1
|
Wan C, Wu Q, Wang Y, Sun Y, Ji T, Gu Y, Wang L, Chen Q, Yang Z, Wang Y, Wang B, Zhong W. Machine learning-based characterization of PANoptosis-related biomarkers and immune infiltration in ulcerative colitis: A comprehensive bioinformatics analysis and experimental validation. Int Immunopharmacol 2025; 151:114298. [PMID: 39986196 DOI: 10.1016/j.intimp.2025.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Ulcerative colitis (UC) is a heterogeneous autoimmune condition. PANoptosis, a new form of programmed cell death, plays a role in inflammatory diseases. This study aimed to identify differentially expressed PANoptosis-related genes (PRGs) involved in immune dysregulation in UC. Three key PRGs-BIRC3, MAGED1, and PSME2 were found using weighted gene co-expression network analysis (WGCNA) and machine learning. Immune infiltration analysis revealed that these key PRGs were associated with neutrophils, CD8+ T cells, activated CD4 T cells, and NK cells. Moreover, these key PRGs were significantly enriched in pathways related to inflammatory bowel disease, the IL-17 signaling pathway, and NOD-like receptor signaling pathway. The expression levels of the key PRGs were validated in various datasets, animal models, and UC intestinal tissue samples. Our findings confirmed the involvement of PANoptosis in UC and predict hub genes and immune characteristics, providing new insights for further investigations into UC pathogenic mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyan Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yali Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yan Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Digestive Gastroenterology and Hepatology, Linyi People's Hospital, Shandong 276000, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Liwei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyu Chen
- Department of Gastroenterology, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, China
| | - Zhen Yang
- Department of Clinical Laboratory, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, China.
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine,Harbin 150040, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
2
|
Wang D, Zhang T, Qiu L, Zhao C. The Potential of the Probiotic Isolate Lactobacillus plantarum SS18-50 to Prevent Colitis in Mice. Food Sci Nutr 2025; 13:e4657. [PMID: 39803293 PMCID: PMC11717018 DOI: 10.1002/fsn3.4657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
The objective of this study was to investigate the effect of the Lactobacillus plantarum (L. plantarum) SS18-50 (an isolate with favorable probiotic properties following space traveling) on dextran sulfate sodium (DSS)-induced colitis in mice. Male ICR mice were randomly assigned to one of six groups: a control group, a model group, and four intervention groups comprising the isolate (SS18-50-L and SS18-50-H) and the wild type (GS18-L and GS18-H) strains. The model group and the intervention groups were administered a 3.5% DSS (w/v) solution to induce acute enteritis. The four intervention groups were administered the corresponding bacterial suspensions, SS18-50-L (1.0 × 107 CFU/mL), SS18-50-H (1.0 × 109 CFU/mL), GS18-L (1.0 × 107 CFU/mL), and GS18-H (1.0 × 109 CFU/mL). The results demonstrated that the disease activity index (DAI) score of the SS18-50-H was markedly lower than that of the CON. Subsequently, the colon tissue of mice was analyzed to determine the levels of myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). The results demonstrated that all strains within the intervention groups exhibited good performance to prevent colitis. Particularly, the SS18-50-H strain exhibited a pronounced stimulative effect on GSH, an increase in SOD activity, and a decrease in MPO activity and MDA content. The SS18-50-H treatment resulted in a notable elevation in serum somatostatin (SS) levels and a concomitant reduction in endothelin (ET) and substance P (SP) levels, which approached normal ranges. The results of the RT-qPCR analysis demonstrated that the mRNA expression levels of tumor necrosis factor (TNF-α), cyclooxygenase (COX-2), interleukin (IL-10), and interleukin (IL-6) in the SS18-50-H were significantly reduced to levels comparable to those observed in the CON. In conclusion, L. plantarum SS18-50 has been demonstrated to inhibit the development of colitis in a dose-dependent manner, thereby establishing it as a high-quality lactic acid bacterium with a colitis inhibitory effect.
Collapse
Affiliation(s)
- Dan Wang
- Changchun PolytechnicChangchunChina
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Tiehua Zhang
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Luxin Qiu
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Changhui Zhao
- College of Food Science and EngineeringJilin UniversityChangchunChina
| |
Collapse
|
3
|
Liu Q, Bin DH, Wang ZY, Peng KP, Tang W, Huang JW, Xu LZ, Wang XY, Yang PC, Tian GX. The Immune Regulatory Functions in B Cells Are Restored by CpG to Reduce Experimental Food Allergy. Immunology 2025; 174:128-138. [PMID: 39385432 DOI: 10.1111/imm.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Dysfunctional immune regulation contributes to the pathogenesis of food allergy (FA). The mechanism behind regulatory B-cell dysfunction is unclear. CpG has immune regulatory functions. The purpose of this study is to use CpG to recover the immune suppressive functions of B cells in mice with FA. An FA mouse model was created using ovalbumin as the specific antigen. Flow cytometry was used to isolate B cells from the intestinal tissues. The immune regulatory functions of B cells were assessed using immunological approaches. The results showed that the FA response was linked to low IL-10 levels in gut lavage fluids of FA mice. FA mouse intestinal B cells produced lower amounts of IL-10 as compared with B cells isolated from naïve control mice. Impaired immune suppressive functions were observed in B cells isolated from the FA mouse intestine. The inducibility of the Il10 expression in naïve B cells of the intestine of FA mice was defective. The induction of Il10 expression in FA B cells could be restored by CpG through regulating the methylation status of the Cmip promoter. CpG promoted the therapeutic efficacy of allergen specific immunotherapy by restoring the induction of IL-10+ B cells in the intestine. The expression of Il10 in B cells of the FA mouse intestine was impaired. Administration of CpG could restore the expression of Il10 in B cells in the intestine and promote immunotherapy for FA.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Ultrasoud, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dong-Hua Bin
- Department of Anus and Intesine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhuo-Ya Wang
- Postgraduate Medical Education Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke-Ping Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wang Tang
- Department of Ultrasoud, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing-Weng Huang
- Department of Anus and Intesine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Zhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Xiang-Yu Wang
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui-Xiang Tian
- Department of Ultrasoud, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
5
|
Ma F, Feng X, Feng S, Liu J, Li J, Mo L, Xu L, Liu Y, Wu J, Yang P, Ning Y. Impaired inducibility of immune regulatory capacity of peripheral B cells of patients with recurrent pregnancy loss. Immunol Res 2024; 72:1502-1514. [PMID: 39495420 DOI: 10.1007/s12026-024-09549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024]
Abstract
The pathogenesis of recurrent pregnancy loss (RPL) is unclear. RPL may have an association with disruption of immune tolerance. The aim of this study is to characterize the inducibility of immune regulatory ability in peripheral naïve B cells of patients with RPL. In this study, blood samples were taken from patients with RPL. B220+ B cells were isolated by flow cytometry cell sorting. The gene profile of B cells was analyzed using RNA sequencing (RNAseq). The results showed that peripheral B220+ B cells of RPL patients had lower expression of IL10 and exacerbated ER stress. The induction of IL10 expression in peripheral B220+ B cells of RPL patients were impaired. High ubiquitination of c-Maf inducing protein (CMIP) was detected in RPL B cells. Exposure to thapsigargin (an ER stress agonist) decreased the amount of CMIP in B cells. The effects of ER stress on reducing CMIP quantity in B cells were mediated by the histone H2B E3 ubiquitin ligase ring finger protein 20 (RNF20). Inhibition of RNF20 or ER stress restored the inducibility of immune regulatory functions of B220+ B cells of RPL patients. In summary, peripheral B cells in patients with RPL show impaired immune regulation capacity, in which exacerbated ER stress plays a crucial role. Regulation of ER stress or inhibition of RNF20 can restore the immune regulatory capacity in the B cells.
Collapse
Affiliation(s)
- Fei Ma
- Department of Chinese Traditional Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Xiaoyang Feng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiyu Feng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Mo
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University, 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yulei Liu
- Department of Chinese Traditional Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jiaman Wu
- Department of Chinese Traditional Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Room A7-509 at Lihu Campus of Shenzhen University, 1066 Xueyuan Blvd, Shenzhen, 518055, China.
| | - Yan Ning
- Department of Chinese Traditional Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
6
|
Lu Y, Lu D, Li C, Chen L. Exploring Immune Cell Infiltration and Small Molecule Compounds for Ulcerative Colitis Treatment. Genes (Basel) 2024; 15:1548. [PMID: 39766817 PMCID: PMC11728156 DOI: 10.3390/genes15121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents for UC. METHODS The GSE47908 and GSE55306 colon tissue transcriptome gene datasets were downloaded from the Gene Expression Omnibus-NCBI (GEO) database. GEO2R and Gene Set Enrichment Analysis (GSEA) were used to screen for DEGs in patients with UC compared to the normal population based on weighted gene co-expression network analysis (WGCNA). GO-BP analysis and KEGG enrichment analysis were performed on the intersecting differential genes via the Metascape website, while hub genes were analyzed by STRING11.0 and Cytoscape3.7.1. The expression of hub genes was verified in the dataset GSE38713 colon tissue specimens. Finally, the gene expression profiles of the validation set were analyzed by immuno-infiltration through the ImmuCellAI online tool, and the CMap database was used to screen for negatively correlated small molecule compounds. RESULTS A total of 595 and 926 genes were screened by analysis of GSE47908 and GSE55306 datasets, respectively. Combined WGCNA hub module intersection yielded 12 hub genes (CXCL8, IL1β, CXCL1, CCL20, CXCL2, CXCR2, LCN2, SELL, AGT, LILRB3, MMP3, IDO1) associated with the pathogenesis of UC. GSEA analysis yielded intersecting pathways for both datasets (colorectal cancer pathway, base excision repair, cell cycle, apoptosis). GO-BP and KEGG enrichment analyses were performed to obtain key biological processes (inflammatory response, response to bacteria, leukocyte activation involved in the immune response, leukocyte-cell adhesion, apoptosis, positive regulation of immune effector processes) and key signaling pathways (cytokine-cytokine receptor interactions, IBD, NOD-like receptor signaling pathways). The immune cell infiltration analysis suggested that the incidence of UC was mainly related to the increase in CD4+T cells, depletion of T cells, T follicular helper cells, natural killer cells, γδ T cells and the decrease in CD8 naive T cells, helper T cells 17 and effector T cells. The CMap database results showed that small molecule compounds such as vorinostat, roxarsone, and wortmannin may be therapeutic candidates for UC. CONCLUSIONS This study not only aids in early prediction and prevention but also provides novel insights into the pathogenesis and treatment of UC.
Collapse
Affiliation(s)
- Yi Lu
- Shanghai Tufeng Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Dongqing Lu
- Department of Traditional Chinese Medicine, Beicai Community Health Service Center of Pudong New District, 271 Lianyuan Road, Pudong New District, Shanghai 201024, China
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- The M-Lab., Department of Precision Medicine, GROW—Research Institute for Oncology and Repro-Duction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Luping Chen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Lipińska-Opałka A, Leszczyńska-Pilich M, Będzichowska A, Tomaszewska A, Rustecka A, Kalicki B. The Role of Regulatory B Lymphocytes in Allergic Diseases. Biomedicines 2024; 12:2721. [PMID: 39767628 PMCID: PMC11726865 DOI: 10.3390/biomedicines12122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE OF REVIEW Regulatory B cells (Bregs) are a key component in the regulation of the immune system. Their immunosuppressive function, which includes limiting the inflammatory cascade, occurs through interactions with other immune cells and the secretion of cytokines, primarily IL-10. As knowledge about B cells continues to expand, their diversity is becoming more recognized, with many subpopulations identified in both human and animal models. However, identifying specific transcription factors or markers that could definitively distinguish regulatory B cells remains a challenge. This review summarizes recent findings on the role of B regulatory cells in allergic diseases. RECENT FINDINGS In patients with bronchial asthma, atopic dermatitis, and food allergies, the number of regulatory B cells is reduced, and disease severity is inversely proportional to the quantity of these cells. Furthermore, in patients with atopic dermatitis, the ability of regulatory B cells to produce IL-10 in response to IL-6 stimulation is diminished. However, allergen immunotherapy has been shown to induce the formation of regulatory T cells as well as regulatory B cells. SUMMARY The success of future therapies based on B cells may depend on deepening our current understanding of their phenotypes, induction, differentiation, and function. Research in these areas is essential for understanding the mechanisms regulating Breg activity and for developing potential targeted therapies in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Agnieszka Lipińska-Opałka
- Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland; (A.T.); (B.K.)
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Michalina Leszczyńska-Pilich
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Agata Będzichowska
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Agata Tomaszewska
- Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland; (A.T.); (B.K.)
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Agnieszka Rustecka
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Bolesław Kalicki
- Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland; (A.T.); (B.K.)
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| |
Collapse
|
8
|
Feng B, Liu J, Li J, Feng S, Xu L, Wang X, Song S, Li Y, Tang A, Liu Y, Shu Q, Yang P. The immune suppressive functions of macrophages are impaired in patients with ulcerative colitis. Immunol Lett 2024; 267:106867. [PMID: 38754636 DOI: 10.1016/j.imlet.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Chronic inflammation is the pathological feature of inflammatory bowel diseases (IBD), but its etiology is unknown. Macrophages are one of the major immune cell fractions in the colon. The objectives of this study are to characterize the immune regulatory functions of macrophages in the colon of patients with ulcerative colitis (UC). UC patients (n = 30) were recruited into this study. Colon lavage fluid (CLF) was collected. Macrophages are isolated from the cellular components of CLF. The immune suppressive functions of macrophages were assessed using immunological approaches. We observed that macrophages occupied about half of the proportions of the cellular components in CLF. Lower amounts of IL10 mRNA and proteins were detected in macrophages of the UC group than the normal control (NC) group. The expression of IL10 in CLF macrophages was positively correlated with the UC-associated cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IFN-γ, eosinophil-derived mediators, in CLF. The immune suppressive functions of CLF macrophages in UC patients were impaired. The inducibility of IL10 expression of UC M0 cells was defective as compared with NC M0 cells. Exposure to CpG restored the inducibility of IL10 expression in UC M0 cells, and gain the potential to acquire the immune suppressive functions. To sum up, the immune suppressive functions of UC macrophages are impaired. The inducibility of IL10 expression of M0 cells is impaired, which can be restored by the treatment with CpG.
Collapse
Affiliation(s)
- Baisui Feng
- Department of Gastroenterology, Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jin Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingzhi Xu
- Department of Immunology, Basic Medical College of Weifang Medical University, Weifang, China
| | - Xiangyu Wang
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shuo Song
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases at Shenzhen University, Shenzhen, China
| | - Yan Li
- Department of Gastroenterology, Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Aifa Tang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Qing Shu
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases at Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
10
|
Kim D, Lee DW, Yoon G, Jeong EK, Choi MS, Lee HC, Park YS, Chung CP, Lee JY, Park YJ. Therapeutic Effect of HDAC5 Binding and Cell Penetrating Peptide for the Treatment of Inflammatory Bowel Disease. Tissue Eng Regen Med 2023; 20:965-979. [PMID: 37589886 PMCID: PMC10519921 DOI: 10.1007/s13770-023-00572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an incurable disease that negatively influences the quality of life of patients. Current and emerging therapies target proinflammatory cytokines and/or receptors to downregulate proinflammatory responses, but insufficient remission requires other therapeutic agents. Herein, we report that the synthetic anti-inflammatory peptide 15 (SAP15) is capable of cell penetration and anti-inflammatory activity in human macrophages. METHODS SAP15 was labeled with fluorescence and administered to human leukemia monocytic cells (THP-1) cells for cell penetration analysis. Using biolayer interferometry analysis, the binding affinity of SAP15 with histone deacetylase 5 (HDAC5) was measured. SAP15-treated THP-1 cells were analyzed by protein phosphorylation assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). In addition, in vivo analysis of the therapeutic effect on IBD was observed in a dextran sulfate sodium (DSS)-induced model. Samples from SAP15-treated mice were analyzed at both the macroscopic and microscopic levels using ELISA, myeloperoxidase (MPO) assays, and histological evaluations. RESULTS SAP15 was internalized within the cytosol and nucleus of THP-1 cells and bound to the HDAC5 protein. SAP15-treated macrophages were assessed for protein phosphorylation and showed inhibited phosphorylation of HDAC5 and other immune-related proteins, which led to increased M2-like macrophage markers and decreased M1-like macrophage markers and tumor necrosis factor-α and interleukin-6 cytokine levels. The SAP15 treatment on IBD model showed significant recovery of colon length. Further histological analysis of colon demonstrated the therapeutic effect of SAP15 on mucosal layer. Moreover, proinflammatory cytokine levels and MPO activity from the plasma show that SAP15 is effective in reduced proinflammatory responses. CONCLUSION These findings suggest that SAP15 is a novel peptide with a novel cell-penetrating peptide with anti-inflammatory property that can be used as a therapeutic agent for IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Deogil Kim
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Dong Woo Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry, Seoul National University, #403 Biomaterial Research Building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gookjin Yoon
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry, Seoul National University, #403 Biomaterial Research Building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eui Kyun Jeong
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Moon Sil Choi
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Hoo Cheol Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chong Pyung Chung
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Jue-Yeon Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea
| | - Yoon Jeong Park
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, 03127, Republic of Korea.
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry, Seoul National University, #403 Biomaterial Research Building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
Wu P, Chang C, Zhu G, Zhai L, Zhang X, Huan Q, Gao Z, Deng H, Liang Y, Xiao H. Network Pharmacology Study of Bioactive Components and Molecular Mechanisms of the Glycoside Fraction from Picrorhiza scrophulariiflora Against Experimental Colitis. Drug Des Devel Ther 2023; 17:1531-1546. [PMID: 37249930 PMCID: PMC10224697 DOI: 10.2147/dddt.s407339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose To explore the potential mechanism of glycosidic fraction of Picrorhiza scrophulariiflora Pennell (GPS) extract for the treatment of colitis using UPLC-QTOF-MS analysis, network pharmacology and experimental research. Methods The active components of GPS extract were identified by UPLC-QTOF-MS analysis and extracted their targets from the databases, which was used for network pharmacology analysis. Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis was performed to discover potential therapeutic mechanisms, and the network pharmacology results were then validated by in vivo and in vitro experiments. Results The results showed that GPS extract significantly alleviated the clinical signs of colitis, including body weight, disease activity index, colon shortening, and colon tissue damage, and inhibited the transcription and production of colonic IL-1β and IL-6 in DSS-induced colitis mice. In vitro, GPS extract also significantly suppressed nitric oxide (NO) production, iNOS expression, IL-1β and IL-6 transcription of LPS-activated RAW 264.7 cells. Network pharmacology integrated with experimental validation identified that GPS extract significantly suppressed Akt, p38, ERK, and JNK phosphorylation in vivo and in vitro, and luteolin, apocynin, caffeic acid, caffeic acid methyl ester, luteoloside, picroside II, aucubin, cinnamic acid, vanillic acid, and sweroside were the main components responsible for the anti-inflammatory effect of GPS. These findings demonstrate that the potential anti-inflammatory effect of GPS extract against colitis is achieved through suppressing PI3K/Akt and MAPK pathways, and that the abovementioned active components mainly exerted its anti-inflammatory effect. Conclusion The therapeutic effect of GPS extract on colitis is related to PI3K/Akt and MAPK pathways, which is a promising remedy for colitis therapy.
Collapse
Affiliation(s)
- Peigen Wu
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Churui Chang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Guanglin Zhu
- Traditional Chinese Medicine Hospital of Qijiang, Chongqing, People’s Republic of China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xu Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Qiuchan Huan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Zhengxian Gao
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Huan Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| |
Collapse
|
12
|
Yan X, Zhang Y, Lang H, Huang Z, Chen X, He H, Zhao Q, Wang J. Research on the mechanism of prednisone in the treatment of ITP via VIP/PACAP-mediated intestinal immune dysfunction. Eur J Med Res 2023; 28:67. [PMID: 36750876 PMCID: PMC9906942 DOI: 10.1186/s40001-023-00987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
RATIONALE Immune thrombocytopenia (ITP) is thought to be a result of immune dysfunction, which is treated by glucocorticoids such as prednisone. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) have immunomodulatory properties, but their role in intestinal immune control is unclear. The major goal of this study was to look at the effects of prednisone on platelet, VIP, and PACAP levels in ITP mice, as well as the regulatory system that controls intestinal immunity. METHODS Eighteen BALB/c mice were randomly divided into three groups: blank control group, model control group, and prednisone group, with six mice in each group. The ITP animal model control group and the prednisone group were injected with anti-platelet serum (APS) to replicate the ITP animal model. The prednisone group began prednisone intervention on the 8th day. Platelet count was dynamically measured before APS injection, on the 4th day of injection, on the 1st day of administration, on the 4th day of administration, and at the end of the experiment. After the experiment, the expression of p53 protein in mouse mesenteric lymph node lymphocytes was detected by immunohistochemistry. The changes in lymphocyte apoptosis rate in mouse mesenteric lymph nodes were detected by in situ terminal transferase labeling (TUNEL). The contents of VIP and PACAP in the mouse brain, colon, and serum were detected by enzyme-linked immunosorbent assay (ELISA). The contents of IFN-γ, IL-4, IL-10, IL-17A in the mouse spleen were detected by ELISA. RESULTS ①Changes of peripheral platelet count: there was no significant difference in platelet count among the three groups before modeling; on the 4th day, the platelet count decreased in the model control group and prednisone group; on the 8th day, the number of platelets in model control group and prednisone group was at the lowest level; on the 12th day, the platelet count in prednisone group recovered significantly; on the 15th day, the platelet count in prednisone group continued to rise. ②Changes of VIP, PACAP: compared with the blank control group, VIP and PACAP in the model control group decreased significantly in the brain, colon, and serum. Compared with the model control group, the levels of VIP and PACAP in the brain, colon, and serum in the prednisone group were increased except for serum PACAP. ③Changes of mesenteric lymphocytes: the expression of p53 protein in the mesenteric lymph nodes of model control group mice was significantly higher than that of blank control group mice. After prednisone intervention, the expression of p53 protein decreased significantly.④Changes of cytokines in spleen: compared with blank control group, IFN- γ, IL-17A increased and IL-4 and IL-10 decreased in model control group. After prednisone intervention, IFN- γ, IL-17A was down-regulated and IL-4 and IL-10 were upregulated. CONCLUSIONS Prednisone-upregulated VIP and PACAP levels decreased P53 protein expression and apoptosis rate in mesenteric lymph node lymphocytes and affected cytokine expression in ITP model mice. Therefore, we speculate that the regulation of intestinal immune function may be a potential mechanism of prednisone in treating ITP.
Collapse
Affiliation(s)
- Xiang Yan
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yayue Zhang
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Lang
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Huang
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Chen
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao He
- grid.508540.c0000 0004 4914 235XXi’an Medical University, Xi An, Shaanxi China
| | - Qian Zhao
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China. .,Department of Hematology, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Jiang S, Miao Z. High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: emerging mechanisms and dietary intervention perspective. Am J Transl Res 2023; 15:653-677. [PMID: 36915785 PMCID: PMC10006746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023]
Abstract
The incidence of ulcerative colitis (UC) is increasing worldwide, but its pathogenesis remains largely unclear. The intestinal mucosa is a barrier that maintains the stability of the body's internal environment, and dysfunction of this barrier leads to the occurrence and aggravation of UC. A high-fat diet (HFD) contains more animal fat and low fiber, and accumulating evidence has shown that long-term intake of an HFD is associated with UC. The mechanism linking an HFD with intestinal mucosal barrier disruption is multifactorial, and it typically involves microbiota dysbiosis and altered metabolism of fatty acids, bile acids, and tryptophan. Dysbiosis-induced metabolic changes can enhance intestinal permeability through multiple pathways. These changes modulate the programmed death of intestinal epithelial cells, inhibit the secretion of goblet cells and Paneth cells, and impair intercellular interactions. Gut metabolites can also induce intestinal immune imbalance by stimulating multiple proinflammatory signaling pathways and decreasing the effect of anti-inflammatory immune cells. In this review, we critically analyze the molecular mechanisms by which an HFD disrupts the intestinal mucosal barrier (IMB) and contributes to the development of UC. We also discuss the application and future direction of dietary intervention in the treatment of the IMB and prevention of UC.
Collapse
Affiliation(s)
- Shijing Jiang
- First Clinical Medical College, Nanjing University of Chinese Medicine Nanjing, Jiangsu, China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine Zhangjiagang, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Wang X, Zhang L, Feng M, Xu Z, Cheng Z, Qian L. ELA-11 protects the heart against oxidative stress injury induced apoptosis through ERK/MAPK and PI3K/AKT signaling pathways. Front Pharmacol 2022; 13:873614. [PMID: 36160397 PMCID: PMC9492932 DOI: 10.3389/fphar.2022.873614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence revealed that apoptosis and oxidative stress injury were associated with the pathophysiology of doxorubicin (DOX)-induced myocardial injury. ELABELA (ELA) is a newly identified peptide with 32 amino acids, can reduce hypertension with exogenous infusion. However, the effect of 11-residue furn-cleaved fragment (ELA-11) is still unclear. We first administrated ELA-11 in DOX-injured mice and measured the cardiac function and investigated the effect of ELA-11 in vivo. We found that ELA-11 alleviated heart injury induced by DOX and inhibited cardiac tissues from apoptosis. In vitro, ELA-11 regulated the sensitivity towards apoptosis induced by oxidative stress with DOX treatment through PI3K/AKT and ERK/MAPK signaling pathway. Similarly, ELA-11 inhibited oxidative stress-induced apoptosis in cobalt chloride (CoCl2)-injured cardiomyocytes. Moreover, ELA-11 protected cardiomyocyte by interacting with Apelin receptor (APJ) by using 4-oxo-6-((pyrimidin-2-ylthio) methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221). Hence, our results indicated a protective role of ELA-11 in oxidative stress-induced apoptosis in DOX-induced myocardial injury.
Collapse
Affiliation(s)
- Xuejun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengwen Feng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqing Xu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijie Cheng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Cheng, ; Lingmei Qian,
| | - Lingmei Qian
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Cheng, ; Lingmei Qian,
| |
Collapse
|
15
|
Dong L, Zhang R, Huang Q, Shen Y, Li H, Yu S, Wu Q. Construction, bioinformatics analysis, and validation of competitive endogenous RNA networks in ulcerative colitis. Front Genet 2022; 13:951243. [PMID: 36061211 PMCID: PMC9428148 DOI: 10.3389/fgene.2022.951243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a common chronic disease of the digestive system. Recently, competitive endogenous RNAs (ceRNAs) have been increasingly used to reveal key mechanisms for the pathogenesis and treatment of UC. However, the role of ceRNA in UC pathogenesis has not been fully clarified. This study aimed to explore the mechanism of the lncRNA-miRNA-mRNA ceRNA network in UC and identify potential biomarkers and therapeutic targets. Materials and Methods: An integrative analysis of mRNA, microRNA (miRNA), and long non-coding RNA (lncRNA) files downloaded from the Gene Expression Omnibus (GEO) was performed. Differentially expressed mRNA (DE-mRNAs), miRNA (DE-miRNAs), and lncRNA (DE-lncRNAs) were investigated between the normal and UC groups by the limma package. A weighted correlation network analysis (WGCNA) was used to identify the relative model for constructing the ceRNA network, and, concurrently, miRWalk and DIANA-LncBase databases were used for target prediction. Consecutively, the Gene Ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway, and Reactome pathway enrichment analyses, protein-protein interaction (PPI) network, Cytohubba, and ClueGO were performed to identify hub genes. Additionally, we examined the immune infiltration characteristics of UC and the correlation between hub genes and immune cells using the immuCellAI database. Finally, the expression of potential biomarkers of ceRNA was validated via qRT-PCR in an experimental UC model induced by dextran sulfate sodium (DSS). Result: The ceRNA network was constructed by combining four mRNAs, two miRNAs, and two lncRNAs, and the receiver operating characteristic (ROC) analysis showed that two mRNAs (CTLA4 and STAT1) had high diagnostic accuracy (area under the curve [AUC] > 0.9). Furthermore, CTLA4 up-regulation was positively correlated with the infiltration of immune cells. Finally, as a result of this DSS-induced experimental UC model, CTLA4, MIAT, and several associate genes expression were consistent with the results of previous bioinformatics analysis, which proved our hypothesis. Conclusion: The investigation of the ceRNA network in this study could provide insight into UC pathogenesis. CTLA4, which has immune-related properties, can be a potential biomarker in UC, and MIAT/miR-422a/CTLA4 ceRNA networks may play important roles in UC.
Collapse
Affiliation(s)
- Longcong Dong
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruibin Zhang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Huang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Shen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Li
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuguang Yu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaofeng Wu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Qiaofeng Wu,
| |
Collapse
|
16
|
Lamana A, Castro-Vázquez D, de la Fuente H, Triguero-Martínez A, Martínez-Hernández R, Revenga M, Villanueva-Romero R, Llamas-Velasco M, Chicharro P, Juarranz Y, Marazuela M, Sales-Sanz M, García-Vicuña R, Tomero E, González-Álvaro I, Martínez C, Gomariz RP. VIP/VPAC Axis Expression in Immune-Mediated Inflammatory Disorders: Associated miRNA Signatures. Int J Mol Sci 2022; 23:ijms23158578. [PMID: 35955723 PMCID: PMC9369218 DOI: 10.3390/ijms23158578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Few studies have considered immune-mediated inflammatory disorders (IMID) together, which is necessary to adequately understand them given they share common mechanisms. Our goal was to investigate the expression of vasoactive intestinal peptide (VIP) and its receptors VPAC1 and VPAC2 in selected IMID, analyze the effect of biological therapies on them, and identify miRNA signatures associated with their expression. Serum VIP levels and mRNA of VPAC and miRNA expression in peripheral blood mononuclear cells were analyzed from 52 patients with psoriasis, rheumatoid arthritis, Graves’ disease, or spondyloarthritis and from 38 healthy subjects. IMID patients showed higher levels of VIP and increased expression of VPAC2 compared to controls (p < 0.0001 and p < 0.0192, respectively). Receiver operating characteristic curve analysis showed that the levels of VIP or VPAC2 expression were adequate discriminators capable of identifying IMID. Treatment of IMID patients with anti-TNFα and anti-IL12/23 significantly affected serum VIP levels. We identified miRNA signatures associated with levels of serum VIP and VPAC2 expression, which correlated with IMID diagnosis of the patients. The results indicate that the expression of VIP/VPAC2 is able of identify IMIDs and open up a line of research based on the association between the VIP/VPAC axis and miRNA signatures in immune-mediated diseases.
Collapse
Affiliation(s)
- Amalia Lamana
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - David Castro-Vázquez
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Ana Triguero-Martínez
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (R.M.-H.); (M.M.)
| | - Marcelino Revenga
- Department of Rheumatology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Department of Medicine and Medical Specialties, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Mar Llamas-Velasco
- Department of Dermatology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (M.L.-V.); (P.C.)
| | - Pablo Chicharro
- Department of Dermatology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (M.L.-V.); (P.C.)
| | - Yasmina Juarranz
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Mónica Marazuela
- Department of Endocrinology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (R.M.-H.); (M.M.)
| | - Marco Sales-Sanz
- Department of Ophthalmology, Hospital Universitario Ramón y Cajal-IRYCIS, 28034 Madrid, Spain;
| | - Rosario García-Vicuña
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Eva Tomero
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Isidoro González-Álvaro
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Carmen Martínez
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
- Correspondence: (C.M.); (R.P.G.); Tel.: +34-91-3944971 (R.P.G.)
| | - Rosa P. Gomariz
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
- Correspondence: (C.M.); (R.P.G.); Tel.: +34-91-3944971 (R.P.G.)
| |
Collapse
|
17
|
Xie X, Geng C, Li X, Liao J, Li Y, Guo Y, Wang C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022; 151:170753. [PMID: 35114316 DOI: 10.1016/j.peptides.2022.170753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
The intestinal barrier is a dynamic entity that is organized as a multilayer system and includes various intracellular and extracellular elements. The gut barrier functions in a coordinated manner to impede the passage of antigens, toxins, and microbiome components and simultaneously preserves the balanced development of the epithelial barrier and the immune system and the acquisition of tolerance to dietary antigens and intestinal pathogens.Numerous scientific studies have shown a significant association between gut barrier damage and gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and hepatic fibrosis. Various internal and external factors regulate the intestinal barrier. Gastrointestinal peptides originate from enteroendocrine cells in the luminal digestive tract and are critical gut barrier regulators. Recent studies have demonstrated that gastrointestinal peptides have a therapeutic effect on digestive tract diseases, enhancing epithelial barrier activity and restoring the gut barrier. This review demonstrates the roles and mechanisms of gastrointestinal polypeptides, especially somatostatin (SST) and vasoactive intestinal peptide (VIP), in intestinal barrier regulation.
Collapse
Affiliation(s)
- Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Liao
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Xu Z, Zhang X, Wang W, Zhang D, Ma Y, Zhang D, Chen M. Fructus Mume (Wu Mei) Attenuates Acetic Acid-Induced Ulcerative Colitis by Regulating Inflammatory Cytokine, Reactive Oxygen Species, and Neuropeptide Levels in Model Rats. J Med Food 2022; 25:389-401. [PMID: 35438553 DOI: 10.1089/jmf.2021.k.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of the large intestine. Fructus mume (FM), a natural food with nutritive and pharmaceutical value, has demonstrated therapeutic efficacy against UC. In this study, we investigated the protective effects and mechanisms of FM against UC. We induced UC in rats with 4% (v/v) acetic acid (AA), orally administered 0.7 or 0.325 g/kg FM and 0.3 g/kg sulfasalazine (SASP) for 7 days, and explored the responses the drugs elicited in the rats. We assessed the general conditions of the rats by the disease active index. We evaluated colon tissue damage macroscopically and by Hematoxylin & Eosin, Alcian Blue-periodic acid-Schiff, and Masson's staining, and explored the potential mechanisms of FM on inflammation, oxidative stress, and neuropeptides by measuring TNF-α, IL-6, IL-8, IL-10, MMP9, CXCR-1, SOD, GSH-px, MDA, ROS, SIRT3, SP, VIP, ghrelin, and 5-HT. FM treatment significantly attenuated colon damage and submucosal fibrosis compared with the model. It lowered serum proinflammatory TNF-α, IL-8, and colonic MMP9 and CXCR-1, and raised serum anti-inflammatory IL-10 levels. FM upregulated the antioxidant enzymes SOD, GSH-px, and SITR3 protein but inhibited ROS and MDA production. It downregulated colonic SP, VIP, ghrelin, and 5-HT. The beneficial effects of FM might be dose dependent. Around 0.7 g/kg FM and SASP displayed similar efficacy for treating AA-induced colitis in rats. Our results provide empirical evidence that FM protects against AA-induced UC in rats via anti-inflammatory and antioxidant mechanisms, and regulates neuropeptides; thus, FM may be a promising, safe, and efficacious alternative therapy for UC, if its efficacy can be confirmed in human trials.
Collapse
Affiliation(s)
- Zongying Xu
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenya Wang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dongmei Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Peng L, Wang X, Bing D. Identification and Validation of Prognostic Factors of Lipid Metabolism in Obstructive Sleep Apnea. Front Genet 2021; 12:747576. [PMID: 34880901 PMCID: PMC8645574 DOI: 10.3389/fgene.2021.747576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is considered to be an independent factor affecting lipid metabolism. This study explored the relationship between immune genes and lipid metabolism in OSA. Methods: Immune-related Differentially Expressed Genes (DEGs) were identified by analyzing microarray data sets from the Gene Expression Omnibus (GEO) database. Subsequently, we conducted protein-protein interaction (PPI) network analysis and calculated their Gene Ontology (GO) semantic similarity. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Disease Ontology (DO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were employed for functional enrichment analyses and to determine the most significant functional terms. Combined with the results of boruta and random forest, we selected predictors to build a prognostic model, along with seeking out the potential TFs and target drugs for the predictive genes. Results: Immune-related DEGs included 64 genes upregulated and 98 genes downregulated. The enrichment analysis might closely associate with cell adhesion and T cell-mediated immunity pathways and there were many DEGs involved in lipid and atherosclerosis signaling pathways. The highest-ranking hub gene in PPI network have been reported lowly expressed in OSA. In line with the enrichment analysis, DO analysis reveal that respiratory diseases may be associated with OSA besides immune system disorders. Consistent with the result of the KEGG pathway, the analysis of GSVA revealed that the pro-inflammation pathways are associated with OSA. Monocytes and CD8 T cells were the predominant immune cells in adipose tissue. We built a prognostic model with the top six genes, and the prognostic genes were involved in the polarization of macrophage and differentiation of T lymphocyte subsets. In vivo experimental verification revealed that EPGN, LGR5, NCK1 and VIP were significantly down-regulated while PGRMC2 was significantly up-regulated in mouse model of OSA. Conclusions: Our study demonstrated strong associations between immune genes and the development of dyslipidemia in OSA. This work promoted the molecular mechanisms and potential targets for the regulation of lipid metabolism in OSA.
Collapse
Affiliation(s)
- Lu Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dan Bing
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
21
|
Tong Xie Yao Fang: A Classic Chinese Medicine Prescription with Potential for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548764. [PMID: 34211567 PMCID: PMC8208878 DOI: 10.1155/2021/5548764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The prescription of Tong Xie Yao Fang (TXYF) was derived from the Yuan dynasty “Dan Brook Heart Law,” which was a representative formula for treating liver-spleen disharmony, diarrhea, and abdominal pain. The prescription is composed of four herbs for soothing the liver and strengthening the spleen. TXYF is reportedly capable of eliminating discomfort in ulcerative colitis (UC). This classic formula has been widely used for regulating gastrointestinal motor dysfunction and repairing colon mucosa. This review aims to provide current information on the pharmacology and clinical research of TXYF in the treatment of UC, and to critically appraise that information, in order to guide the future clinical use and experimental study of TXYF in the treatment of UC. We searched online databases including PubMed, CNKI, and Google Scholar for research published between 2010 and 2020 on TXYF and its efficacy in the treatment of UC. The findings indicated that TXYF has anti-inflammatory and immunomodulatory effects, regulates cell signal transduction, brain-gut axis, and intestinal flora in UC, and may promote targeting of bone mesenchymal stem cells (BMSCs) to the colonic mucosa and accelerate healing of the colonic mucosal barrier. In addition, the results of clinical studies showed that TXYF has good efficacy and few adverse reactions in the treatment of UC. Although it has achieved some success, the research is limited by deficiencies; there is a lack of unified standards for the construction of UC animal models and for administration regimen. In addition, the dosage of TXYF is not consistent and lacks pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. Therefore, a more rigorous, comprehensive, and in-depth study of TXYF in the treatment of UC is needed.
Collapse
|
22
|
Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol 2021; 12:592914. [PMID: 33936028 PMCID: PMC8082147 DOI: 10.3389/fimmu.2021.592914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
With the ability to induce T cell activation and elicit humoral responses, B cells are generally considered as effectors of the immune system. However, the emergence of regulatory B cells (Bregs) has given new insight into the role of B cells in immune responses. Bregs exhibit immunosuppressive functions via diverse mechanisms, including the secretion of anti-inflammatory cytokines and direct cell contact. The balance between Bregs and effector B cells is important for the immune tolerance. In this review, we focus on recent advances in the characteristics of Bregs and their functional roles in autoimmunity.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Bergenin Attenuates Hepatic Fibrosis by Regulating Autophagy Mediated by the PPAR- γ/TGF- β Pathway. PPAR Res 2020; 2020:6694214. [PMID: 33488687 PMCID: PMC7790590 DOI: 10.1155/2020/6694214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a pathological process involving diffuse extracellular matrix (ECM) deposition in the liver. It is typical of many chronic liver diseases, including cirrhosis, and effective drugs are needed. In this study, we explored the protective effect of bergenin on liver fibrosis induced by carbon tetrachloride and bile duct ligation. A variety of molecular biological methods (qRT-PCR, western blotting, and immunohistochemistry) were employed to confirm the increased degree of hepatocyte injury and ECM formation in the disease model, consistent with autophagy and activation of the TGF-β pathway. Bergenin activated PPAR-γ and inhibited TGF-β and autophagy and decreased liver fibrosis by inhibiting hepatocyte necrosis and ECM formation in a dose-dependent manner. The results suggest that bergenin may be a promising drug candidate for the treatment of liver fibrosis.
Collapse
|
24
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
25
|
Wang Y, Wu Y, Sailike J, Sun X, Abuduwaili N, Tuoliuhan H, Yusufu M, Nabi XH. Fourteen composite probiotics alleviate type 2 diabetes through modulating gut microbiota and modifying M1/M2 phenotype macrophage in db/db mice. Pharmacol Res 2020; 161:105150. [DOI: 10.1016/j.phrs.2020.105150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
26
|
Rychlik A, Gonkowski S, Całka J, Makowska K. Vasoactive Intestinal Polypeptide (VIP) in the Intestinal Mucosal Nerve Fibers in Dogs with Inflammatory Bowel Disease. Animals (Basel) 2020; 10:ani10101759. [PMID: 32998326 PMCID: PMC7599766 DOI: 10.3390/ani10101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Canine inflammatory bowel disease (IBD)—a group of gastrointestinal disorders—is a serious problem in veterinary medicine. The etiology of IBD remains unknown, and its diagnosis and effective treatment are difficult. One of the less-known aspects of IBD pathology is the influence of this disease on the enteric nervous system, which is located in the intestinal wall and regulates most of the gastrointestinal functions. Therefore, the aim of the present study was to evaluate the influence of IBD on the intramucosal nerve fibers containing vasoactive intestinal polypeptide (VIP). VIP is one of the most important substances produced by the enteric nervous structures that is involved in many regulatory processes in the gastrointestinal tract. The obtained results show that IBD induces changes in the density of intramucosal VIP-positive nerve fibers in the canine gastrointestinal tract. It suggests that VIP is involved in the pathological processes occurring during this disease. Observed changes may be a result of neuroprotective and/or adaptive processes regulated by VIP, aimed at the homeostasis maintenance in the inflamed gastrointestinal (GI) tract and induced by proinflammatory factors. Abstract Canine inflammatory bowel disease (IBD) is a group of enteropathies with nonspecific chronic symptoms and poorly understood etiology. Many aspects connected with IBD are not understood. One of them is the participation of the intestinal nervous system in the development of pathological processes. Thus, this study aimed to demonstrate changes in the density of intramucosal nerve fibers containing vasoactive intestinal polypeptide (VIP)—one of the most important intestinal nervous factors caused by the various stages of IBD development. Mucosal biopsy specimens collected from the duodenum, jejunum and descending colon of healthy dogs and dogs with varied severity of IBD were included in the experiment. The density of VIP-like immunoreactive (VIP-LI) nerves was determined by a single immunofluorescence technique and a semi-quantitative method consisting in VIP-LI fiber counts in the field of view (0.1 mm2). The obtained results indicate that IBD induces changes in the density of mucosal VIP-LI nerve fibers in the canine gastrointestinal tract. The initial decrease is followed by an increase in VIP-like immunoreactivity in successive stages of the disease. These observations show that VIP is a neuronal factor that participates in the pathological processes connected with canine IBD. The observed changes probably result from the neuroprotective and/or adaptive properties of VIP. Protective and adaptive reactions induced by inflammation aim to protect the GI tract against damage by proinflammatory factors and ensure the homeostasis in the enteric nervous system (ENS) under the conditions changed by the disease process.
Collapse
Affiliation(s)
- Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland;
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland; (S.G.); (J.C.)
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland; (S.G.); (J.C.)
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland;
- Correspondence: ; Tel.: +44-895-234-460
| |
Collapse
|
27
|
Zeng HT, Liu JQ, Zhao M, Yu D, Yang G, Mo LH, Liu ZQ, Wang S, Liu ZG, Yang PC. Exosomes carry IL-10 and antigen/MHC II complexes to induce antigen-specific oral tolerance. Cytokine 2020; 133:155176. [PMID: 32563958 DOI: 10.1016/j.cyto.2020.155176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND It is known that the immune tolerance can be naturally established in the intestine, while the mechanism by which the immune tolerance development in the intestine is not fully understood yet. Vasoactive intestinal peptides (VIP) has the immune regulatory functions. This study aims to investigate the role of VIP in the immune tolerance development in the intestine. METHODS Intestinal epithelial cell (IEC)-derived exosomes were prepared. The exosomes carried IL-10 and antigen/MHC II complexes. VIP-deficient (VIPd) mice and wild type mice were employed to test the role of VIP in the development of immune tolerance in the intestine. RESULTS VIPd mice failed to induce type 1 regulatory T cells (Tr1 cells) in the intestine and retarded the establishment of antigen (Ag)-specific immune tolerance. Exposure to VIP in the culture induced IL-10 expression in intestinal epithelial cells (IECs). Exosomes derived from ovalbumin (OVA, used as a specific Ag)/VIP-primed IECs carried IL-10 and OVA/MHC II complexes; these exosomes were designated IL10CARs (IL-10/chimeric antigen receptor-carrying exosomes). IL10CARs could recognize OVA-specific CD4+ T cells and converted OVA-specific CD4± T cells to OVA-specific Tr1 cells. Administration of IL10CARs suppressed experimental food allergy. CONCLUSIONS The data show that IL10CARs are capable of suppressing experimental FA by inducing antigen-specific Tr1 cells, which has the translation potential for FA treatment.
Collapse
Affiliation(s)
- Hao-Tao Zeng
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Jiang-Qi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Miao Zhao
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Dian Yu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Li-Hua Mo
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhi-Qiang Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Shuai Wang
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China.
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.
| |
Collapse
|
28
|
Khare T, Palakurthi SS, Shah BM, Palakurthi S, Khare S. Natural Product-Based Nanomedicine in Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:E3956. [PMID: 32486445 PMCID: PMC7312938 DOI: 10.3390/ijms21113956] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
: Many synthetic drugs and monoclonal antibodies are currently in use to treat Inflammatory Bowel Disease (IBD). However, they all are implicated in causing severe side effects and long-term use results in many complications. Numerous in vitro and in vivo experiments demonstrate that phytochemicals and natural macromolecules from plants and animals reduce IBD-related complications with encouraging results. Additionally, many of them modify enzymatic activity, alleviate oxidative stress, and downregulate pro-inflammatory transcriptional factors and cytokine secretion. Translational significance of natural nanomedicine and strategies to investigate future natural product-based nanomedicine is discussed. Our focus in this review is to summarize the use of phytochemicals and macromolecules encapsulated in nanoparticles for the treatment of IBD and IBD-associated colorectal cancer.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (B.M.S.); (S.P.)
| | - Brijesh M. Shah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (B.M.S.); (S.P.)
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (B.M.S.); (S.P.)
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| |
Collapse
|
29
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
30
|
Zeng HT, Zhao M, Yang SB, Huang H, Geng XR, Liu JQ, Yang G, Li DC, Yang LT, Zheng PY, Yang PC. Vasoactive intestinal peptide alleviates food allergy via restoring regulatory B cell functions. Immunobiology 2019; 224:804-810. [PMID: 31471097 DOI: 10.1016/j.imbio.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
The immune regulatory cell dysfunction is associated with many immune diseases including food allergy (FA). This study aims to investigate the role of vasoactive intestinal peptide (VIP) in the maintenance of regulatory B cell (Br cell)'s immune suppressive functions by stabilizing thrombospondin (TSP1) expression. In this study, blood samples were collected from patients with food allergy (FA) and healthy control (HC) subjects. Br cells were isolated from the samples through flow cytometry cell sorting and analyzed by immunological approaches to determine the immune regulatory capacity. We found that the immune suppressive functions of Br cells were impaired in FA patients. The serum VIP levels were associated with the production of immune suppressive function-related mediators (interleukin-10, IL-10) of Br cells in FA patients. VIP counteracted IL-10 mRNA decay in Br cells by up regulating the TSP1 expression. TSP1 inhibited tristetraprolin (TTP) to prevent IL-10 mRNA decay in Br cells. Administration of VIP inhibited FA response through restoration of immune suppressive functions in Br cells. In conclusion, administration of VIP can alleviate FA response through up regulating expression of TSP1 to stabilize IL-10 expression in FA Br cells and recover the immune regulatory functions. The results have translational potential for the treatment of FA and other disorders associated with immune regulatory dysfunction of Br cells.
Collapse
Affiliation(s)
- Hao-Tao Zeng
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China
| | - Miao Zhao
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Shao-Bo Yang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, China
| | - Huang Huang
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Rui Geng
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Jiang-Qi Liu
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Gui Yang
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Dong-Cai Li
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China
| | - Li-Tao Yang
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Peng-Yuan Zheng
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China.
| |
Collapse
|