and tumor without capsule (HR = 1.870, 95%CI:1.120-3.120, P = 0.017) were independent prognostic indicators of poor RFS. The C-index for the nomogram was 0.698 (95%CI: 0.654-0.742) and the C-index for the test set was 0.670 (95%CI: 0.616-0.724). Both internal and external verification showed good results in identification and calibration. CONCLUSION CK19 plays a key role in tumor malignancy through overexpression and the expression of CK19 is an independent adverse factor affecting recurrence; therefore, CK19 can be used as a potential biomarker to predict adverse prognosis after surgery and adjuvant therapy in HCC patients.
Collapse
|