1
|
Cao Y, Yu Y, Pan L, Han W, Zeng F, Wang J, Mei Q, Liu C. Sulfated Polysaccharide-Based Nanocarrier Drives Microenvironment-Mediated Cerebral Neurovascular Remodeling for Ischemic Stroke Treatment. NANO LETTERS 2024; 24:5214-5223. [PMID: 38649327 DOI: 10.1021/acs.nanolett.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.
Collapse
Affiliation(s)
- Yinli Cao
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Pan
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weili Han
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Feng Zeng
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qiyong Mei
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Zhang Q, Zhang S, Qi J, Li L. The superiority and feasibility of 2,3,5-triphenyltetrazolium chloride-stained brain tissues for molecular biology experiments based on microglial properties. Animal Model Exp Med 2023; 6:111-119. [PMID: 37140996 PMCID: PMC10158948 DOI: 10.1002/ame2.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND TTC (2,3,5-triphenyltetrazolium chloride) staining is the most commonly used method in identifying and assessing cerebral infarct volumes in the transient middle cerebral artery occlusion model. Given that microglia exhibit different morphologies in different regions after ischemic stroke, we demonstrate the superiority and necessity of using TTC-stained brain tissue to analyze the expression of various proteins or genes in different regions based on microglia character. METHODS We compared brain tissue (left for 10 min on ice) from the improved TTC staining method with penumbra from the traditional sampling method. We identified the feasibility and necessity of the improved staining method using real time (RT)-PCR, Western blot, and immunofluorescence analysis. RESULTS There was no protein and RNA degradation in the TTC-stained brain tissue group. However, the TREM2 specifically expressed on the microglia showed a significant difference between two groups in the penumbra region. CONCLUSIONS TTC-stained brain tissue can be used for molecular biology experiments without any restrictions. In addition, TTC-stained brain tissue shows greater superiority due to its precise positioning.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingrong Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuchi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Liu C, Yang ZX, Zhou SQ, Ding D, Hu YT, Yang HN, Han D, Hu SQ, Zong XM. Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke. Neural Regen Res 2022; 18:1286-1292. [PMID: 36453413 PMCID: PMC9838145 DOI: 10.4103/1673-5374.358609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although bone marrow mesenchymal stem cells (BMSCs) might have therapeutic potency in ischemic stroke, the benefits are limited. The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor (VEGF) on behavioral defects in a rat model of transient cerebral ischemia, which was induced by middle cerebral artery occlusion. VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke. We found that compared with the stroke-only group and the vehicle- and BMSCs-control groups, the VEGF-BMSCs treated animals displayed the largest benefits, as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke. Additionally, VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier, increased the regeneration of blood vessels in the region of ischemic penumbra, and reducedneuronal degeneration surrounding the infarct core. Further mechanistic studies showed that among all transplant groups, VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor. These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available.
Collapse
Affiliation(s)
- Cui Liu
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Emergency Department of Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, Lianyungang, Jiangsu Province, China
| | - Zhi-Xiang Yang
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Si-Qi Zhou
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ding Ding
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yu-Ting Hu
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hong-Ning Yang
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dong Han
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shu-Qun Hu
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Xue-Mei Zong, ; Shu-Qun Hu, .
| | - Xue-Mei Zong
- Institute of Emergency Rescue Medicine, Emergency Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Key Laboratory of Brain Diseases Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Xue-Mei Zong, ; Shu-Qun Hu, .
| |
Collapse
|
4
|
Colitti N, Desmoulin F, Le Friec A, Labriji W, Robert L, Michaux A, Conchou F, Cirillo C, Loubinoux I. Long-Term Intranasal Nerve Growth Factor Treatment Favors Neuron Formation in de novo Brain Tissue. Front Cell Neurosci 2022; 16:871532. [PMID: 35928573 PMCID: PMC9345199 DOI: 10.3389/fncel.2022.871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 μg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.
Collapse
Affiliation(s)
- Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Wafae Labriji
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Amandine Michaux
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Fabrice Conchou
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
- *Correspondence: Isabelle Loubinoux,
| |
Collapse
|
5
|
Protective Effects of a synthetic glycosaminoglycan mimetic (OTR4132) in a rat immunotoxic lesion model of septohippocampal cholinergic degeneration. Glycoconj J 2022; 39:107-130. [PMID: 35254602 PMCID: PMC8979900 DOI: 10.1007/s10719-022-10047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.
Collapse
|
6
|
Landucci E, Mazzantini C, Lana D, Davolio PL, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective Effects of Cannabidiol but Not Δ 9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids. Int J Mol Sci 2021; 22:ijms22189773. [PMID: 34575932 PMCID: PMC8468213 DOI: 10.3390/ijms22189773] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
- Correspondence: ; Tel.: +39-055-2758378
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| |
Collapse
|
7
|
Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar Drugs 2021; 19:24. [PMID: 33430021 PMCID: PMC7827849 DOI: 10.3390/md19010024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Li Z, Song Y, He T, Wen R, Li Y, Chen T, Huang S, Wang Y, Tang Y, Shen F, Tian HL, Yang GY, Zhang Z. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Am J Cancer Res 2021; 11:1232-1248. [PMID: 33391532 PMCID: PMC7738903 DOI: 10.7150/thno.48761] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Rationale: Glial scars present a major obstacle for neuronal regeneration after stroke. Thus, approaches to promote their degradation and inhibit their formation are beneficial for stroke recovery. The interaction of microglia and astrocytes is known to be involved in glial scar formation after stroke; however, how microglia affect glial scar formation remains unclear. Methods: Mice were treated daily with M2 microglial small extracellular vesicles through tail intravenous injections from day 1 to day 7 after middle cerebral artery occlusion. Glial scar, infarct volume, neurological score were detected after ischemia. microRNA and related protein were examined in peri-infarct areas of the brain following ischemia. Results: M2 microglial small extracellular vesicles reduced glial scar formation and promoted recovery after stroke and were enriched in miR-124. Furthermore, M2 microglial small extracellular vesicle treatment decreased the expression of the astrocyte proliferation gene signal transducer and activator of transcription 3, one of the targets of miR-124, and glial fibrillary acidic protein and inhibited astrocyte proliferation both in vitro and in vivo. It also decreased Notch 1 expression and increased Sox2 expression in astrocytes, which suggested that astrocytes had transformed into neuronal progenitor cells. Finally, miR-124 knockdown in M2 microglial small extracellular vesicles blocked their effects on glial scars and stroke recovery. Conclusions: Our results showed, for the first time, that microglia regulate glial scar formation via small extracellular vesicles, indicating that M2 microglial small extracellular vesicles could represent a new therapeutic approach for stroke.
Collapse
|
9
|
Zong X, Li Y, Liu C, Qi W, Han D, Tucker L, Dong Y, Hu S, Yan X, Zhang Q. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics 2020; 10:12090-12110. [PMID: 33204331 PMCID: PMC7667689 DOI: 10.7150/thno.51573] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: The integrity and function of the blood-brain barrier (BBB) is compromised after stroke. The current study was performed to examine potential beneficial effects and underlying mechanisms of repetitive transcranial magnetic stimulation (rTMS) on angiogenesis and vascular protection, function, and repair following stroke, which are largely unknown. Methods: Using a rat photothrombotic (PT) stroke model, continuous theta-burst rTMS was administered once daily to the infarcted hemisphere for 5 min, beginning 3 h after PT stroke. This treatment was applied for 6 days. BBB integrity, blood flow, vascular associated proteins, angiogenesis, integrity of neuronal morphology and structure, and behavioral outcome were measured and analyzed at 6 and/or 22 days after PT stroke. Results: We report that rTMS significantly mitigated BBB permeabilization and preserved important BBB components ZO-1, claudin-5, occludin, and caveolin-1 from PT-induced degradation. Damage to vascular structure, morphology, and perfusion was ameliorated by rTMS, resulting in improved local tissue oxygenation. This was accompanied with robust protection of critical vascular components and upregulation of regulatory factors. A complex cytokine response was induced by PT, particularly at the late phase. Application of rTMS modulated this response, ameliorating levels of cytokines related to peripheral immune cell infiltration. Further investigation revealed that rTMS promoted and sustained post-ischemic angiogenesis long-term and reduced apoptosis of newborn and existing vascular endothelial cells. Application of rTMS also inhibited PT-induced excessive astrocyte-vasculature interactions and stimulated an A1 to A2 shift in vessel-associated astrocytes. Mechanistic studies revealed that rTMS dramatically increased levels of PDGFRβ associated with A2 astrocytes and their adjacent vasculature. As well, A2 astrocytes displayed marked amplification of the angiogenesis-related factors VEGF and TGFβ. PT induced a rise in vessel-associated expression of HIF-1α that was starkly intensified by rTMS treatment. Finally, rTMS preserved neuronal morphology, synaptic structure integrity and behavioral outcome. Conclusions: These results indicate that rTMS can exert powerful protective and restorative effects on the peri-infarct microvasculature after PT stroke by, in part, promoting HIF-1α signaling and shifting vessel-associated astrocytic polarization to the A2 phenotype. This study provides further support for the potent protective effects of rTMS in the context of ischemic stroke, and these findings implicate vascular repair and protection as an important underlying phenomenon.
Collapse
|
10
|
Marine Biocompounds for Neuroprotection-A Review. Mar Drugs 2020; 18:md18060290. [PMID: 32486409 PMCID: PMC7344849 DOI: 10.3390/md18060290] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial products, exhibiting significant bioactivity ten times higher than terrestrial-sourced molecules. In addition to the antioxidant, anti-thrombotic, anti-coagulant, anti-inflammatory, anti-proliferative, anti-hypertensive, anti-diabetic, and cardio-protection properties, marine-sourced biocompounds have been investigated for their neuroprotective potential. Thus, this review aims to describe the recent findings regarding the neuroprotective effects of the significant marine-sourced biocompounds.
Collapse
|
11
|
Wang G, Han B, Shen L, Wu S, Yang L, Liao J, Wu F, Li M, Leng S, Zang F, Zhang Y, Bai Y, Mao Y, Chen B, Yao H. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke. EBioMedicine 2020; 52:102660. [PMID: 32062357 PMCID: PMC7016383 DOI: 10.1016/j.ebiom.2020.102660] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been reported to be involved in central nervous system (CNS) diseases and to have a close connection with neuronal development. However, the role of circRNAs in neural stem cell (NSC) differentiation and the treatment of ischaemic stroke remains unknown. Methods Ischaemic stroke was induced in mice using transient middle cerebral artery occlusion (tMCAO). NSCs were transducted with circHIPK2 siRNA (si-circHIPK2-NSCs) or vehicle control (si-circCon-NSCs) and microinjected into lateral ventricle of brain at 7 d post-tMCAO. Magnetic resonance imaging (MRI) was used to detect brain damage, and functional deficits were evaluated with sensorimotor behavioural tests. The distribution of the transplanted NSCs was investigated by near-infrared fluorescence imaging (NIF) and immunofluorescence. The neural plasticity of si-circHIPK2-NSCs was verified by western blot and immunofluorescence in vivo and in vitro. Findings We investigated the role of circHIPK2 in NCS differentiation. In vitro, silencing of circHIPK2 facilitated NSCs directionally differentiated to neurons but had no effect on the differentiation to astrocytes. In vivo, microinjected NSCs could migrate to the ischaemic hemisphere after stroke induction. Si-circHIPK2-NSCs increased neuronal plasticity in the ischaemic brain, conferred long-lasting neuroprotection, and significantly reduced functional deficits. Interpretations Si-circHIPK2 regulates NSC differentiation, and microinjection of si-circHIPK2-NSCs exhibits a promising therapeutic strategy to neuroprotection and functional recovery after stroke. Funding The National Key Research and Development Program of China; the International Cooperation and Exchange of the National Natural Science Foundation of China; the National Natural Science Foundation of China; the Jiangsu Innovation & Entrepreneurship Team Program.
Collapse
Affiliation(s)
- Guangtian Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shusheng Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiefeng Liao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mingyue Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Department of Radiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengchao Zang
- Department of Radiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Mao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China; Co-innovation Centre of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
13
|
Mo XB, Lei SF, Zhang YH, Zhang H. Integrative Analysis Identified IRF6 and NDST1 as Potential Causal Genes for Ischemic Stroke. Front Neurol 2019; 10:517. [PMID: 31156544 PMCID: PMC6529957 DOI: 10.3389/fneur.2019.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 02/02/2023] Open
Abstract
Objective: To highlight potential functional variants and causal genes for ischemic stroke (IS) in genomic loci identified by genome-wide association studies (GWAS). Methods: We examined the association between m6A-SNPs and IS in large scale GWAS. Furthermore, eQTL analysis was performed to evaluate the effect of m6A-SNPs on gene expression. The top associations between m6A-SNPs and gene expressions were validated in 40 individuals from the Chinese Han population. Besides, we applied differential expression analysis and Mendelian randomization (MR) analysis to detect potential causal genes for IS. Results: We found 310 (7.39%) m6A-SNPs which were nominally associated with IS. The proportion of m6A-SNPs with P < 0.05 for IS was significantly higher than the non-m6A-SNPs (95%CI: [5.84%, 7.36%], P = 0.02). We found that the IS-associated m6A-SNP rs2013162 was associated with IRF6 expression (P = 6.30 × 10−23), meanwhile IRF6 was differentially expressed between IS cases and controls (P = 6.15 × 10−3) and showed a causal association with IS (P = 3.64 × 10−4). Similar results were found for m6A-SNP rs2273235 in the NDST1 gene which was associated with cardioembolic stroke (P = 8.47 × 10−3). The associations of rs2013162 and rs2273235 with the expression of IRF6 and NDST1 were validated in blood cells (P = 0.0247 and 0.0007), respectively. Conclusions: This study showed that m6A-SNPs may affect IS risk through altering gene expressions. The results suggested that m6A might play a role in IS etiology and gene expressions that affected by m6A may be causal factors for IS.
Collapse
Affiliation(s)
- Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|