1
|
Silva Neto JB, Mota LFM, Londoño-Gil M, Schmidt PI, Rodrigues GRD, Ligori VA, Arikawa LM, Magnabosco CU, Brito LF, Baldi F. Genotype-by-environment interactions in beef and dairy cattle populations: A review of methodologies and perspectives on research and applications. Anim Genet 2024; 55:871-892. [PMID: 39377556 DOI: 10.1111/age.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Modern livestock production systems are characterized by a greater focus on intensification, involving managing larger numbers of animals to achieve higher productive efficiency and animal health and welfare within herds. Therefore, animal breeding programs need to be strategically designed to select animals that can effectively enhance production performance and animal welfare across a range of environmental conditions. Thus, this review summarizes the main methodologies used for assessing the levels of genotype-by-environment interaction (G × E) in cattle populations. In addition, we explored the importance of integrating genomic and phenotypic information to quantify and account for G × E in breeding programs. An overview of the structure of cattle breeding programs is provided to give insights into the potential outcomes and challenges faced when considering G × E to optimize genetic gains in breeding programs. The role of nutrigenomics and its impact on gene expression related to metabolism in cattle are also discussed, along with an examination of current research findings and their potential implications for future research and practical applications. Out of the 116 studies examined, 60 and 56 focused on beef and dairy cattle, respectively. A total of 83.62% of these studies reported genetic correlations across environmental gradients below 0.80, indicating the presence of G × E. For beef cattle, 69.33%, 24%, 2.67%, 2.67%, and 1.33% of the studies evaluated growth, reproduction, carcass and meat quality, survival, and feed efficiency traits, respectively. By contrast, G × E research in dairy cattle populations predominantly focused on milk yield and milk composition (79.36% of the studies), followed by reproduction and fertility (19.05%), and survival (1.59%) traits. The importance of G × E becomes particularly evident when considering complex traits such as heat tolerance, disease resistance, reproductive performance, and feed efficiency, as highlighted in this review. Genomic models provide a valuable avenue for studying these traits in greater depth, allowing for the identification of candidate genes and metabolic pathways associated with animal fitness, adaptation, and environmental efficiency. Nutrigenetics and nutrigenomics are emerging fields that require extensive investigation to maximize our understanding of gene-nutrient interactions. By studying various transcription factors, we can potentially improve animal metabolism, improving performance, health, and quality of products such as meat and milk.
Collapse
Affiliation(s)
- João B Silva Neto
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Marisol Londoño-Gil
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Patrícia I Schmidt
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Gustavo R D Rodrigues
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Brazil
| | - Viviane A Ligori
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
2
|
Shokrollahi B, Park M, Baek YC, Jin S, Jang GS, Moon SJ, Um KH, Jang SS, Lee HJ. Differential gene expression in neonatal calf muscle tissues from Hanwoo cows overfed during mid to late pregnancy period. Sci Rep 2024; 14:23298. [PMID: 39375502 PMCID: PMC11458785 DOI: 10.1038/s41598-024-74976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Maternal nutrition significantly influences fetal development and postnatal outcomes. This study investigates the impact of maternal overfeeding during mid to late pregnancy on gene expression in the round and sirloin muscles of Hanwoo neonatal calves. Eight cows were assigned to either a control group receiving standard nutrition (100%) or a treated group receiving overnutrition (150%). After birth, tissue samples from the round and sirloin muscles of neonatal calves were collected and subjected to RNA sequencing to assess differentially expressed genes (DEGs). RNA sequencing identified 43 DEGs in round muscle and 15 in sirloin muscle, involving genes related to myogenesis, adipogenesis, and energy regulation. Key genes, including PPARGC1A, THBS1, CD44, JUND, CNN1, ENAH, and RUNX1, were predominantly downregulated. Gene ontology (GO) enrichment analyses revealed terms associated with muscle development, such as "biological regulation," "cellular process," and "response to stimulus." Protein-protein interaction networks highlighted complex interactions among DEGs. Random Forest analysis identified ARC, SLC1A5, and GNPTAB as influential genes for distinguishing between control and treated groups. Overall, maternal overnutrition during mid-to-late pregnancy results in the downregulation of genes involved in muscle development and energy metabolism in neonatal Hanwoo calves. These findings provide insights into the molecular effects of maternal nutrition on muscle development.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Myungsun Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Youl-Chang Baek
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Gi-Suk Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sung-Jin Moon
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Kyung-Hwan Um
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sun-Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea.
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, 55365, Wanju, Korea.
| |
Collapse
|
3
|
Costa LNC, de Paula TP, Zazula MF, Naliwaiko K, Nassar CA, Bertolini GRF, Torrejais MM, Ribeiro LDFC, Costa RM. Maternal periodontitis potentiates monosodium glutamate-obesity damage on Wistar offspring's fast-glycolytic muscle. Oral Dis 2024; 30:4705-4720. [PMID: 38316639 DOI: 10.1111/odi.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To evaluate the effects of magnifying the damage caused by obesity induced by monosodium glutamate, using a model of maternal periodontitis, on the structure of the anterior tibialis muscle of the offspring. MATERIALS AND METHODS Twenty-four female Wistar rats were divided into four experimental groups: control (n = 6), obese (n = 6), control with periodontitis (n = 6) and obese with periodontitis (n = 6). At 78 days of life, the rats were mated with males without any experimental intervention. The offspring of these rats (n = 1/L), at 120 days of life, were weighed and measured, then euthanized. Plasma was collected for analysis of cytokines IL-6, IL-10, IL-17 and TNF-α. Adipose tissues were collected and weighed, and the anterior tibial muscle was designated for histomorphological analyses (n = 6/group). RESULTS Monosodium glutamate offspring showed significant muscle changes, such as a reduction in the size of fibres and neuromuscular junctions, and an increase in the nucleus and capillaries. However, all these changes were more expressed in monosodium glutamate-obese with periodontitis offspring. CONCLUSION This leads us to suggest a magnifying effect promoted by periodontitis to the damage already well described by monosodium glutamate-obesity, determined by low-intensity inflammation, causing greater muscle damage.
Collapse
Affiliation(s)
- Liziane Nunes Conrad Costa
- Laboratório de Biologia Estrutural e Funcional, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Thayná Petry de Paula
- Instituto de Pesquisa e Pós-Graduação em Odontologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Katya Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Augusto Nassar
- Instituto de Pesquisa e Pós-Graduação em Odontologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Gladson Ricardo Flor Bertolini
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Marcia Miranda Torrejais
- Laboratório Experimental de Morfologia, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Lucinéia de Fátima Chasko Ribeiro
- Laboratório de Biologia Estrutural e Funcional, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rose Meire Costa
- Laboratório de Biologia Estrutural e Funcional, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
4
|
Yuan Y, Duan W, Yang N, Sun C, Nie Q, Li J, Lian L. Transcriptome analysis of long non-coding RNA associated with embryonic muscle development in chickens. Br Poult Sci 2024; 65:394-402. [PMID: 38738875 DOI: 10.1080/00071668.2024.2335935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
1. Skeletal muscle is an important component of chicken carcass. In chickens, the number of muscle fibres is fixed during the embryonic period, and muscle development during the embryonic period determines the muscle development potential after hatching.2. Beijing-You (BY) and Cornish (CN) chickens show completely different growth rates and body types, and two breeds were used in this study to explore the role of lncRNAs in muscle development during different chicken embryonic periods. A systematic analysis of lncRNAs and mRNAs were conducted in the pectoral muscle tissues of BY and CN chickens at embryonic days 11 (ED11), 13 (ED13), 15 (ED15), 17 (ED17), and 1-day-old (D1) using RNA-seq. A total of 4,104 differentially expressed transcripts (DETs) were identified among the five stages, including 2,359 lncRNAs and 1,745 mRNAs.3. The number of DETs between the two breeds at ED17 (1,658 lncRNAs and 1,016 mRNAs) was much higher than the total number of DET at all the other stages (692 lncRNAs and 729 mRNAs), indicating that the two breeds show the largest difference in gene regulation at ED17.4. Correlation analysis was performed for all differentially expressed lncRNAs and mRNAs during the five periods. Forty-three, cis interaction pairs of lncRNA-mRNA related to chicken muscle development were predicted. The expression of four pairs was verified, and the results showed MSTRG.12395.2-FGFBP2 and MSTRG.18590.6-FMOD were significantly up-regulated in CN at ED11 compared to BY and might be important candidate genes for embryonic muscle development.
Collapse
Affiliation(s)
- Y Yuan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - W Duan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - N Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - C Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Q Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - J Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - L Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wang Z, Tian W, Guo Y, Wang D, Zhang Y, Zhi Y, Li D, Li W, Li Z, Jiang R, Han R, Sun G, Li G, Tian Y, Li H, Kang X, Liu X. Dynamic alternations of three-dimensional chromatin architecture contribute to phenotypic characteristics of breast muscle in chicken. Commun Biol 2024; 7:910. [PMID: 39068219 PMCID: PMC11283561 DOI: 10.1038/s42003-024-06599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Breast muscle growth rate and intramuscular fat (IMF) content show apparent differences between fast-growing broilers and slow-growing indigenous chickens. However, the underlying genetic basis of these phenotypic characteristics remains elusive. In this study, we investigate the dynamic alterations of three-dimensional genome architecture and chromatin accessibility in breast muscle across four key developmental stages from embryo to starter chick in Arbor Acres (AA) broilers and Yufen (YF) indigenous chickens. The limited breed-specifically up-regulated genes (Bup-DEGs) are embedded in breed-specific A compartment, while a majority of the Bup-DEGs involving myogenesis and adipogenesis are regulated by the breed-specific TAD reprogramming. Chromatin loops allow distal accessible regions to interact with myogenic genes, and those loops share an extremely low similarity between chicken with different growth rate. Moreover, AA-specific loop interactions promote the expression of 40 Bup-DEGs, such as IGF1, which contributes to myofiber hypertrophy. YF-specific loop interactions or distal accessible regions lead to increased expression of 5 Bup-DEGs, including PIGO, PEMT, DHCR7, TMEM38B, and DHDH, which contribute to IMF deposition. These results help elucidate the regulation of breast muscle growth and IMF deposition in chickens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Ozhava D, Lee K, Bektas C, Jackson A, Patel K, Mao Y. Optimized Adipogenic Differentiation and Delivery of Bovine Umbilical Cord Stem Cells for Cultivated Meat. Gels 2024; 10:488. [PMID: 39195017 DOI: 10.3390/gels10080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Cultivated meat, also known as cell-based or clean meat, utilizes mesenchymal stem cells to cultivate mature cell types like adipocytes, which are pivotal for imparting the desired taste and texture. The delivery of differentiated cells, crucial in cultivated meat production, is facilitated through extensive exploration of 3D culturing techniques mimicking physiological environments. In this study, we investigated the adipogenic differentiation potential of bovine umbilical cord stem cells (BUSCs), sourced from discarded birth tissue, and assessed the feasibility of delivering differentiated cells for cultivated meat using gelatin methacrylate (GelMA) as a carrier for adipose tissue. Various adipogenic inducers, previously reported to be effective for human mesenchymal stem cells (hMSCs), were evaluated individually or in combination for their efficacy in promoting the adipogenesis of BUSCs. Surprisingly, while the traditional adipogenic inducers, including insulin, dexamethasone, isobutylmethylxantine (IBMX), indomethacin, and rosiglitazone, showed no significant effect on the adipogenic differentiation of BUSCs, efficient differentiation was achieved in the presence of a fatty acid cocktail. Furthermore, we explored methods for the delivery of BUSCs. Differentiated cells were delivered either encapsulated in GelMA hydrogel or populated on the surface of GelMA microparticles (MPs) as the adipose component of cultivated meat. Our findings reveal that after adipogenic induction, the lipid production per cell was comparable when cultured either within hydrogel or on MPs. However, GelMA-MPs supported better cell growth compared to hydrogel encapsulation. Consequently, the overall lipid production is higher when BUSCs are delivered via GelMA-MPs rather than encapsulation. This study not only systematically evaluated the impact of common adipogenic inducers on BUSCs, but also identified GelMA-MPs as a promising carrier for delivering bovine adipocytes for cultivated meat production.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Krishi Patel
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Jiao Z, Xie T, Wang X, Guo D, Lin S, An L, Lin J, Zhang L. Novel Circular RNA CircSLC2A13 Regulates Chicken Muscle Development by Sponging MiR-34a-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15530-15540. [PMID: 38963795 DOI: 10.1021/acs.jafc.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.
Collapse
Affiliation(s)
- Zhenhai Jiao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Tingting Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Xiaotong Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Dongxue Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Lilong An
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Junyuan Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Li Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation in Zhanjiang, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
8
|
Olenic M, Deelkens C, Heyman E, De Vlieghere E, Zheng X, van Hengel J, De Schauwer C, Devriendt B, De Smet S, Thorrez L. Review: Livestock cell types with myogenic differentiation potential: Considerations for the development of cultured meat. Animal 2024:101242. [PMID: 39097434 DOI: 10.1016/j.animal.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024] Open
Abstract
With the current environmental impact of large-scale animal production and societal concerns about the welfare of farm animals, researchers are questioning whether we can cultivate animal cells for the purpose of food production. This review focuses on a pivotal aspect of the cellular agriculture domain: cells. We summarised information on the various cell types from farm animals currently used for the development of cultured meat, including mesenchymal stromal cells, myoblasts, and pluripotent stem cells. The review delves into the advantages and limitations of each cell type and considers factors like the selection of the appropriate cell source, as well as cell culture conditions that influence cell performance. As current research in cultured meat seeks to create muscle fibers to mimic the texture and nutritional profile of meat, we focused on the myogenic differentiation capacity of the cells. The most commonly used cell type for this purpose are myoblasts or satellite cells, but given their limited proliferation capacity, efforts are underway to formulate myogenic differentiation protocols for mesenchymal stromal cells and pluripotent stem cells. The multipotent character of the latter cell types might enable the creation of other tissues found in meat, such as adipose and connective tissues. This review can help guiding the selection of a cell type or culture conditions in the context of cultured meat development.
Collapse
Affiliation(s)
- M Olenic
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C Deelkens
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - E Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E De Vlieghere
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Belgium
| | - X Zheng
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - J van Hengel
- Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - C De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium.
| |
Collapse
|
9
|
Pani S, Senapati U, Pati B, Sahu B, Swalsingh G, Pani P, Rout S, Achary KG, Bal NC. Developmental dynamics of mitochondrial fission and fusion proteins in functionally divergent skeletal muscles of goat. Physiol Rep 2024; 12:e16002. [PMID: 38831632 PMCID: PMC11148127 DOI: 10.14814/phy2.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024] Open
Abstract
During skeletal muscle development, the intricate mitochondrial network formation relies on continuous fission and fusion. This process in larger mammals differs from rodents, the most used animal models. However, the expression pattern of proteins regulating mitochondrial dynamics in developing skeletal muscle remains unexplored in larger mammals. Therefore, we characterized the cellular expression and tissue-level distribution of these proteins during development taking goat as a model. We have performed histological and immunohistochemical analyses to study metabolic features in various muscles. Neonatal muscles display uniform distribution of mitochondrial activity. In contrast, adult muscles exhibit clear distinctions based on their function, whether dedicated for posture maintenance or facilitating locomotion. Mitochondrial fission proteins like DRP-1, MFF, and fusion proteins like MFN-1 and 2 are abundantly expressed in neonatal muscles. Fission proteins exhibit drastic downregulation with limited peripheral expression, whereas fusion proteins continue to express in a fiber-specific manner during adulthood. Locomotory muscles exhibit different fibers based on mitochondrial activity and peripheralization with high SDH activity. The proximity ligation assay between MFN1 and MFN2 demonstrates that their interaction is restricted to subsarcolemmal mitochondria in adult fibers while distributed evenly in neonatal fibers. These differences between postural and locomotory muscles suggest their physiological and metabolic properties are different.
Collapse
Grants
- ECR/ 2016/001247 DST | Science and Engineering Research Board (SERB)
- BT/RLF/Re-entry/41/2014 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- BT/PR28935/MED/30/2035/2018 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- 45/3/2019/PHY/BMS Indian Council of Medical Research (ICMR)
- 45/9/2020-PHY/BMS Indian Council of Medical Research (ICMR)
- 09/1035(0011)/2017-EMR-I CSIR | Human Resource Development Group (HRDG)
- DST/INSPIRE Fellowship/2018/IF180892 Department of Science and Technology, Ministry of Science and Technology, India (DST)
- DST | Science and Engineering Research Board (SERB)
- Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- Indian Council of Medical Research (ICMR)
- CSIR | Human Resource Development Group (HRDG)
- Department of Science and Technology, Ministry of Science and Technology, India (DST)
Collapse
Affiliation(s)
- Sunil Pani
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Unmod Senapati
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Benudhara Pati
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | | | | | - Punyadhara Pani
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Subhasmita Rout
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | | | - Naresh C. Bal
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| |
Collapse
|
10
|
Huang C, Feng F, Dai R, Ren W, Li X, Zhaxi T, Ma X, Wu X, Chu M, La Y, Bao P, Guo X, Pei J, Yan P, Liang C. Whole-transcriptome analysis of longissimus dorsi muscle in cattle-yaks reveals the regulatory functions of ADAMTS6 gene in myoblasts. Int J Biol Macromol 2024; 262:129985. [PMID: 38342263 DOI: 10.1016/j.ijbiomac.2024.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ta Zhaxi
- Animal Husbandry and Veterinary Workstation in Qilian County, Qilian 810400, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
11
|
Cracco RC, Alexandre PA, Polizel GHG, Fernandes AC, de Almeida Santana MH. Evaluation of Muscle Long Non-Coding RNA Profile during Rearing and Finishing Phase of Bulls Subjected to Different Prenatal Nutritional Strategies. Animals (Basel) 2024; 14:652. [PMID: 38396620 PMCID: PMC10886332 DOI: 10.3390/ani14040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Maternal nutrition has the ability of influence critical processes in fetal life, including muscle development. Also, in this period, epigenetic sensitivity to external stimuli is higher and produces long-lasting effects. Thus, the aim of this study was to investigate epigenetic mechanisms, including the identification and characterization of long non-coding RNA (lncRNA) from animals that had undergone different strategies of prenatal supplementation. A group of Nellore cows (n = 126) were separated into three nutritional plans: NP (control)-Not Programmed, without protein-energy supplementation; PP-Partially Programmed, protein-energy supplementation in the final third of pregnancy; and CP-Complete Programming, protein-energy supplementation during the full period of gestation. A total of 63 male offspring were used in this study, of which 15 (5 per treatment) had Longissimus thoracis muscle at 15 (biopsy) and 22 months (slaughter). Biopsy samples were subjected to RNA extraction and sequencing. Differential expression (DE) of remodeling factors and chromatin-modifying enzyme genes were performed. For the identification and characterization of lncRNA, a series of size filters and protein coding potential tests were performed. The lncRNAs identified had their differential expression and regulatory potential tested. Regarding DE of epigenetic mechanisms, no differentially expressed gene was found (p > 0.1). Identification of potential lncRNA was successful, identifying 1823 transcripts at 15 months and 1533 at 22 months. Among these, four were considered differentially expressed between treatments at 15 months and 6 were differentially expressed at 22 months. Yet, when testing regulatory potential, 13 lncRNAs were considered key regulators in the PP group, and 17 in the CP group. PP group lncRNAs possibly regulate fat-cell differentiation, in utero embryonic development, and transforming growth factor beta receptor, whereas lncRNA in the CP group regulates in utero embryonic development, fat-cell differentiation and vasculogenesis. Maternal nutrition had no effect on differential expression of epigenetic mechanisms; however, it seems to impair lncRNA regulation of epigenetics.
Collapse
Affiliation(s)
- Roberta Cavalcante Cracco
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| | - Pamela Almeida Alexandre
- Microbiomes for One Systems Health (MOSH), CSIRO Agriculture & Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia;
| | - Guilherme Henrique Gebim Polizel
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| | - Arícia Christofaro Fernandes
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.C.C.); (G.H.G.P.)
| |
Collapse
|
12
|
Hager A, Mazurak V, Noga M, Gilmour SM, Mager DR. Skeletal muscle fibre morphology in childhood-insights into myopenia in pediatric liver disease. Appl Physiol Nutr Metab 2023; 48:730-750. [PMID: 37319441 DOI: 10.1139/apnm-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TAKE-HOME MESSAGE Skeletal muscle morphology in healthy children changes with age. Liver disease may preferentially affect type II fibres in adults with end-stage liver disease (ESLD). More research is needed on the effects of ESLD on muscle morphology in children.
Collapse
Affiliation(s)
- Amber Hager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera Mazurak
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michelle Noga
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Susan M Gilmour
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Division of Pediatric Gastroenterology & Nutrition/Transplant Services, The Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Diana R Mager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Ahmadzadeh‐Gavahan L, Hosseinkhani A, Hamidian G, Jarolmasjed S, Yousefi‐Tabrizi R. Restricted maternal nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride during late pregnancy does not affect muscle fibre characteristics of offspring. Vet Med Sci 2023; 9:2260-2268. [PMID: 37556348 PMCID: PMC10508547 DOI: 10.1002/vms3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.
Collapse
Affiliation(s)
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | | | - Reza Yousefi‐Tabrizi
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
14
|
Song P, Chen X, Zhao J, Li Q, Li X, Wang Y, Wang B, Zhao J. Vitamin A injection at birth improves muscle growth in lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:204-212. [PMID: 37484991 PMCID: PMC10362083 DOI: 10.1016/j.aninu.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Vitamin A and its metabolite, retinoic acid (RA) play important roles in regulating skeletal muscle development. This study was conducted to investigate the effects of early intramuscular vitamin A injection on the muscle growth of lambs. A total of 16 newborn lambs were given weekly intramuscular injections of corn oil (control group, n = 8) or 7,500 IU vitamin A palmitate (vitamin A group, n = 8) from birth to 3 wk of age (4 shots in total). At 3 wk of age and weaning, biceps femoris muscle samples were taken to analyze the effects of vitamin A on the myogenic capacity of skeletal muscle cells. All lambs were slaughtered at 8 months of age. The results suggest that vitamin A treatment accelerated the growth rate of lambs and increased the loin eye area (P < 0.05). Consistently, vitamin A increased the diameter of myofibers in longissimus thoracis muscle (P < 0.01) and increased the final body weight of lambs (P < 0.05). Vitamin A injection did not change the protein kinase B/mammalian target of rapamycin and myostatin signaling (P > 0.05). Moreover, vitamin A upregulated the expression of PAX7 (P < 0.05) and the myogenic marker genes including MYOD and MYOG (P < 0.01). The skeletal muscle-derived mononuclear cells from vitamin A-treated lambs showed higher expression of myogenic genes (P < 0.05) and formed more myotubes (P < 0.01) when myogenic differentiation was induced in vitro. In addition, in vitro analysis showed that RA promoted myogenic differentiation of the skeletal muscle-derived mononuclear cells in the first 3 d (P < 0.05) but not at the later stage (P > 0.05) as evidenced by myogenic gene expression and fusion index. Taken together, neonatal intramuscular vitamin A injection promotes lamb muscle growth by promoting the myogenic potential of satellite cells.
Collapse
Affiliation(s)
- Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaoyou Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Qiang Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xinrui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yu Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| |
Collapse
|
15
|
Erez İ, Serbester U. Fish oil supplementation as an omega-3 fatty acid source during gestation: effects on the performance of weaned male goat kids. Trop Anim Health Prod 2023; 55:268. [PMID: 37442852 DOI: 10.1007/s11250-023-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to evaluate the effects of fish oil supplementation, as an omega-3 fatty acids source, to ration of does in the different periods of pregnancy on the fattening performance of kids after weaning. Eighty German Fawn × Hair crossbred does were randomly divided into two groups; half were given fish oil in the first half of pregnancy (FO group), while the other half were given saturated fat (PF (control) group). Then, the goats in the FO and PF groups were randomly divided into two subgroups, and half of the goats were fed fish oil during the second half of pregnancy (FO-FO and FO-PF groups), while the other half was fed saturated fat (PF-FO and PF-PF groups). Thus, study groups of kids were formed according to the nutrition program of the does described above. Forty-seven male kids (84.6 ± 2.44 days old; 14.5 ± 3.09 kg live weight, mean ± standard deviation) were fed for 56 days after weaning, and their weight, feed consumption, serum biochemical parameters, carcass performance, and meat quality characteristics were evaluated. Maternal nutrition significantly affected live weight gain and serum AST, glucose, total protein, and globulin concentrations (P ≤ 0.050). The live weight gain of kids in the PF-PF and PF-FO groups was higher than that in the FO-FO and FO-PF groups. Maternal nutrition tended to affect the hot and cold carcass weights of male kids (P = 0.078 and P = 0.084, respectively). In conclusion, fish oil supplementation during gestation could negatively affect the fattening performance of kids after weaning, especially the daily live weight gain, although it tended to positively affect hot and cold carcass weights.
Collapse
Affiliation(s)
- İbrahim Erez
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey.
| | - Ugur Serbester
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
16
|
Sadowsky CL. Targeting Sarcopenia as an Objective Clinical Outcome in the Care of Children with Spinal Cord-Related Paralysis: A Clinician's View. CHILDREN (BASEL, SWITZERLAND) 2023; 10:837. [PMID: 37238385 PMCID: PMC10217275 DOI: 10.3390/children10050837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023]
Abstract
Muscle loss is consistently associated with immobility and paralysis and triggers significant metabolic and functional changes. The negative effects of sarcopenia are amplified in children who are in the process of building their muscle mass as part of development. Because muscle mass loss is consistently associated with increased morbidity and mortality throughout life, optimizing the size and health of muscles following a neurologic injury is an objective target for therapeutic interventions. This review hypothesizes that muscle mass correlates with functional outcomes in children with paralysis related to spinal cord-related neurologic deficits. We propose that the measurement of muscle mass in this population can be used as an objective outcome for clinical long-term care. Finally, some practical clinical approaches to improving muscle mass are presented.
Collapse
Affiliation(s)
- Cristina L. Sadowsky
- International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
An Early and Sustained Inflammatory State Induces Muscle Changes and Establishes Obesogenic Characteristics in Wistar Rats Exposed to the MSG-Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24054730. [PMID: 36902158 PMCID: PMC10003260 DOI: 10.3390/ijms24054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 03/05/2023] Open
Abstract
The model of obesity induced by monosodium glutamate cytotoxicity on the hypothalamic nuclei is widely used in the literature. However, MSG promotes persistent muscle changes and there is a significant lack of studies that seek to elucidate the mechanisms by which damage refractory to reversal is established. This study aimed to investigate the early and chronic effects of MSG induction of obesity upon systemic and muscular parameters of Wistar rats. The animals were exposed to MSG subcutaneously (4 mg·g-1 b.w.) or saline (1.25 mg·g-1 b.w.) daily from PND01 to PND05 (n = 24). Afterwards, in PND15, 12 animals were euthanized to determine the plasma and inflammatory profile and to assess muscle damage. In PND142, the remaining animals were euthanized, and samples for histological and biochemical analyses were obtained. Our results suggest that early exposure to MSG reduced growth, increased adiposity, and inducted hyperinsulinemia and a pro-inflammatory scenario. In adulthood, the following were observed: peripheral insulin resistance, increased fibrosis, oxidative distress, and a reduction in muscle mass, oxidative capacity, and neuromuscular junctions, increased fibrosis, and oxidative distress. Thus, we can conclude that the condition found in adult life and the difficulty restoring in the muscle profile is related to the metabolic damage established early on.
Collapse
|
18
|
Huang C, Dai R, Meng G, Dingkao R, Wang X, Ren W, Ma X, Wu X, Chu M, La Y, Bao P, Guo X, Pei J, Yan P, Liang C. Transcriptome-Wide Study of mRNAs and lncRNAs Modified by m 6A RNA Methylation in the Longissimus Dorsi Muscle Development of Cattle-Yak. Cells 2022; 11:cells11223654. [PMID: 36429081 PMCID: PMC9688506 DOI: 10.3390/cells11223654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cattle-yak is a hybrid F1 generation of cattle and yak, which has a history of more than 3000 years and has shown better production performance and higher economic benefits than those of yaks. However, up to now, there has been no study on the transcriptome-wide m6A methylation profile of bovine skeletal muscle and its potential biological function during muscle development. Here, we observed significant changes in the expression levels of muscle-related marker genes and methylation-related enzymes during the development of cattle-yak, and the overall m6A content in the Longissimus dorsi muscle of 18-month-old cattle-yak decreased significantly. A total of 36,602 peaks, 11,223 genes and 8388 lncRNAs were identified in the two groups, including 2989 differential peaks (427 up-regulated peaks and 2562 down-regulated peaks), 1457 differentially expressed genes (833 up-regulated genes and 624 down-regulated genes) and 857 differentially expressed lncRNAs (293 up-regulated lncRNAs and 564 down-regulated lncRNAs). GO and KEGG analysis revealed that they were significantly enriched in some muscle-related pathways (Wnt signaling pathway and MAPK signaling pathway) and high-altitude adaptation-related pathway (HIF-1 signaling pathway). Moreover, m6A abundance was positively correlated with gene expression levels, while it was negatively correlated with lncRNA expression levels. This indicates that m6A modification played an important role in the Longissimus dorsi muscle development of cattle-yak; however, the regulation mechanism of m6A-modified mRNA and lncRNA may be different. This study was the first report of transcriptome-wide m6A-modified mRNAs and lncRNAs atlas in the Longissimus dorsi muscle development of cattle-yak, one which will provide new perspectives for genetic improvement in bovines.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Guangyao Meng
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Renqing Dingkao
- Animal Husbandry Station of Gannan Tibetan Autonomous Prefecture, Gannan 747000, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| |
Collapse
|
19
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
20
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
21
|
Maternal Aerobic Exercise, but Not Blood Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations, during Pregnancy Influence Infant Body Composition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148293. [PMID: 35886147 PMCID: PMC9316153 DOI: 10.3390/ijerph19148293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Although discrete maternal exercise and polyunsaturated fatty acid (PUFA) supplementation individually are beneficial for infant body composition, the effects of exercise and PUFA during pregnancy on infant body composition have not been studied. This study evaluated the body composition of infants born to women participating in a randomized control exercise intervention study. Participants were randomized to aerobic exercise (n = 25) or control (stretching and breathing) groups (n = 10). From 16 weeks of gestation until delivery, the groups met 3×/week. At 16 and 36 weeks of gestation, maternal blood was collected and analyzed for Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA). At 1 month postnatal, infant body composition was assessed via skinfolds (SFs) and circumferences. Data from 35 pregnant women and infants were analyzed via t-tests, correlations, and regression. In a per protocol analysis, infants born to aerobic exercisers exhibited lower SF thicknesses of triceps (p = 0.008), subscapular (p = 0.04), SF sum (p = 0.01), and body fat (BF) percentage (%) (p = 0.006) compared with controls. After controlling for 36-week DHA and EPA levels, exercise dose was determined to be a negative predictor for infant skinfolds of triceps (p = 0.001, r2 = 0.27), subscapular (p = 0.008, r2 = 0.19), SF sum (p = 0.001, r2 = 0.28), mid-upper arm circumference (p = 0.049, r2 = 0.11), and BF% (p = 0.001, r2 = 0.32). There were no significant findings for PUFAs and infant measures: during pregnancy, exercise dose, but not blood DHA or EPA levels, reduces infant adiposity.
Collapse
|
22
|
Steller JG, Gumina D, Driver C, Palmer C, Brown LD, Reeves S, Hobbins JC, Galan HL. 3D Fractional Limb Volume Identifies Reduced Subcutaneous and Lean Mass in Fetal Growth Restriction. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1623-1632. [PMID: 34580892 DOI: 10.1002/jum.15841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Fetal 2D and 3D fractional limb volume (FLV) measurements by ultrasound can detect fetal lean and subcutaneous mass and possibly percent body fat. Our objectives were to 1) compare FLV measurements in fetuses with fetal growth restriction (FGR) versus small for gestational age (SGA) defined by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG)-supported international Delphi consensus and 2) correlate FLV findings with birth metrics. We hypothesize that FLV measurements will be significantly smaller in FGR versus SGA fetuses and will correlate closer with Ponderal index (PIx) in the neonate than abdominal circumference (AC). METHODS Patients were categorized as FGR or SGA as defined by ISUOG. Total thigh volume (TTV), volumes of lean mass (LMV), and fat mass volume (FMV) were calculated from 3D acquisitions. Measurements were compared between groups and correlated with birthweight (BW) and PIx (BW/crown-heal length). RESULTS The FGR group (n = 37) delivered earlier (37/2 versus 38/0; P = .0847), were lighter (2.2 kg versus 2.6 kg; P = .0003) and had lower PIx (0.023 versus 0.025; P = .0013) than SGAs (n = 22). FGRs had reduced TTV (40.6 versus 48.4 cm3 ; P = .0164), FMV (20.8 versus 25.3 cm3 ; P = .0413), and LMV (19.8 versus 23.1 cm3 ; P = .0387). AC had the highest area under the curve (0.69) for FGR. FMV was more strongly associated with PIx than the AC (P = .0032). CONCLUSIONS The AC and FLV measurements were significantly reduced in FGR fetuses compared to SGAs. While the AC outperformed FLV in predicting FGR, the FLV correlated best with PIx, which holds investigative promise.
Collapse
Affiliation(s)
- Jonathan G Steller
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Irvine, Orange, CA, USA
| | - Diane Gumina
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Camille Driver
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Claire Palmer
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura D Brown
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shane Reeves
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Hobbins
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Henry L Galan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Capra E, Toschi P, Del Corvo M, Lazzari B, Stella A, Williams JL, Loi P, Ajmone Marsan P. Short Communication: Maternal undernutrition during peri-conceptional period affects whole genome ovine muscle methylation in adult offspring. J Anim Sci 2022; 100:6586878. [PMID: 35580043 DOI: 10.1093/jas/skac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Experimental and epidemiological studies suggest that maternal nutritional status during early pregnancy, including the period around the time of conception, may induce long-lasting epigenetic changes in the offspring. However, this remains largely unexplored in livestock. Therefore, the objective of this study was to evaluate if modification of the maternal diet of sheep (CTR: control; UND: 50% undernutrition) during the peri-conceptional period (42 days in total: -14/+28 from mating), would impact CpG methylation in muscle tissue (Longissimus dorsi) of adult offspring (11.5 months old). Reduced Representation Bisulfite Sequencing (RRBS), identified 262 (Edge-R, FDR<0.05) and 686 (Logistic Regression, FDR <0.001) differentially methylated regions (DMRs) between the UND and CTR groups. Gene ontology (GO) analysis identified genes related to development, functions of the muscular system and steroid hormone receptor activity within the DMRs. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the muscle of the resulting offspring, with possible implications for cardiac dysfunction, muscle physiology and meat production.
Collapse
Affiliation(s)
- Emanuele Capra
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Einstein 26900 Lodi, Italy
| | - Paola Toschi
- Department. of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Marcello Del Corvo
- Department of Animal Science, Food and Technology - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Emilia Parmense 84, 29122, Piacenza, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Einstein 26900 Lodi, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Einstein 26900 Lodi, Italy
| | - John Lewis Williams
- Department of Animal Science, Food and Technology - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Emilia Parmense 84, 29122, Piacenza, Italy.,Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Pasqualino Loi
- Laboratory of Experimental Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Technology - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
24
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
25
|
Abdelrahman M, Wang W, Shaukat A, Kulyar MFEA, Lv H, Abulaiti A, Yao Z, Ahmad MJ, Liang A, Yang L. Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants. Animals (Basel) 2022; 12:ani12080997. [PMID: 35454245 PMCID: PMC9029867 DOI: 10.3390/ani12080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Over the last decade, animal nutrition science has been significantly developed, supported by the great advancements in molecular technologies. For scientists, the present "feedomics and nutrigenomics" era continues to evolve and shape how research is designed, performed, and understood. The new omics interpretations have established a new point of view for the nutrition–gene interaction, integrating more comprehensive findings from animal physiology, molecular genetics, and biochemistry. In the ruminant model, this modern approach addresses rumen microbes as a critical intermediate that can deepen the studies of diet–gut interaction with host genomics. The present review discusses nutrigenomics’ and feedomics’ potential contribution to diminishing the knowledge gap about the DNA cellular activities of different nutrients. It also presents how nutritional management can influence the epigenetic pathway, considering the production type, life stage, and species for more sustainable ruminant nutrition strategies. Abstract Ruminant nutrition has significantly revolutionized a new and prodigious molecular approach in livestock sciences over the last decade. Wide-spectrum advances in DNA and RNA technologies and analysis have produced a wealth of data that have shifted the research threshold scheme to a more affluent level. Recently, the published literature has pointed out the nutrient roles in different cellular genomic alterations among different ruminant species, besides the interactions with other factors, such as age, type, and breed. Additionally, it has addressed rumen microbes within the gut health and productivity context, which has made interpreting homogenous evidence more complicated. As a more systematic approach, nutrigenomics can identify how genomics interacts with nutrition and other variables linked to animal performance. Such findings should contribute to crystallizing powerful interpretations correlating feeding management with ruminant production and health through genomics. This review will present a road-mapping discussion of promising trends in ruminant nutrigenomics as a reference for phenotype expression through multi-level omics changes.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Wei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aftab Shaukat
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | | | - Haimiao Lv
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Adili Abulaiti
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Zhiqiu Yao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-138-7105-6592
| |
Collapse
|
26
|
Wang J, Huang Y, Xu J, Yue B, Wen Y, Wang X, Lei C, Chen H. Pleomorphic adenoma gene 1 (PLAG1) promotes proliferation and inhibits apoptosis of bovine primary myoblasts through the PI3K-Akt signaling pathway. J Anim Sci 2022; 100:6553189. [PMID: 35325183 PMCID: PMC9030145 DOI: 10.1093/jas/skac098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Pleomorphic adenoma gene 1 (PLAG1) is a transcription factor involved in various cellular processes in organismal growth and development. However, its role in muscle function is unclear. This work investigated the roles of PLAG1 in muscle development and explored its regulatory mechanisms. The PLAG1 was proved to promote the proliferation of bovine primary myoblasts using the cell counting kit 8 (CCK-8) assay (P < 0.001), 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay (P = 0.005), quantitative real-time polymerase chain reaction (qRT-PCR) (P = 0.028), western blot, and flow cytometry (P < 0.05), and to inhibit apoptosis of bovine primary myoblasts using qRT-PCR (P = 0.038), western blot, and flow cytometry (P < 0.001). Chromatin immunoprecipitation sequencing (ChIP-seq) and western blot showed PLAG1 upregulated phosphorylated (p)-PI3K, PI3K, p-Akt, Akt, Cyclin D1, and CDK2 and inhibited the expression of p21 and p27 to enhance myoblast proliferation, and increased expression of Bcl-2, and Bcl-xL to inhibit apoptosis. Additionally, PLAG1 was identified as a target of miR-1 using dual-luciferase assay (P < 0.001), qRT-PCR (P < 0.001), and western blot. Furthermore, miR-1 might be a potential mediator of the positive feedback regulation relationship between PLAG1 and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiawei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifan Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Wang
- Bagsværdvej 103, ST., Konge Larsen ApS, 2800 Kongens Lyngby, Denmark
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Corresponding author:
| |
Collapse
|
27
|
Arroyo P, Esparza-Aguilar M, Martín-Martín V, Gomez-Verjan JC, Parra-Rodríguez L, Cadena-Trejo C, Salazar-Pérez C, Gutiérrez-Robledo LM. Physical capability in a rural birth cohort at the age of 52: association with early environmental, nutritional, and developmental factors. BMC Geriatr 2022; 22:113. [PMID: 35144547 PMCID: PMC8832669 DOI: 10.1186/s12877-022-02801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Midlife physical capability (PC) is associated with developmental factors in the populations of economically developed countries. As far as we know, there is no information for rural populations of low- and middle-income countries. The aim of the study was to investigate the influence of pre- and postnatal factors on midlife objective measures of PC in a 1966–67 birth cohort from a Mexican rural community. The hypothesis was that adverse developmental conditions are associated with low midlife PC. Methods In 1966–67, a birth cohort of all children from a poor Mexican rural community was assembled. Data on family socioeconomic status (SES), parental health and nutritional status, birth weight, postnatal growth and feeding patterns were registered. In 2018, out of the 336 cohort members, 118 were living in the community, and eighty-two of them underwent a comprehensive clinical evaluation. The evaluation included grip strength, gait velocity and chair-stand PC tests. In multivariable linear models, PC tests were the dependent variables, and prenatal, birth and postnatal factors were the independent variables. Adjustment for confounding was made with adult anthropometric, body composition, clinical and ageing status variables. Results Independent of adult health status and other ageing indicators, lower PC was associated with family organization and SES, parental nutritional status, birth weight, infant postnatal growth velocity, and weaning time. These results indicate that adverse family and environmental conditions that are prevalent in poor rural communities are associated with low midlife PC.
Collapse
Affiliation(s)
- Pedro Arroyo
- Department of Clinical Epidemiology, Direction of Research, Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| | - Marcelino Esparza-Aguilar
- Research Unit of Epidemiology, Direction of Research, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Ciudad de México, México.
| | - Verónica Martín-Martín
- Research Unit of Epidemiology, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Ciudad de México, México
| | - Juan Carlos Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, Blvd. Adolfo Ruiz Cortines No. 2767, CP. 10200, Ciudad de México, México
| | - Lorena Parra-Rodríguez
- Department of Biomedical Engineering and Gerontechnology. Direction of Research, Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| | - Cinthya Cadena-Trejo
- Department of Clinical Epidemiology, Direction of Research, Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| | - Cecilia Salazar-Pérez
- Clinical Laboratory, Instituto Nacional de Pediatría. Laboratory of Clinical Chemistry, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Ciudad de México, México
| | - Luis Miguel Gutiérrez-Robledo
- Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| |
Collapse
|
28
|
Taylor RK, McCarty KM, LeMaster CT, Ricks RE, Pratt SL, Long NM. Effects of nutrient restriction during early or mid-gestation in bovine on placental development and miRNA expression in the cotyledon. Anim Reprod Sci 2022; 237:106935. [PMID: 35093729 DOI: 10.1016/j.anireprosci.2022.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 11/23/2022]
Abstract
The objective of this study was to determine effects of maternal nutrient restriction (NR) during early or mid-gestation on uterine composition and miRNA expression in cotyledons. Primiparous Angus-cross cows (n = 38) were synchronized and inseminated using male sexed semen, blocked by body condition score and body weight (BW), and assigned to treatments. Animals were fed either: control (CON; gain 1 kg/week) or NR (55% maintenance energy and crude protein requirements) based on BW. An initial set of animals were fed either NR (n = 8) or CON (n = 8) from day 30-110 of gestation. A second set of animals were fed CON (n = 8) d 30-190 (CON/CON); NR (n = 7) day 30-110 followed by CON day 110-190 (NR/CON); or CON (n = 7) day 30-110 followed by NR day 110-190 (CON/NR). Cows were harvested on day 110 or 190 of gestation to collect placental tissues. RNA was isolated from cotyledon samples (3 animals/group) prior to microarray analysis using known Bos taurus microRNA sequences. Relative microRNA abundance was analyzed via ANOVA. Maternal NR increased (P < 0.05) cotyledon weight and total placentome surface area irrespective of gestational day. At day 110 of gestation, 51 microRNAs were reduced while 91 microRNAs observed greater abundance (P < 0.05) in NR verses CON cotyledons. At day 190 of gestation, 40 microRNAs were reduced and 26 microRNAs were increased (P < 0.05) in both NR/CON and CON/NR verses CON cotyledons. Top KEGG pathway analysis included: axon guidance, endocytosis, neuroactive ligand receptor interaction, and MAPK signaling pathway. Early-gestation maternal NR altered microRNA abundance to a greater extent than mid-gestation NR.
Collapse
Affiliation(s)
- R K Taylor
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - K M McCarty
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - C T LeMaster
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - R E Ricks
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - S L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - N M Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
29
|
Lugarà R, Realini L, Kreuzer M, Giller K. Effects of maternal high-energy diet and spirulina supplementation in pregnant and lactating sows on performance, quality of carcass and meat, and its fatty acid profile in male and female offspring. Meat Sci 2022; 187:108769. [DOI: 10.1016/j.meatsci.2022.108769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
|
30
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Timing of maternal supplementation of dried distillers grains during late gestation influences postnatal growth, immunocompetence, and carcass characteristics of Bos indicus-influenced beef calves. J Anim Sci 2022; 100:6517363. [PMID: 35092433 PMCID: PMC8903140 DOI: 10.1093/jas/skac022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/25/2022] [Indexed: 01/31/2023] Open
Abstract
This 2-yr study investigated the timing of dried distillers grains (DDG) supplementation during the third trimester of gestation of Bos indicus-influenced beef cows and its impact on their offspring performance. On day 0 of each year (84 d before calving), Brangus cows (n = 84/yr; cow age = 8 ± 3 yr) were stratified by initial body weight (BW; 482 ± 75 kg) and body condition score (BCS; 5.3 ± 0.8) and assigned randomly to one of six bahiagrass (Paspalum notatum) pastures (experimental units; 14 cows/pasture). Treatments were assigned randomly to pasture (2 pastures/treatment/yr) and consisted of no prepartum supplementation (CON), 2 kg/d of DDG from day 0 to 42 (LATE42), or 1 kg/d of DDG from day 0 to 84 (LATE84). Following calving (day 84), cow-calf pairs remained in their respective pastures, and cows were offered sugarcane molasses + urea (1.82 kg of dry matter/cow/d) from day 85 until the end of the breeding season (day 224). On day 347, steer calves (n = 38/yr; 11 to 15 steers/treatment/yr) were weaned and transported to the feedlot (1,193 km). Steers were penned according to cow prepartum pasture and managed similarly until the time of harvest. BCS at calving was greater (P < 0.01) for LATE42 and LATE84 vs. CON cows but did not differ (P = 0.16) between LATE42 and LATE84 cows. Calving date, calving percentage, and birth BW of the first offspring did not differ (P ≥ 0.22) among treatments. However, LATE42 cows calved their second offspring 8 d earlier (P = 0.04) compared with CON and LATE84 cows. At weaning (first offspring), LATE84 calves were the heaviest (P ≤ 0.05), CON calves were the lightest, and LATE42 calves had intermediate BW (P ≤ 0.05). Steer plasma concentrations of cortisol and haptoglobin and serum bovine viral diarrhea virus type-1 titers did not differ (P ≥ 0.21) between treatments. Steer serum parainfluenza-3 titers were greater (P = 0.03) for LATE42 vs. CON steers, tended to be greater (P = 0.10) for LATE84 compared with CON steers, and did not differ (P = 0.38) between LATE42 and LATE84 steers. Steer feedlot BW, average daily gain, dry matter intake, and hot carcass weight did not differ (P ≥ 0.36) between treatments. Marbling and the percentage of steers grading choice were greater (P ≤ 0.04) for LATE42 vs. CON steers, whereas LATE84 steers were intermediate. In summary, different timing of DDG supplementation during the third trimester of gestation could be explored to optimize cow BCS and offspring preweaning growth and carcass quality.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato GrIGFosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
31
|
Liu Y, Ding Q, Guo W. Life Course Impact of Glucocorticoids During Pregnancy on Muscle Development and Function. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 36325303 PMCID: PMC9624510 DOI: 10.3389/fanim.2021.788930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal stress, such as maternal obesity, can induce severe gestational disease and hormonal disorder which may disrupt fetal organ maturation and further cause endangered early or future health in offspring. During fetal development, glucocorticoids are essential for the maturation of organ systems. For instance, in clinical applications, glucocorticoids are commonly utilized to pregnant women with the risk of preterm delivery to reduce mortality of the newborns. However, exposure of excessive glucocorticoids at embryonic and fetal developmental stages can cause diseases such as cardiovascular disease and muscle atrophy in adulthood. Effects of excessive glucocorticoids on human health are well-recognized and extensively studied. Nonetheless, effects of these hormones on farm animal growth and development, particularly on prenatal muscle development, and postnatal growth, did not attract much attention until the last decade. Here, we provided a short review of the recent progress relating to the effect of glucocorticoids on prenatal skeletal muscle development and postnatal muscle growth as well as heart muscle development and cardiovascular disease during life course.
Collapse
|
32
|
Shen X, Wei Y, Liu W, You G, Tang S, Su Z, Du M, He J, Zhao J, Tian Y, Zhang Y, Ma M, Zhu Q, Yin H. A Novel Circular RNA circITSN2 Targets the miR-218-5p/LMO7 Axis to Promote Chicken Embryonic Myoblast Proliferation and Differentiation. Front Cell Dev Biol 2021; 9:748844. [PMID: 34692701 PMCID: PMC8526564 DOI: 10.3389/fcell.2021.748844] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNA (circRNA) is a class of endogenous non-coding RNAs without 5′ and 3′ ends; an increasing number of studies show that circRNA is involved in skeletal muscle development. From our previous sequencing data, the circRNAome in breast muscle of two chicken lines with a distinct rate of muscle development, which included a fast muscle growing broiler (FMGB) and a slow muscle growing layer (SMGL), we found a novel differentially expressed circRNA generated by intersectin 2 (ITSN2) gene (named circITSN2). We verified that circITSN2 is a skeletal muscle-enriched circRNA that promotes chicken primary myoblast (CPM) proliferation and differentiation. Further molecular mechanism analysis of circITSN2 in chicken myogenesis was performed, and we found circITSN2 directly targeting miR-218-5p. Besides, miR-218-5p inhibits CPM proliferation and differentiation, which is contrary to circITSN2. Commonly, circRNAs act as a miRNA sponge to alleviate the inhibition of miRNAs on mRNAs. Thus, we also identified that a downstream gene LIM domain 7 (LMO7) was inhibited by miR-218-5p, while circITSN2 could block the inhibitory effect of miR-218-5p by targeting it. Functional analysis revealed that LMO7 also accelerates CPM proliferation and differentiation, which was similar to circITSN2 but contrary to miR-218-5p. Taken together, these results suggested that circITSN2 promotes chicken embryonic skeletal muscle development via relieving the inhibition of miR-218-5p on LMO7. Our findings revealed a novel circITSN2/miR-218-5p/LMO7 axis in chicken embryonic skeletal muscle development, which expands our understanding of the complex muscle development regulatory network.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuanhang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guishuang You
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuyue Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhenyu Su
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingxin Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jian He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jing Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongtong Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Bradbery AN, Coverdale JA, Hammer CJ, Dunlap KA, Leatherwood JL, Satterfield MC. Effect of maternal overnutrition on predisposition to insulin resistance in the foal: Foal skeletal muscle development and insulin signaling. Domest Anim Endocrinol 2021; 77:106648. [PMID: 34314944 DOI: 10.1016/j.domaniend.2021.106648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023]
Abstract
Skeletal muscle plays an integral role in the ability of a horse to perform at high levels. Shifts in skeletal muscle development in response to maternal plane of nutrition may have substantial and lasting impacts on athletic performance and whole-body metabolism. Therefore, sixteen Quarter Horse mares were used in a completely randomized design and maintained at a body condition score (BCS) 6 until start of third trimester. On d 235 of gestation, mares were randomly assigned to receive one of two dietary treatments with a diet formulated to meet requirements during late gestation (CON; n = 8), and an overfed diet (HIGH; n = 8) where mares received an additional 40% above CON. Five h after parturition, foals were euthanized, and gluteus medius, triceps brachii, and semitendinosus were harvested for analyses. Gene expression was determined by qPCR and western immunoblotting was used to quantify total and phosphorylated forms of proteins involved in skeletal muscle metabolism with tubulin as the loading control. All data were analyzed using PROC MIXED of SAS. Foals from HIGH mares exhibited larger skeletal muscle fibers by area (P <0.05), and a shift in muscle fiber development towards type I slow twitch muscle fibers (P <0.05). Relative expression of glucose transporter 4 (GLUT4) was lower in HIGH foals compared to CON in gluteus medius (P = 0.05). Insulin receptor isoform B (INSR-B) and insulin-like growth factor 1 receptor (IGF1R) were greater in triceps brachii of HIGH foals compared to CON (P ≤ 0.03). Insulin receptor isoform A (INSR-A), however, tended to be lower in triceps brachii of HIGH compared to CON (P = 0.10). Ratios of phosphorylated to total extracellular signal-regulated protein kinase 1/2 (ERK1/2) and c-June N-terminal kinase (JNK) were higher in HIGH foals compared to CON (P ≤0.04) in gluteus medius. There were no differences observed for phosphorylated to total protein ratios in semitendinosus and triceps brachii muscles; however, total ERK1/2 tended to be elevated (P <0.10) in semitendinosus from CON foals compared to HIGH. There was no difference in phosphorylated or total protein kinase B (AKT) (P >0.14). These data indicate hypertrophy of skeletal muscle fibers and a shift towards type I slow twitch fibers in HIGH foals. Furthermore, this study identifies muscle specific changes in gene expression and downstream insulin receptor signaling, which may contribute to future metabolic abnormalities in response to maternal overnutrition.
Collapse
Affiliation(s)
- A N Bradbery
- Department of Animal Science, Texas A&M University, College Station, Texas 77843.
| | - J A Coverdale
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - C J Hammer
- Department of Animal Science, North Dakota State University, Fargo, North Dakota 58108
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - J L Leatherwood
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
34
|
Harvey KM, Cooke RF, Moriel P. Impacts of Nutritional Management During Early Postnatal Life on Long-Term Physiological and Productive Responses of Beef Cattle. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.730356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effective early postnatal nutritional management is a crucial component of livestock production systems, and nutrient manipulation during this period has been shown to exert long-term consequences on beef cattle growth and physiology. Metabolic imprinting defines these biological responses to a nutritional intervention early in life that permanently alter physiological outcomes later in life. Early weaning has been used to study metabolic imprinting effects, given that it allows for nutritional manipulation of animals at a young age. This practice has been shown to enhance carcass characteristics in feedlot cattle and accelerate reproductive development of females. Another strategy to study the effects of metabolic imprinting without the need for early weaning is to provide supplements via creep feeding. Providing creep feed to nursing cattle has resulted in transient and long-term alterations in cattle metabolism, contributing to increased reproductive performance of developing heifers and enhanced carcass quality of feeder cattle. Collectively, results described herein demonstrate nutrient manipulation during early postnatal life exerts long-term consequences on beef cattle productivity and may be a strategy to optimize production efficiency in beef cattle systems.
Collapse
|
35
|
Estrada-Cortés E, Jannaman EA, Block J, Amaral TF, Hansen PJ. Programming of postnatal phenotype caused by exposure of cultured embryos from Brahman cattle to colony-stimulating factor 2 and serum. J Anim Sci 2021; 99:6291391. [PMID: 34079989 DOI: 10.1093/jas/skab180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Alterations in the environment of the preimplantation embryo can affect competence to establish pregnancy and phenotype of resultant calves. In this study, the bovine embryo produced in vitro was used to evaluate postnatal programming actions of the embryokine colony-stimulating factor 2 (CSF2) and serum, which is a common additive of culture media. Oocytes were collected by ovum pick up from Brahman donors and fertilized with semen from Brahman bulls. Embryos were randomly assigned to one of the three treatments: vehicle, CSF2 10 ng/mL, or 1% (v/v) serum. Treatments were added to the culture medium from day 5 to 7 after fertilization. Blastocysts were harvested on day 7 and transferred into crossbred recipients. Postnatal body growth and Longissimus dorsi muscle characteristics of the resultant calves were measured. The percent of cleaved embryos becoming blastocysts was increased by serum and, to a lesser extent, CSF2. Treatment did not affect survival after embryo transfer but gestation length was shortest for pregnancies established with serum-treated embryos. Treatment did not significantly affect postnatal body weight or growth. At 3 mo of age, CSF2 calves had lower fat content in the Longissimus dorsi muscle and less subcutaneous fat over the muscle than vehicle calves. There was a tendency for cross-sectional area of the muscle to be smaller for serum calves than vehicle calves. Results confirm the importance of the preimplantation period as a window to modulate postnatal phenotype of resultant calves. In particular, CSF2 exerted actions during the preimplantation period to program characteristics of accumulation of intramuscular and subcutaneous fat of resultant calves. The use of a low serum concentration in culture medium from day 5 to 7 of development can increase the yield of transferrable embryos without causing serious negative consequences for the offspring.
Collapse
Affiliation(s)
- Eliab Estrada-Cortés
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA.,Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, 47600, México
| | - Elizabeth A Jannaman
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Jeremy Block
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Thiago F Amaral
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Peter J Hansen
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| |
Collapse
|
36
|
Maternal Nutrition and Developmental Programming of Male Progeny. Animals (Basel) 2021; 11:ani11082216. [PMID: 34438674 PMCID: PMC8388505 DOI: 10.3390/ani11082216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of the following review is to describe available literature on the interaction between maternal nutrition and developmental programming in male offspring. The majority of current research focuses on female offspring or fails to take offspring sex into account, though sexual dimorphisms in response to maternal diet are well-recognized. This leaves a large gap in the understanding of male developmental programming. This review will specifically discuss the impacts of maternal dietary energy and protein on bull and ram growth, development, and reproductive capacity in later life. Abstract Poor maternal nutrition can cause several maladaptive phenotypes in exposed offspring. While non-sex-specific and female-specific adaptations are well-documented, male-specific outcomes are still poorly understood. Of particular interest are the outcomes in bulls and rams, as developmental programming directly impacts long-term productivity of the animal as well as human food security. The following review discusses the impact of poor maternal dietary energy and protein on bull and ram developmental programming as it relates to growth, development, and reproductive capacity. The review also highlights the importance of the timing of maternal dietary insult, as early-, mid-, and late-gestational insults can all have varying effects on offspring.
Collapse
|
37
|
Effects of maternal gestational diet, with or without methionine, on muscle transcriptome of Bos indicus-influenced beef calves following a vaccine-induced immunological challenge. PLoS One 2021; 16:e0253810. [PMID: 34166453 PMCID: PMC8224847 DOI: 10.1371/journal.pone.0253810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrition during gestation can cause epigenetic effects that translate to alterations in gene expression in offspring. This 2-year study employed RNA-sequencing technology to evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-influenced beef calves born from dams offered different supplementation strategies from 57 ± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were stratified by body weight and body condition score and assigned to bahiagrass pastures (3 heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly selected and individually limit-fed a high-concentrate diet until d 201. Calves were vaccinated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis using RNA sequencing. Molasses maternal supplementation led to a downregulation of genes associated with muscle cell differentiation and development along with intracellular signaling pathways (e.g., Wnt and TGF-β signaling pathway) compared to no maternal supplementation. Maternal fortification with methionine altered functional gene-sets involved in amino acid transport and metabolism and the one-carbon cycle. In addition, muscle transcriptome was impacted by vaccination with a total of 2,396 differentially expressed genes (FDR ≤ 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular matrix, and collagen formation were upregulated after vaccination. This study demonstrated that maternal supplementation of energy and protein, with or without, methionine has long-term implications on the muscle transcriptome of offspring and potentially influence postnatal muscle development.
Collapse
|
38
|
Zhao Y, Albrecht E, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Distinct Roles of Perilipins in the Intramuscular Deposition of Lipids in Glutamine-Supplemented, Low-, and Normal-Birth-Weight Piglets. Front Vet Sci 2021; 8:633898. [PMID: 34235195 PMCID: PMC8257002 DOI: 10.3389/fvets.2021.633898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Piglets with low birth weight (LBW) usually have reduced muscle mass and increased lipid deposition compared with their normal-birth-weight (NBW) littermates. Supplementation of piglets with amino acids during the first days of life may improve muscle growth and simultaneously alter the intramuscular lipid deposition. The aim of the current study was to investigate the influence of glutamine (Gln) supplementation during the early suckling period on lipid deposition in the longissimus muscle (MLD) and the role of different perilipin (PLIN) family members in this process. Four groups were generated consisting of 72 male LBW piglets and 72 NBW littermates. Piglets were supplemented with either 1 g Gln/kg body weight or an isonitrogenous amount of alanine (Ala) between days post natum (dpn) 1 and 12. Twelve piglets per group were slaughtered at 5, 12, and 26 dpn, and muscle tissue was collected. Perilipins were localized by immunohistochemistry in muscle sections. The mRNA and protein abundances of PLIN family members and related lipases were quantified by quantitative RT-PCR (qPCR) and western blots, respectively. While PLIN1 was localized around lipid droplets in mature and developing adipocytes, PLIN2 was localized at intramyocellular lipid droplets, PLIN3 and 4 at cell membranes of muscle fibers and adipocytes, and PLIN5 in the cytoplasm of undefined cells. The western blot results indicated higher protein abundances of PLIN2, 3, 4, and 5 in LBW piglets (p < 0.05) at 5 dpn compared with their NBW littermates independent of supplementation, while not directly reflecting the mRNA expression levels. The mRNA abundance of PLIN2 was lower while PLIN4 was higher in piglets at 26 dpn in comparison with piglets at 5 dpn (p < 0.01). Relative mRNA expression of LPL and CGI-58 was lowest in piglets at 5 dpn (p < 0.001). However, ATGL mRNA was not influenced by birth weight or supplementation, but the Spearman correlation coefficient analysis revealed close correlations with PLIN2, 4, and 5 mRNA at 5 and 26 dpn (r > 0.5, p < 0.001). The results indicated the importance of birth weight and age for intramuscular lipid deposition and different roles of PLIN family members in this process, but no clear modulating effect of Gln supplementation.
Collapse
Affiliation(s)
- Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Zeyang Li
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Johannes Schregel
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Quentin L Sciascia
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
39
|
Cappellozza BI, Cooke RF, Harvey KM. Omega-6 Fatty Acids: A Sustainable Alternative to Improve Beef Production Efficiency. Animals (Basel) 2021; 11:ani11061764. [PMID: 34204706 PMCID: PMC8231484 DOI: 10.3390/ani11061764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The global beef industry is currently challenged with improving production efficiency while fostering judicious use of limited natural resources. Sustainable management systems are warranted to ensure that worldwide demands for beef and ecological stewardship are met. Supplementing cattle with omega-6 fatty acids is a nutritional intervention shown to sustainably enhance productivity across different sectors of the beef industry. The purpose of this review is to discuss recent research that describes the advantages of supplementing omega-6 fatty acids on traits that are critical to beef production efficiency, including reproduction, immunocompetence, growth, and quality of carcass and beef products. Abstract Global beef production must increase in the next decades to meet the demands of a growing population, while promoting sustainable use of limited natural resources. Supplementing beef cattle with omega-6 fatty acids (FAs) is a nutritional approach shown to enhance production efficiency, with research conducted across different environments and sectors of the beef industry. Omega-6 FA from natural feed ingredients such as soybean oil are highly susceptible to ruminal biohydrogenation. Hence, our and other research groups have used soybean oil in the form of Ca soaps (CSSO) to lessen ruminal biohydrogenation, and maximize delivery of omega-6 FA to the duodenum for absorption. In cow–calf systems, omega-6 FA supplementation to beef cows improved pregnancy success by promoting the establishment of early pregnancy. Cows receiving omega-6 FA during late gestation gave birth to calves that were healthier and more efficient in the feedlot, suggesting the potential role of omega-6 FA on developmental programming. Supplementing omega-6 FA to young cattle also elicited programming effects toward improved adipogenesis and carcass quality, and improved calf immunocompetence upon a stress stimulus. Cattle supplemented with omega-6 FA during growing or finishing periods also experienced improved performance and carcass quality. All these research results were generated using cattle of different genetic composition (Bos taurus and B. indicus influenced), and in different environments (tropical, subtropical, and temperate region). Hence, supplementing omega-6 FA via CSSO is a sustainable approach to enhance the production efficiency of beef industries across different areas of the world.
Collapse
Affiliation(s)
| | - Reinaldo Fernandes Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-979-458-2703
| | | |
Collapse
|
40
|
Devos J, Behrouzi A, Paradis F, Straathof C, Li C, Colazo M, Block H, Fitzsimmons C. Genetic potential for residual feed intake and diet fed during early- to mid-gestation influences post-natal DNA methylation of imprinted genes in muscle and liver tissues in beef cattle. J Anim Sci 2021; 99:6276235. [PMID: 33991189 DOI: 10.1093/jas/skab140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Discovery of epigenetic modifications associated with feed efficiency or other economically important traits would increase our understanding of the molecular mechanisms underlying these traits. In combination with known genetic markers, this would provide opportunity to improve genomic selection accuracy in cattle breeding programs. It would also allow cattle to be managed to improve favorable gene expression. The objective of this study was to identify variation in DNA methylation between beef cattle of differential pre-natal nutrition and divergent genetic potential for residual feed intake (RFI). Purebred Angus offspring with the genetic potential for either high (HRFI) or low (LRFI) RFI were prenatally exposed to either a restricted maternal diet of 0.5 kg/d average daily gain (ADG) or a moderate maternal diet of 0.7 kg/d ADG from 30 to 150 d of gestation. We performed DNA methylation analysis of differentially methylated regions (DMR) of imprinted genes (Insulin-like growth factor 2 (IGF2) DMR2, IGF2/H19 imprinting control region (ICR) and IGF2 receptor (IGF2R) DMR2) using post-natal samples of longissimus dorsi (LD) muscle taken from male and female calves at birth and weaning, and of LD muscle, semimembranosus (SM) muscle, and liver samples collected from steers at slaughter (17 months of age). Interestingly, for all three DMR investigated in liver, LRFI steers had higher levels of methylation than HRFI steers. In LD muscle, IGF2/H19 ICR methylation differences for heifers at birth were due to pre-natal diet, while for steers at birth they were mostly the result of genetic potential for RFI with LRFI steers again having higher levels of methylation than HRFI steers. While results from repeated measures analysis of DNA methylation in steers grouped by RFI revealed few differences, in steers grouped by diet, we found higher methylation levels of IGF2 DMR2 and IGF2R DMR2 in LD muscle of restricted diet steers at weaning and slaughter than at birth, as well as increased methylation in LD muscle of restricted diet steers compared with moderate diet steers at weaning and/or slaughter. Our results suggest that differential pre-natal nutrition, and divergent genetic potential for RFI, induces tissue- and sex-specific alterations in post-natal IGF2 and IGF2R methylation patterns and that these patterns can vary with age in Angus beef cattle.
Collapse
Affiliation(s)
- Julia Devos
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2C8, Canada
| | - Amir Behrouzi
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2C8, Canada
| | - Francois Paradis
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2C8, Canada.,Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Christina Straathof
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Changxi Li
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2C8, Canada.,Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Marcos Colazo
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hushton Block
- Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | - Carolyn Fitzsimmons
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2C8, Canada.,Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
41
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|
42
|
Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals (Basel) 2021; 11:ani11041159. [PMID: 33919507 PMCID: PMC8072782 DOI: 10.3390/ani11041159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary During gestation, the fetus relies on the dam for the supply of all nutrients, including trace minerals, which are essential for developmental processes including organogenesis, vascularization, and differentiation. Alterations in maternal nutritional status may promote adaptations that permanently alter the trajectory of growth, physiology, and metabolism of the offspring. Supplementing trace minerals to gestating cows may be a strategy to enhance progeny performance and health. The purpose of this review is to highlight current information relevant to trace mineral supplementation during gestation, with an emphasis on Zn, Cu, Co, and Mn, and their impacts on offspring productive responses. Identifying nutritional strategies targeted at this period of development and understanding the implications of such provides an opportunity to enhance the productive efficiency of beef cattle systems. Abstract Nutritional management during gestation is critical to optimize the efficiency and profitability of beef production systems. Given the essentiality of trace minerals to fetal developmental processes, their supplementation represents one approach to optimize offspring productivity. Our research group investigated the impacts of supplementing gestating beef cows with organic-complexed (AAC) or inorganic sources (INR) of Co, Cu, Mn, or Zn on productive and health responses of the progeny. Calves born to AAC supplemented cows had reduced incidence of bovine respiratory disease and were >20 kg heavier from weaning until slaughter compared to unsupplemented cohorts. Complementing these findings, heifer progeny born to AAC supplemented cows had accelerated puberty attainment. Collectively, research demonstrates supplementing trace minerals to gestating beef cows may be a strategy to enhance offspring productivity in beef production systems.
Collapse
|
43
|
Li J, Pei Y, Zhou R, Tang Z, Yang Y. Regulation of RNA N 6-methyladenosine modification and its emerging roles in skeletal muscle development. Int J Biol Sci 2021; 17:1682-1692. [PMID: 33994853 PMCID: PMC8120468 DOI: 10.7150/ijbs.56251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most widespread and highly conserved chemical modifications in cellular RNAs of eukaryotic genomes. Owing to the development of high-throughput m6A sequencing, the functions and mechanisms of m6A modification in development and diseases have been revealed. Recent studies have shown that RNA m6A methylation plays a critical role in skeletal muscle development, which regulates myoblast proliferation and differentiation, and muscle regeneration. Exploration of the functions of m6A modification and its regulators provides a deeper understanding of the regulatory mechanisms underlying skeletal muscle development. In the present review, we aim to summarize recent breakthroughs concerning the global landscape of m6A modification in mammals and examine the biological functions and mechanisms of enzymes regulating m6A RNA methylation. We describe the interplay between m6A and other epigenetic modifications and highlight the regulatory roles of m6A in development, especially that of skeletal muscle. m6A and its regulators are expected to be targets for the treatment of human muscle-related diseases and novel epigenetic markers for animal breeding in meat production.
Collapse
Affiliation(s)
- Jiju Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
44
|
Gardner JM, Ineck NE, Quarnberg SM, Legako JF, Carpenter CE, Rood KA, Thornton-Kurth KJ. The Influence of Maternal Dietary Intake During Mid-Gestation on Growth, Feedlot Performance, miRNA and mRNA Expression, and Carcass and Meat Quality of Resultant Offspring. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This research analyzed how maternal plane of nutrition during mid-gestation impacts growth, blood metabolites, expression of microRNA and messenger RNA in skeletal muscle, feedlot performance, and carcass characteristics of progeny. Thirty-two cows were bred to the same Angus sire and fed to either maintain a body condition score (BCS) of 5.0 to 5.5 (maintenance [MAIN]; n = 15) or to lose 1 BCS (restriction [REST]; n = 17) over an 84-d period of mid-gestation. Following the second trimester, all cows were co-mingled and fed at maintenance for the remainder of gestation. Following the 84-d treatment period, REST cows had a lower (P < 0.01) BCS than MAIN cows. At the end of the third trimester, there was no difference (P = 0.78) in BCS between the treatment groups. There was no difference (P > 0.10) between offspring in birthweight, weaning weight, average daily gain, feed efficiency, dry matter intake, carcass yield, steak quality, or in circulating levels of glucose, cortisol, insulin, or insulin-like growth factor-1. REST offspring expressed more (P < 0.05) miR-133a, miR-133b, miR-181d, miR-214, miR-424 and miR-486 at weaning than MAIN offspring. At harvest, REST offspring expressed more (P < 0.05) miR-133a and less (P < 0.01) miR-486 than MAIN offspring. REST steaks were perceived as more tender (P = 0.05) by a trained sensory panel. These results indicate that maternal nutrient restriction during mid-gestation resulting in a loss of 1 BCS has an effect on microRNA expression in the skeletal muscle but does not alter postnatal growth potential, carcass quality, or end product quality of the offspring. This suggests that moderate restriction in maternal nutrition during the second trimester, which results in a drop in BCS that can be recovered during the third trimester, should not cause alarm for producers when considering future offspring performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerry A. Rood
- Utah State University Animal, Dairy and Veterinary Science
| | | |
Collapse
|
45
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
46
|
Zhang Y, Otomaru K, Oshima K, Goto Y, Oshima I, Muroya S, Sano M, Roh S, Gotoh T. Maternal Nutrition During Gestation Alters Histochemical Properties, and mRNA and microRNA Expression in Adipose Tissue of Wagyu Fetuses. Front Endocrinol (Lausanne) 2021; 12:797680. [PMID: 35178028 PMCID: PMC8844027 DOI: 10.3389/fendo.2021.797680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
We hypothesized that maternal low or high nutrition would give unique effects to morphological and molecular dynamics in adipose tissue of fetus of fatty breed Wagyu (Japanese Black) cattle which produce highly marbled beef. This study aimed to determine the effects of maternal energy intake in Wagyu cows, during gestation on fetal adipose tissue development, histochemical properties, and gene and microRNA (miRNA) expression. Cows were allocated to one of two nutritional energy groups: 120% (HIGH) or 60% nutritional requirements of (LOW). Fetuses (n = 6 per treatment) were removed from pregnant cows by cesarean section at fetal age 260 ± 8 days and euthanized. Subcutaneous adipose tissue (SAT), thoracic cavity visceral adipose tissue (TVAT), and perirenal adipose tissue (PAT) were collected for analysis. In histochemical analysis, in SAT and PAT, HIGH fetuses had greater diameter of adipocytes than LOW fetuses (P<0.05). Only in SAT, LOW fetuses had more Leptin (LEP) mRNA and tended to have more Peroxisome Proliferator-Activated Receptor gamma (PPARG) CCAAT-enhancer-binding proteins alpha (CEBPA) and Glucose transporter (GLUT) 4 mRNA(P<0.10). In all SAT, TVAT, and PAT, LOW fetuses had higher levels of the brown adipose tissue (BAT) biomarkers Uncoupling Protein (UCP) 1 and PPARG coactivator (PGC) 1α mRNA than HIGH fetuses (P<0.08). Meanwhile, in the other adipose tissue, LOW fetuses had lower PPARG, CEBPA, and Zinc Finger Protein (ZFP) 423 (in TVAT and PAT), FASN (in TVAT), LEP and GLUT4 mRNA (in PAT; P<0.10). In particular, in TVAT and PAT, LOW fetuses exhibited lower expression of WAT biomarkers (PPARG and ZFP423). Differential expression of various miRNAs related to adipogenesis between the LOW and HIGH fetuses was detected in an adipose tissue-specific manner (P<0.10). Based on adipose tissue-specific effects of maternal nutrition, these findings suggested that poor maternal nutrition in Wagyu cattle increased BAT development in SAT, TVAT and PAT, while elevated maternal nutrition stimulated fetal SAT development compared with that of TVAT and PAT.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazunaga Oshima
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Yuji Goto
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Susumu Muroya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Mitsue Sano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Gotoh
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
- *Correspondence: Takafumi Gotoh,
| |
Collapse
|
47
|
Jang KB, Kim JH, Purvis JM, Chen J, Ren P, Vazquez-Anon M, Kim SW. Effects of mineral methionine hydroxy analog chelate in sow diets on epigenetic modification and growth of progeny. J Anim Sci 2020; 98:5897043. [PMID: 32841352 PMCID: PMC7507415 DOI: 10.1093/jas/skaa271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-β1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-β, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Jong Hyuk Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | | | - Ping Ren
- Novus International, Inc., St. Charles, MO
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
48
|
Sohel MMH, Akyuz B, Konca Y, Arslan K, Gurbulak K, Abay M, Kaliber M, Cinar MU. Differential protein input in the maternal diet alters the skeletal muscle transcriptome in fetal sheep. Mamm Genome 2020; 31:309-324. [PMID: 33164111 DOI: 10.1007/s00335-020-09851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Maternal nutrition during pregnancy is one of the major intrauterine environmental factors that influence fetal development by significantly altering the expression of genes that might have a consequence on the physiological, morphological, and metabolic performance of the offspring in the postnatal period. The impact of maternal dietary protein on the expression of genes in sheep fetal skeletal muscle development is not well understood. The current study aims to investigate the impact of high and low maternal dietary protein on the holistic mRNA expression in the sheep fetal skeletal muscle. Dams were exposed to an isoenergetic high-protein diet (HP, 160-270 g/day), low-protein diet (LP, 73-112 g/day), and standard protein (SP, 119-198 g/day) diets during pregnancy. Fetal skeletal muscles were obtained at the 105th day of pregnancy and mRNA expression profiles were evaluated using Affymetrix GeneChip™ Ovine Gene 1.0 ST Array. The transcriptional analysis revealed a total of 323, 354, and 14 genes were differentially regulated (fold change > 2 and false discovery rate ≤ 0.05) in HP vs. SP, LP vs. HP, and SP vs. LP, respectively. Several myogenic genes, including MYOD1, MYH2, MYH1, are significantly upregulated, while genes related to the immune system, such as CXCL11, HLA-E, CXCL10, CXCL9, TLRs, are significantly downregulated in the fetal muscle of the HP group compared to those of SP and LP group. Bioinformatic analysis revealed that the majority of these genes are involved in pathways related to the immune system and diseases. The results of our study demonstrate that both augmented and restricted dietary proteins in maternal diet during pregnancy alter the expression of genes as well as the offspring's genetic marks.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.,Genome and Stem Cell Centre, Erciyes University, 38039, Kayseri, Turkey
| | - Bilal Akyuz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kutlay Gurbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey.
| |
Collapse
|
49
|
Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des 2020; 26:946-957. [PMID: 31912769 DOI: 10.2174/1381612826666200108113002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is characterized by an autoimmune β-cell destruction resulting in endogenous insulin deficiency, potentially leading to micro- and macrovascular complications. Besides an exogenous insulin therapy and continuous glucose monitoring, physical exercise is recommended in adults with type 1 diabetes to improve overall health. The close relationship between physical exercise, inflammation, muscle contraction, and macronutrient intake has never been discussed in detail about type 1 diabetes. The aim of this narrative review was to detail the role of physical exercise in improving clinical outcomes, physiological responses to exercise and different nutrition and therapy strategies around exercise. Physical exercise has several positive effects on glucose uptake and systemic inflammation in adults with type 1 diabetes. A new approach via personalized therapy adaptations must be applied to target beneficial effects on complications as well as on body weight management. In combination with pre-defined macronutrient intake around exercise, adults with type 1 diabetes can expect similar physiological responses to physical exercise, as seen in their healthy counterparts. This review highlights interesting findings from recent studies related to exercise and type 1 diabetes. However, there is limited research available accompanied by a proper number of participants in the cohort of type 1 diabetes. Especially for this group of patients, an increased understanding of the impact of physical exercise can improve its effectiveness as an adjuvant therapy to move (forward).
Collapse
Affiliation(s)
- Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel J West
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| |
Collapse
|
50
|
Dorji J, Vander Jagt CJ, Garner JB, Marett LC, Mason BA, Reich CM, Xiang R, Clark EL, Cocks BG, Chamberlain AJ, MacLeod IM, Daetwyler HD. Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle. BMC Genomics 2020; 21:720. [PMID: 33076826 PMCID: PMC7574280 DOI: 10.1186/s12864-020-07018-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently, the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene expression analyses: particularly differential gene expression and co-expression network analyses. Results MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All 29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes, thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The differential gene expression and co-expression patterns were validated in independent cow and sheep datasets. Conclusions The results of this study support the concept that there are biological interaction of MP genes from the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies related to mitochondrial functions and traits related to energy metabolism.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Leah C Marett
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|