1
|
Yang Z, Wang L, Kang F. Immunogenic cell death: A promising mechanism involving different therapeutic strategies for liver cancer. Int J Cancer 2025. [PMID: 40448266 DOI: 10.1002/ijc.35496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/30/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025]
Abstract
Hepatocellular carcinoma is a malignant tumor with a high mortality rate that seriously endangers human health. Although there are various treatments for hepatocellular carcinoma, the 5-year survival rate and prognosis of patients are still poor, depending on the stage. The proposal of immunogenic cell death provides a new idea and direction for the treatment of HCC. A variety of drugs act as effective inducers of ICD to induce the immunogenicity of tumor cells, significantly kill tumor cells, activate the body's inherent and adaptive immunity while producing and releasing damage-related molecular patterns, and significantly improve the treatment effect and side effects. This article briefly classifies the existing ICD inducers and describes how DAMPs change in this process. By summarizing the existing ICD-related studies applied to HCC treatment and proposing improvement methods for existing problems, this paper provides a theoretical summary for the future exploration of new therapies for HCC.
Collapse
Affiliation(s)
- Ziye Yang
- Department of Hepatology, Bethune International Peace Hospital, Shijiazhuang, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fubiao Kang
- Department of Hepatology, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Zhang H, Yuan F, Zhao N, Tang W, Zhao P, Liu C, Chen S, Hou X, Xia C, Chu J. Nanoparticle-mediated SIRT1 inhibition suppresses M2 macrophage polarization and hepatocarcinogenesis in chronic hepatitis B. J Nanobiotechnology 2025; 23:385. [PMID: 40426198 PMCID: PMC12117705 DOI: 10.1186/s12951-025-03447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major complication of chronic hepatitis B (CHB), with macrophage M2 polarization playing a critical role in shaping the tumor-promoting hepatic immune microenvironment. Sirtuin 1 (SIRT1) has been implicated in immune modulation and liver carcinogenesis. This study investigates the potential of Mimetic Nanoparticles (MNPs) for delivering SIRT1 inhibitors to regulate macrophage polarization and remodel the hepatic immune microenvironment, aiming to prevent HCC development post-CHB. A transgenic mouse model of CHB was established, and RNA sequencing (RNA-seq) and proteomics analyses revealed significant dysregulation of genes associated with M2 macrophage polarization, particularly SIRT1. Functional enrichment analysis highlighted key pathways, including PI3K-Akt and NF-κB, that contribute to CHB-driven immune alterations. Synthesized and characterized MNPs successfully delivered SIRT1 inhibitors, effectively inhibiting M2 macrophage polarization in vitro. In vivo administration of MNPs-SIRT1-FN significantly reduced M2 macrophage infiltration and suppressed tumor growth. These findings suggest that nanoparticle-mediated SIRT1 inhibition is a promising strategy for immunomodulation and HCC prevention in CHB patients. This study provides novel insights into nanoparticle-based immunotherapy for CHB-related HCC and highlights a potential therapeutic avenue for liver cancer prevention.
Collapse
Affiliation(s)
- He Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Feng Yuan
- Laboratory of Inflammation and Vaccines, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nan Zhao
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Wenqiang Tang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, China
| | - Pengwei Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Chunfa Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, China
| | - Shan Chen
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, China.
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jun Chu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, China.
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, China.
| |
Collapse
|
3
|
Deng Y, Yang B, Yang Z, Xiao H, Zou Y, Zou C, Yang S, Sun X, Wang Y, Bai J, Fang L, Wang Z. Engineered E. coli OMVs Carrying the Membrane-Binding hGC33 Fragment Precisely Target Liver Cancer and Effectively Treat Tumor. Int J Nanomedicine 2025; 20:6573-6590. [PMID: 40433120 PMCID: PMC12106912 DOI: 10.2147/ijn.s513508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background Glypican-3 (GPC3), which is a membrane-associated antigen that is overexpressed in hepatocellular carcinoma (HCC). hGC33, a humanized anti-GPC3 antibody, has been validated as a potential antibody drug with good antitumor activity by preclinical studies and the Phase II clinical trial. However, free drug usually lack good tumor penetration. Outer membrane vesicles (OMVs) that are secreted by Escherichia coli function as natural vectors for molecule delivery and mediators of biological signals across tissues. Our study aimed to engineer E. coli for use as a platform to precisely deliver the hGC33 single-chain variable fragment (hGC33-scFv) for the targeted treatment of HCC. Methods In this study, we utilized E. coli BL21(DE3) to express Hbp-hGC33-scFv fusion protein and generated E. coli hGC33-OMVs. After isolation and characterization, we assessed their chemotaxis toward HepG2 cells by Transwell, coimmunoprecipitation (co-IP) to confirm hGC33-GPC3 binding, and immunofluorescence (IF) to evaluate the localization of hGC33 on OMV membranes. The in vivo efficacy was assessed in BALB/c nude mice harboring HepG2 cell-derived xenografts, and tumor targeting was analyzed with Cy7-labeled OMVs and live imaging. Proliferation assays, cell cycle analysis, and Wnt pathway expression analysis were performed to elucidate the underlying mechanisms. Results hGC33-OMVs exhibited spherical bilayered nanostructures and displayed hGC33-scFv on their surface. hGC33-OMVs preferentially accumulated in tumors, significantly reducing tumor volume compared with controls and downregulating the proliferation markers Ki67 and PCNA. Transwell assays revealed increased tropism of hGC33-OMVs toward HepG2 cells, while Co-IP confirmed the direct interaction between hGC33 and GPC3. Meanwhile, hGC33-OMVs suppressed HepG2 cell proliferation, induced G1-phase arrest, and reduced Wnt3a, β-catenin, Cyclin D1, and C-myc expression. Conclusion Engineered E. coli hGC33-OMVs effectively target HCC via the hGC33-GPC3 interaction, inhibit tumor growth by suppressing Wnt signaling, and demonstrate potential for use as a versatile platform for antibody delivery.
Collapse
Affiliation(s)
- Yufei Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bangya Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zelan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hanyu Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Cheng Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Song Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xi Sun
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yiting Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, People’s Republic of China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
4
|
Muteeb G, El-Morsy MT, Abo-Taleb MA, Mohamed SK, Khafaga DSR. Herbal Medicine: Enhancing the Anticancer Potential of Natural Products in Hepatocellular Carcinoma Therapy Through Advanced Drug Delivery Systems. Pharmaceutics 2025; 17:673. [PMID: 40430962 PMCID: PMC12114929 DOI: 10.3390/pharmaceutics17050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and prevalent liver cancer with a poor prognosis. Nanotechnology combined with natural products has emerged as a promising strategy to enhance HCC treatment efficacy. This review assesses the current literature on the application of nanotechnology in delivering natural products for HCC therapy. A comprehensive search was conducted in PubMed, Science Direct, Web of Science, and Google Scholar to identify relevant studies published up to the present articles focusing on nanotechnology-based drug delivery systems using natural products for HCC therapy, including different nanoparticle (NP) formulations and therapeutic interventions, were included. Natural products with anticancer properties have been encapsulated using various nanocarriers such as liposomes, polymeric nanoparticles, and quantum dots, which have improved drug stability, prolonged circulation time, and enhanced targeted delivery to HCC cells. These advancements have led to increased therapeutic efficacy and reduced side effects. Additionally, combining multiple natural products or integrating them with conventional therapies via nanocarriers enables personalized treatment approaches based on patient characteristics and molecular profiles. The integration of nanotechnology with natural products shows great potential for improving HCC treatment outcomes, representing a significant advancement in precision medicine for liver cancer and paving the way for more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manar T. El-Morsy
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza 12613, Egypt;
| | | | | | | |
Collapse
|
5
|
Wu W, Mao H, Song J, Yang F. Bibliometric analysis of hepatocellular carcinoma and tyrosine kinase inhibitors. Medicine (Baltimore) 2025; 104:e42015. [PMID: 40388796 PMCID: PMC12091622 DOI: 10.1097/md.0000000000042015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/13/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor globally and in China, and its incidence and mortality rate are increasing year by year, and it faces many challenges and difficulties in treatment. Tyrosine kinase inhibitors (TKIs) have important roles in cell growth, proliferation, and differentiation, and have now become important drugs for cancer treatment. There are no bibliometric studies on liver cancer and TKIs to date. METHODS We retrieved 2848 records from the Web of Science™ Core Collection (WoSCC) database and analyzed them scientifically and metrically using CiteSpace and VOSviewer in terms of temporal and spatial distributions, author distributions, journal distributions, references, and keywords. RESULTS From January 1, 2004, to December 31, 2023, the WoSCC database documented 2848 publications related to tyrosinase inhibitors in HCC, comprising 2151 articles and 697 reviews. This literature involved 80 countries and regions, 3265 institutions, and 16,653 authors. Analysis shows a steady increase in publications annually since 2004, divided into 3 phases: 2004 to 2010 with fewer than 100 papers annually, suggesting minimal research attention; 2011 to 2019 with gradual growth, indicating increasing research interest; and a rapid surge post-2020, peaking in 2023, signaling heightened global interest in this field. CONCLUSION Our bibliometric analysis on TKIs and HCC spans years, countries, institutions, authors, disciplines, and journals. Since 2004, this field has gained attention, with current research focusing on inflammatory and immune mechanisms, associated diseases, cytokines, and TKIs' applications in liver cancer treatment, including combination therapies. These areas signify emerging research directions.
Collapse
Affiliation(s)
- Wurihan Wu
- Department of Neurology Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hejun Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian Song
- Emergency Intensive Care Unit, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Fan Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Di Benedetto G, Varvarà P, Drago SE, Cantone AF, Mauro N, Gaudio G, Burgaletto C, Bellanca CM, Broggi G, Caltabiano R, Pitarresi G, Cantarella G, Giammona G, Bernardini R. Targeted delivery of sorafenib via biotin decorated polyaminoaspartamide-based nanoparticles for the hepatocarcinoma treatment. Int J Pharm 2025; 678:125729. [PMID: 40379225 DOI: 10.1016/j.ijpharm.2025.125729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, faces treatment challenges due to drug resistance and poor bioavailability, with sorafenib, a key therapy, characterized by rapid clearance and significant side effects. This paper describes the development of amphiphilic graft copolymers for efficient loading and delivery of sorafenib through controlled Atom Transfer Radical Polymerization (ATRP). The amphiphilic graft copolymer PHEA-g-IB-(pButMA)-g-PEG-Bt was synthesized to enhance tumor specificity via biotin-mediated targeting. The synthesis involved a three-step process, with successful functionalization confirmed through NMR and Size Exclusion Chromatography (SEC) analyses. Sorafenib-loaded nanoparticles, prepared via dialysis-based nanoprecipitation, exhibited a mean size of ∼ 300 nm, suitable for oral and parenteral administration, while drug release studies confirmed a sustained release profile, minimizing premature systemic loss and reducing the need for frequent administration. Evaluation of cytocompatibility and anticancer efficacy tested in vitro on HepG2 and HuH-7 cell lines revealed that biotinylated sorafenib-loaded nanoparticles had the highest ability to reduce cell viability. The enhanced anticancer effect of biotinylated NPs was validated in vivo using a murine tumor xenograft model, as evidenced by reduced tumor growth, lower Ki-67 proliferation index, and diminished CD31-positive vasculature. Protein expression analysis demonstrated that PBB-Bt@SOR elicited the strongest activation of p-p38 MAPK and caspase-8-mediated apoptosis, while enhancing the expression of the pro-survival AKT pathway. Overall, the study confirms that biotinylated sorafenib-loaded nanoparticles improve tumor suppression in HCC models, demonstrating their effectiveness in targeted drug delivery. These findings suggest biotin decorated polyamino aspartamide-based nanoparticles as a promising strategy to optimize chemotherapy regimens, minimizing systemic toxicity in HCC treatment.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Paola Varvarà
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Emanuele Drago
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
7
|
Xu Z, Sun B, Wang W, Fan Y, Su J, Sun J, Gu X. Research progress on m6A and drug resistance in gastrointestinal tumors. Front Pharmacol 2025; 16:1565738. [PMID: 40356985 PMCID: PMC12066682 DOI: 10.3389/fphar.2025.1565738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Gastrointestinal (GI) tumors represent a significant global health burden and are among the leading causes of cancer-related mortality worldwide. their drug resistance is one of the major challenges in cancer therapy. In recent years, epigenetic modifications, especially N6-methyladenosine (m6A) RNA modifications, have become a hot research topic. m6A modification plays an important role in gene expression and cancer progression by regulating RNA splicing, translation, stability, and degradation, which are regulated by "writers," "erasers" and "readers." In GI tumors, resistance to chemotherapy, targeted therapy, and immunotherapy is closely associated with m6A RNA modification. Therefore, the molecular mechanism of m6A modification and its targeted drug development provide new therapeutic strategies for overcoming drug resistance and therapeutic efficacy in GI tumors. In this review, the biological functions of m6A were explored, the specific resistance mechanisms of m6A in different types of GI tumors were explored, new ideas and targets for future treatment resistance were identified, and the limitations of this field were highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xinyu Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
9
|
Szyk P, Czarczynska-Goslinska B, Ziegler-Borowska M, Larrosa I, Goslinski T. Sorafenib-Drug Delivery Strategies in Primary Liver Cancer. J Funct Biomater 2025; 16:148. [PMID: 40278256 PMCID: PMC12027913 DOI: 10.3390/jfb16040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Current primary liver cancer therapies, including sorafenib and transarterial chemoembolization, face significant limitations due to chemoresistance caused by impaired drug uptake, altered metabolism, and other genetic modulations. These challenges contribute to relapse rates of 50-80% within five years. The need for improved treatment strategies (adjuvant therapy, unsatisfactory enhanced permeability and retention (EPR) effect) has driven research into advanced drug delivery systems, including targeted nanoparticles, biomaterials, and combinatory approaches. Therefore, this review evaluates recent advancements in primary liver cancer pharmacotherapy, focusing on the potential of drug delivery systems for sorafenib and its derivatives. Approaches such as leveraging Kupffer cells for tumor migration or utilizing smaller NPs for inter-/intracellular delivery, address EPR limitations. Biomaterials and targeted therapies focusing on targeting have demonstrated effectiveness in increasing tumor-specific delivery, but clinical evidence remains limited. Combination therapies have emerged as an interesting solution to overcoming chemoresistance or to broadening therapeutic functionality. Biomimetic delivery systems, employing blood cells or exosomes, provide methods for targeting tumors, preventing metastasis, and strengthening immune responses. However, significant differences between preclinical models and human physiology remain a barrier to translating these findings into clinical success. Future research must focus on the development of adjuvant therapy and refining drug delivery systems to overcome the limitations of tumor heterogeneity and low drug accumulation.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester M13 9PL, UK;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
10
|
Yu HC, Jin L, Bai L, Zhang YJ, Yang ZX. C12ORF49 inhibits ferroptosis in hepatocellular carcinoma cells via reprogramming SREBP1/SCD1-mediated lipid metabolism. Cell Death Discov 2025; 11:178. [PMID: 40240331 PMCID: PMC12003882 DOI: 10.1038/s41420-025-02480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Altered lipid metabolism is an emerging hallmark of cancer, which is involved in various aspects of the cancer phenotypes. C12ORF49 has recently been identified as a pivotal regulator of sterol regulatory element binding proteins (SREBPs), a family of transcriptional factors that govern lipid biosynthesis. Nevertheless, the function of C12ORF49 in human cancers has not been studied. Here, we show that C12ORF49 levels are higher in HCC tissue than in nearby non-cancerous liver tissue. Additionally, increased C12ORF49 expression is linked to poorer survival outcomes in HCC patients. Functional experiments uncovered that knockdown of C12ORF49 inhibited HCC cell survival and tumor growth by inducing ferroptosis, whereas the opposites were observed upon C12ORF49 overexpression. Mechanistically, C12ORF49 promotes SREBP1/SCD-regulated production of monounsaturated fatty acids, which inhibits ferroptosis in HCC cells. Furthermore, silencing C12ORF49 combined with Sorafenib treatment showed a synergistic effect in inducing HCC cell death. Together, our findings suggest a critical role of C12ORF49 in the evasion of ferroptosis in HCC cells, highlighting the potential of targeting C12ORF49 as a therapeutic strategy to enhance the efficacy of Sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Heng-Chao Yu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Liang Jin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lu Bai
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Jia Zhang
- Department of Clinical Medicine, Shananxi University of Chinese Medicine, Xianyang, China
| | - Zhao-Xu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
11
|
Liu F, Li S, Huang C, Bi Z, Xiang X, Zhang S, Yang R, Zheng L. Self-assembled nanoplatform-mediated co-delivery of brusatol to sensitize sorafenib for hepatocellular carcinoma treatment. RSC Adv 2025; 15:11675-11687. [PMID: 40230634 PMCID: PMC11995455 DOI: 10.1039/d5ra00108k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Sorafenib (Sor), recognized as a frontline multi-kinase inhibitor, constitutes the primary targeted therapy for hepatocellular carcinoma (HCC). Despite its potential, many HCC patients exhibit reduced responsiveness to Sor, thereby undermining its therapeutic efficacy. Recent studies highlight the importance of nuclear factor erythroid-2-related factor 2 (Nrf2) activation in HCC, which contributes to Sor resistance. Brusatol (Bru), a plant-derived Nrf2 inhibitor, counteracts this resistance but faces challenges due to its poor solubility in aqueous media. In this study, we developed a glutathione (GSH)-responsive nanoplatform that effectively dispersed in water for the co-delivery of Bru and Sor (B/S NP). This approach enhanced Bru's therapeutic efficacy and increased Sor sensitivity in HCC. Our nanoplatform significantly reduced Nrf2 expression, thereby increasing Sor sensitivity both in vitro and in vivo, while presenting a favorable biosafety profile. These findings suggest that the nanoplatform-mediated co-delivery of Bru and Sor offers an innovative approach to enhance Sor's effectiveness in HCC treatment.
Collapse
Affiliation(s)
- Fengrui Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
- Key Laboratory of Tongliang District People's Hospital Chongqing 402560 P. R. China
| | - Senlin Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Chengcheng Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Zhenfei Bi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Xiao Xiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Shuqi Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Ruihao Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| |
Collapse
|
12
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
13
|
Wei X, Cao W, Wang S, Zhang Y, Gao Z, Wang S, Yao L, Zhang Z, Li X, Deng W, Xie Y, Li M. Progress in the Application of Novel Nanomaterials in Targeted Therapy for Liver Cancer. Int J Nanomedicine 2025; 20:2623-2643. [PMID: 40061885 PMCID: PMC11887507 DOI: 10.2147/ijn.s509409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, nanobiotechnology, widely used in hepatoma, holds great promise for improving targeted hepatocarcinoma therapy. On account of the unique properties of low toxicity, good tolerance, biocompatibility, and biodegradability of new nanomaterials, a targeted drug delivery system (TDDS) has been constructed, which can boost the therapeutic effect of hepatoma-targeted drugs, reduce drug toxicity, and minimize off target reactions by enhancing permeability retention effect (EPR) and active targeting, thus improving existing liver cancer targeted therapy strategies. Different nanoparticles have their own advantages and disadvantages. They can be loaded with multiple drugs on the same nanoparticle and can also be surface modified with each other to achieve synergistic anti-tumor effects. This essay provides a comprehensive overview of the current status of targeted therapy for hepatocarcinoma, nanoparticles' structure, advantages and disadvantages of each nanoparticle, and the application progress of nanoparticles in targeted therapy for liver cancer. We hope to provide a basis for the future clinical targeted therapy of hepatoma using nanotechnology.
Collapse
Affiliation(s)
- Xin Wei
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zixuan Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Shuojie Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Linmei Yao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, 100015, People’s Republic of China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, 100015, People’s Republic of China
| |
Collapse
|
14
|
Jiang L, Wu A, Zeng L, Zhou B, Zhao M, Fan M, Jin Z, He Q. A Slimming/Excavating Strategy for Enhanced Intratumoral Penetration of Acid-Disassemblable NO-Releasing Nanomedicines. Adv Healthc Mater 2025; 14:e2404085. [PMID: 39757461 DOI: 10.1002/adhm.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Poor tumor penetration is the major predicament of nanomedicines that limits their anticancer efficacy. The dense extracellular matrix (ECM) in the tumor is one of the major barriers against the deep penetration of nanomedicines. In this work, a slimming/excavating strategy is proposed for enhanced intratumoral penetration based on an acid-disassemblable nanomicelles-assembled nanomedicine and the NO-mediated degradation of ECM. The nanomedicine is constructed by cross-linking nanomicelles, which are self-assembled with two kinds of dendrimers containing phenylboronic acid and lactobionic acid, through borate esterification. In the acidic tumor microenvironment, the pH-sensitive borate ester bonds among the nanomicelles are hydrolyzed, triggering the disassembly of nanomedicine (≈150 nm) into small nanomicelles (≈25 nm). In response to the intratumoral over-expressed glutathione (GSH), the NO donor loaded in the nanomicelles produces NO, which mediates the expression of matrix metalloproteinases for the degradation of ECM in the tumor. By collaboration of the disassembling behavior of nanomedicine with the NO-mediated degradation of ECM, the designed nanomedicine can penetrate a long distance in tumors. The proposed slimming/excavating strategy will provide inspiration for overcoming the challenge of nanomedicines in tumor penetration.
Collapse
Affiliation(s)
- Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Anbang Wu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Lingting Zeng
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Min Zhao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Mingjian Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Xu J, Liu Y. Nanomaterials for liver cancer targeting: research progress and future prospects. Front Immunol 2025; 16:1496498. [PMID: 40092984 PMCID: PMC11906451 DOI: 10.3389/fimmu.2025.1496498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The incidence and mortality rates of liver cancer in China remain elevated. Although early-stage liver cancer is amenable to surgical resection, a significant proportion of patients are diagnosed at advanced stages. Currently, in addition to surgical resection for hepatocellular carcinoma, the primary treatment modalities predominantly include chemotherapy. The widespread use of chemotherapy, which non-selectively targets both malignant and healthy cells, often results in substantial immunosuppression. Simultaneously, the accumulation of chemotherapeutic agents can readily induce drug resistance upon reaching the physiological threshold, thereby diminishing the efficacy of these treatments. Besides chemotherapy, there exist targeted therapy, immunotherapy and other therapeutic approaches. Nevertheless, the development of drug resistance remains an inevitable challenge. To address these challenges, we turn to nanomedicine, an emerging and widely utilized discipline that significantly influences medical imaging, antimicrobial strategies, drug delivery systems, and other related areas. Stable and safe nanomaterials serve as effective carriers for delivering anticancer drugs. They enhance the precision of drug targeting, improve bioavailability, and minimize damage to healthy cells. This review focuses on common nanomaterial carriers used in hepatocellular carcinoma (HCC) treatment over the past five years. The following is a summary of the three drugs: Sorafenib, Gefitinib, and lenvatinib. Each drug employs distinct nanomaterial delivery systems, which result in varying levels of bioavailability, drug release rates, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of
Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
16
|
Hou X, Jiang X, Zhang W, Liu J. Bibliometric analysis of nanomaterials in hepatocellular carcinoma treatment: research trends, knowledge structures, and emerging insights (2000-2024). Discov Oncol 2025; 16:213. [PMID: 39976894 PMCID: PMC11842692 DOI: 10.1007/s12672-025-01977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
This study analyzes the research landscape of nanomaterials in treating hepatocellular carcinoma (HCC) and examines publication trends in this field by conducting a comprehensive bibliometric analysis within the Web of Science Core Collection (WoSCC) database. Articles published from 2000 to September 16, 2024 were retrieved using a structured search formula targeting studies on nanomaterials in HCC, including nanoparticles, nanodots, nanorods, nanosheets, and nanomedicine. Only English full-text articles and reviews relevant to nanomaterial applications in HCC were considered, excluding conference abstracts and non-research items. The analysis encompasses annual publication trends, country-wise publication distribution, prominent institutions, and key journals in the field. Statistical and graphical analyses were performed using GraphPad Prism (v8.0.2) to illustrate publication trends. CiteSpace (6.2.4R) and VOSviewer (1.6.18) software were used to visualize co-citation and keyword networks, highlighting scientific knowledge structures and research hotspots. Notable advancements have emerged as a promising strategy, enabling hepatocyte-specific drug delivery to enhance therapeutic precision and minimize off-target effects. This analysis provides a comprehensive understanding of the evolution of HCC nanomaterials research, key contributing countries, major research institutions, and frequently cited keywords. The findings offer valuable insights into the field's knowledge base, emerging trends, and future directions in HCC treatment with nanomaterials.
Collapse
Affiliation(s)
- Xu Hou
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital/Affiliated to Shandong University/Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences/Affiliated to Shandong Second Medical University, No. 67 Dongchang West Road, Liaocheng, 25200, Shandong, China.
| | - Xiaohong Jiang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Wei Zhang
- Department of General Surgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China.
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
17
|
Szwed M, Jost T, Majka E, Gharibkandi NA, Majkowska-Pilip A, Frey B, Bilewicz A, Fietkau R, Gaipl U, Marczak A, Lubgan D. Pt-Au Nanoparticles in Combination with Near-Infrared-Based Hyperthermia Increase the Temperature and Impact on the Viability and Immune Phenotype of Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2025; 26:1574. [PMID: 40004038 PMCID: PMC11855494 DOI: 10.3390/ijms26041574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Near-infrared light (NIR)-responsive metal-based nanoparticles (NPs) could be used for tumour therapy. We examined how platinum (Pt), gold (Au), and core-shell Pt-Au NPs affect the viability of human hepatocellular carcinoma (HCC) cell lines (Hep3B, HepG2, and Huh7D-12) alone and in combination with NIR exposure. In addition, the expression of immune checkpoint molecules (ICMs) on the tumour cells was analysed. We revealed that the cytotoxicity and programmed cell death induction of Au and Pt-Au NPs toward HCC cells could be enhanced by NIR with 960 nm in a different way. Pt-Au NPs were the only particles that resulted in an additional temperature increase of up to 2 °C after NIR. Regarding the tumour cell immune phenotype, not all of the cells experienced changes in immune phenotype. NIR itself was the trigger of the alterations, while the NPs did not significantly affect the expression of most of the examined ICMs, such as PD-L1, PD-L1, HVEM, CD70, ICOS-L, Ox40-L, and TNFRSF9. The combination of Pt-Au NPs with NIR resulted in the most prominent increase of ICMs in HepG2 cells. We conclude that the thermotherapeutic effect of Pt-Au NP application and NIR could be beneficial in multimodal therapy settings in liver cancer for selected patients.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Tina Jost
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Emilia Majka
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Nasrin Abbasi Gharibkandi
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Agnieszka Majkowska-Pilip
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Rainer Fietkau
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Dorota Lubgan
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
18
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
19
|
Xiang L, Qin Y, Li L, Xiang X, Zhang W, Jiao Q, Shao Y, Huang X, Wu M, Zhou T, Lin Y, Chen Y. Targeting hyperactive mitochondria in activated HSCs and inhibition of liver fibrogenesis in mice using sorafenib complex micelles. Int J Pharm 2025; 669:125058. [PMID: 39653289 DOI: 10.1016/j.ijpharm.2024.125058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Liver fibrosis is a pathological condition marked by the excessive buildup of extracellular matrix primarily resulting from the transformation of quiescent hepatic stellate cells (HSCs) to myofibroblastic (MF) phenotype and their resultant over-expansion. Activated HSCs completely rely on their hyperactive mitochondria to supply the energy and biomass for their rapid proliferation and collagen secretion, so an intervention targeting their mitochondria can effectively restrict their pathological amplification and contribution to liver fibrosis. Here we tried sorafenib, a drug that plays anticancer roles by inducing the disruption and loss of mitochondrial functions, to reach an antifibrotic goal. And a complex micellar system, VA-PEG-PCL/TPGS (VPP/TPGS), was specifically designed and fabricated to encapsulate and deliver sorafenib selectively to activated HSCs to overcome its application limitations in bioavailability, toxicity and intracellular stay, and eventually maximize its induction of mitochondrial dysfunction and therapeutically antifibrotic efficacy. The prepared sorafenib complex micelles not only exhibited a suitable particle size, uniform morphology, and nice stability, but also performed excellently in the biosafety and HSCs-targetability in vitro and in vivo. In human active HSC cell lines, they markedly attenuated mitochondrial hyperactivity, induced apoptosis, and downregulated fibrosis markers as expected; while in a CCl4-induced murine model of hepatic fibrosis, they effectively restricted the expansion of MF-HSCs, reduced collagen deposition, and promoted the healing of liver damage, showing a good potential in fibrosis curation. Collectively, our VPP/TPGS complex micelles provide an ideal drug delivery platform that has the potential to revolutionize the treatment of liver fibrosis via addressing its cellular and metabolic underpinnings and thus improve patient outcomes.
Collapse
Affiliation(s)
- Li Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Xianjing Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Xinqiong Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Meichun Wu
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Tianle Zhou
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yukang Lin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China; MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China.
| |
Collapse
|
20
|
Deng X, Gui Y, Zhao L. The micro(nano)plastics perspective: exploring cancer development and therapy. Mol Cancer 2025; 24:30. [PMID: 39856719 PMCID: PMC11761189 DOI: 10.1186/s12943-025-02230-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Microplastics, as an emerging environmental pollutant, have received widespread attention for their potential impact on ecosystems and human health. Microplastics are defined as plastic particles less than 5 millimeters in diameter and can be categorized as primary and secondary microplastics. Primary microplastics usually originate directly from industrial production, while secondary microplastics are formed by the degradation of larger plastic items. Microplastics are capable of triggering cytotoxicity and chronic inflammation, and may promote cancer through mechanisms such as pro-inflammatory responses, oxidative stress and endocrine disruption. In addition, improved microplastics bring new perspectives to cancer therapy, and studies of microplastics as drug carriers are underway, showing potential for high targeting and bioavailability. Although current studies suggest an association between microplastics and certain cancers (e.g., lung, liver, and breast cancers), the long-term effects and specific mechanisms still need to be studied. This review aimed at exploring the carcinogenicity of microplastics and their promising applications in cancer therapy provides important directions for future research and emphasizes the need for multidisciplinary collaboration to address this global health challenge.
Collapse
Affiliation(s)
- Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China.
| |
Collapse
|
21
|
Lei Q, Huang Y, Deng F, Zheng H, Hong X, Wang P, Lv J, Chen H, Ji Z. NOL-7 serves as a potential prognostic-related biomarker for hepatocellular carcinoma. Discov Oncol 2025; 16:69. [PMID: 39836310 PMCID: PMC11751243 DOI: 10.1007/s12672-024-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Nucleolar protein 7 (NOL7), a specific protein found in the nucleolus, is crucial for maintaining cell division and proliferation. While the involvement of NOL7 in influencing the unfavorable prognosis of metastatic melanoma has been reported, its significance in predicting the prognosis of patients with Hepatocellular Carcinoma (HCC) remains unclear. METHODS Aberrant expression of NOL7 in HCC and its prognostic value were evaluated using multiple databases, including TCGA, GTEx, Xiantao Academic, HCCDB, UALCAN, TISCH, and STRING. Immunohistochemistry (IHC) and quantitative real-time PCR were used to validate NOL7 expression levels in patients with HCC. RESULTS NOL7 expression was higher in the HCC samples than in the normal samples (P < 0.05). NOL7 was strongly associated with elevated AFP levels, vascular invasion, TNM stage, poorer tumor differentiation, and poorer survival (all P < 0.05). Elevated NOL7 expression correlated with decreased overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) (all P < 0.05). Multivariate analysis revealed that NOL7 was an independent prognostic factor that was significantly related to OS and DSS. The nomogram showed a good predictive performance based on the calibration plot. In addition, NOL7 expression was significantly correlated with cell cycle modulators, immune checkpoints, and various immune cell populations. In addition, we identified eight potential pathways associated with NOL7 as the most promising pathways for NOL7 in HCC. Low-risk specimens were more sensitive to oxaliplatin, cisplatin, irinotecan, sorafenib, and cytarabine than high-risk specimens. CONCLUSION NOL7 may serve as a potential biomarker for predicting clinical outcomes and may provide guidance for clinical therapy in patients with HCC.
Collapse
Affiliation(s)
- Qiucheng Lei
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yingchun Huang
- Department of Outpatient, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Feiwen Deng
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huazhen Zheng
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xitao Hong
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jin Lv
- Department of Pathology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huanwei Chen
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhenling Ji
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of General Surgery, Nanjing Jiangbei Hospital, Nantong University Xinglin College, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Pastore M, Giachi A, Spínola-Lasso E, Marra F, Raggi C. Organoids and spheroids: advanced in vitro models for liver cancer research. Front Cell Dev Biol 2025; 12:1536854. [PMID: 39850799 PMCID: PMC11754960 DOI: 10.3389/fcell.2024.1536854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional in vivo animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced in vitro models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development. Spheroids are simpler 3D culture models that partially recreate tumor structure and cell interactions. They can be used for drug penetration studies and high-throughput screening. Organoids derived from stem cells or patient tissues that accurately emulate the complexity and functionality of liver tissue. They can be generated from pluripotent and adult stem cells, as well as from liver tumor specimens, providing personalized models for studying tumor behavior and drug responses. Liver organoids retain the genetic variability of the original tumor and offer a robust platform for high-throughput drug screening and personalized treatment strategies. However, both organoids and spheroids have limitations, such as the absence of functional vasculature and immune components, which are essential for tumor growth and therapeutic responses. The field of preclinical modeling is evolving, with ongoing efforts to develop more predictive and personalized models that reflect the complexities of human liver cancer. By integrating these advanced in vitro tools, researchers can gain deeper insights into liver cancer biology and accelerate the development of novel treatments.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Ran W, Chen X, Grant J, Sharma S, Mohammed KA, Kumar A, Abbas M. Critical Review on the Effect and Mechanism of Realgar Nanoparticles on Lymphoma: State of the Art on In-Vitro Biomedical Studies. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:581-591. [PMID: 38982696 DOI: 10.2174/0118722105284287240621053904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 07/11/2024]
Abstract
Lymphoma is a malignant tumor caused by abnormal proliferation of lymphocytes in the lymphatic system. Conventional treatments for lymphoma often have limitations, and new therapeutic strategies need to be explored. Realgar is an ancient Chinese medicine that has been used for centuries to treat a variety of ailments due to its therapeutic potential for various diseases, including cancer. However, it is a time-consuming waste and has a low absorption rate in the gastrointestinal tract, so it has the disadvantages of oral dose, potential toxicity, and low bioavailability. Recently, the development of nanotechnology has promoted the nanization of realgar particles, which have better physicochemical properties and higher bioavailability. The antitumor activity of Realgar nanoparticles against lymphoma has been demonstrated in preclinical studies. Realgar nanoparticles exhibit cytotoxic effects by inducing apoptosis and inhibiting the growth and proliferation of lymphoma cells. Moreover, these nanoparticles exert immunomodulatory effects by enhancing the activity of immune cells and promoting the cytotoxicity of T lymphocytes against lymphoma cells. Additionally, realgar nanoparticles have been shown to inhibit tumor angiogenesis, thereby restricting the blood supply and nutrient availability to lymphoma cells as exhibited in this patent comprehensive review. Despite promising preclinical data, further research on the role and mechanism of realgar nanoparticles in the treatment of lymphoma remains to be studied. Moreover, the translation of these findings into clinical practice requires rigorous evaluation through well-designed clinical trials. Realgar nanoparticles hold great potential as a novel therapeutic approach for lymphoma, and their development may contribute to the advancement of precision medicine in the field of oncology.
Collapse
Affiliation(s)
- Wenxia Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Xiuqin Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Joshua Grant
- School of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Shubham Sharma
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura-140401, Punjab, India
- Department of Mechanical Engineering, Lebanese American University, Kraytem 1102-2801, Beirut, Lebanon
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Kahtan A Mohammed
- Faculty of Pharmacy, Jabir Ibn Hayyan medical university, Najaf, Iraq
- Department of Medical Physics, Hilla University College, Babylon, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
24
|
Fan Y, Xiao H, Wang Y, Wang S, Sun H. Global research on nanomaterials for liver cancer from 2004 to 2023: a bibliometric and visual analysis. Discov Oncol 2024; 15:838. [PMID: 39722094 DOI: 10.1007/s12672-024-01735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Primary liver cancer, particularly hepatocellular carcinoma, is one of the most common gastrointestinal cancers. An increasing number of studies indicate that nanomaterials play a significant role in the diagnosis and treatment of liver cancer. However, despite the extensive and diverse research on nanomaterials and liver cancer, bibliometric studies in this field have not yet been reported. This study aims to comprehensively evaluate the application prospects and development trends of nanomaterials in primary liver cancer over the past 20 years. By elucidating the current state of research on liver cancer, we intend to provide valuable reference information for researchers in this field. METHODS We conducted a comprehensive search of the Web of Science Core Collection for publications related to liver cancer and nanomaterials from January 1, 2004, to December 31, 2023. Relevant literature was selected based on specific inclusion and exclusion criteria. These selected publications were subsequently analyzed using CiteSpace, VOSviewer, and the R package "bibliometrix" to identify trends, influential countries, institutions, authors, journals, and research hotspots in this field. RESULTS This study included a total of 1641 publications, with an annual growth rate of 25.45%. China and the United States are leading in this field, accounting for 67.46% and 11.27% of the total publications, respectively. The Chinese Academy of Sciences and Shao D are the most cited institution and author, respectively. The International Journal of Nanomedicine is the most influential journal in this field, while Biomaterials is the most highly cited and co-cited journal. Research hotspots mainly focus on improving drug delivery efficiency, inducing cancer cell apoptosis, photodynamic therapy, photothermal therapy, and combination treatments. Emerging research directions include the tumor microenvironment, polyethylene glycol, and immunogenic cell death. CONCLUSION The results of this study indicate that the application of nanomaterials in the field of liver cancer is gradually becoming a significant research area, with a focus on improving drug delivery efficiency, enhancing therapeutic efficacy, and reducing side effects.
Collapse
Affiliation(s)
- Yitao Fan
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Shuhan Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
25
|
Xiao Y, Zhong L, Liu J, Chen L, Wu Y, Li G. Progress and application of intelligent nanomedicine in urinary system tumors. J Pharm Anal 2024; 14:100964. [PMID: 39582528 PMCID: PMC11582553 DOI: 10.1016/j.jpha.2024.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 11/26/2024] Open
Abstract
Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
Collapse
Affiliation(s)
- Yingming Xiao
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lei Zhong
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jinpeng Liu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Li Chen
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yi Wu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ge Li
- Emergency Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
26
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024; 82:3031-3051. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
27
|
Cai L, Du Y, Xiong H, Zheng H. Application of nanotechnology in the treatment of hepatocellular carcinoma. Front Pharmacol 2024; 15:1438819. [PMID: 39679376 PMCID: PMC11637861 DOI: 10.3389/fphar.2024.1438819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Hepatocellular carcinoma is the predominant histologic variant of hepatic malignancy and has become a major challenge to global health. The increasing incidence and mortality of hepatocellular carcinoma has created an urgent need for effective prevention, diagnosis, and treatment strategies. This is despite the impressive results of multiple treatments in the clinic. However, the unique tumor immunosuppressive microenvironment of hepatocellular carcinoma increases the difficulty of treatment and immune tolerance. In recent years, the application of nanoparticles in the treatment of hepatocellular carcinoma has brought new hope for tumor patients. Nano agents target tumor-associated fibroblasts, regulatory T cells, myeloid suppressor cells, tumor-associated macrophages, tumor-associated neutrophils, and immature dendritic cells, reversed the immunosuppressive microenvironment of hepatocellular carcinoma. In addition, he purpose of this review is to summarize the advantages of nanotechnology in guiding surgical excision, local ablation, TACE, standard chemotherapy, and immunotherapy, application of nano-vaccines has also continuously enriched the treatment of liver cancer. This study aims to investigate the potential applications of nanotechnology in the management of hepatocellular carcinoma, with the ultimate goal of enhancing therapeutic outcomes and improving the prognosis for patients affected by this malignancy.
Collapse
Affiliation(s)
| | | | | | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Wu Y, Wang X, Li L, Wang M, Tian S, Song J, Ma Y. Preparation of Glutathione-Regulated Sorafenib Targeted Nanodrug Delivery System and Its Antihepatocellular Carcinoma Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65131-65141. [PMID: 39535062 DOI: 10.1021/acsami.4c11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
To enhance the therapeutic effect of sorafenib (SOR) on liver cancer, we have developed a targeted nanodrug delivery system with glutathione (GSH) downregulation functionality. The preparation process comprises the synthesis of amino-functionalized mesoporous silica nanoparticles (MSN-NH2), surface modification with ethacrynic acid (EA), loading of SOR into the pores, and final surface coating with hyaluronic acid (HA) to obtain SOR@MSN-EA@HA (SMEH) nanoparticles. SMEH nanoparticles specifically enter tumor cells via CD44 receptor-mediated endocytosis. EA binds to GSH to consume it, while SOR is slowly released from the pores to exert antitumor effects while inhibiting GSH production. This results in sustained oxidative stress in the cells, thus enhancing the antitumor efficacy. Both in vitro and in vivo antitumor experiments as well as hemolysis tests have demonstrated that SMEH nanoparticles can accurately target liver cancer cells, effectively downregulate GSH concentration, exhibit good antitumor effects, and possess excellent safety, showing great potential in tumor treatment.
Collapse
Affiliation(s)
- Yijun Wu
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Xiaochen Wang
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Longxia Li
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Mingyang Wang
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Sui Tian
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Jinfeng Song
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
- Joinn Laboratories (Suzhou), Taicang 215421, Jiangsu, China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, Henan, China
| |
Collapse
|
29
|
Zhang F, Qu Z, Zeng J, Yu L, Zeng L, Li X. A novel goldfish orthotopic xenograft model of hepatocellular carcinoma developed to evaluate antitumor drug efficacy. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109998. [PMID: 39537120 DOI: 10.1016/j.fsi.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Tumor xenograft animal models play a crucial role in hepatocellular carcinoma (HCC) research. Mice xenograft models are time consuming, laborious and expensive while zebrafish tumor xenograft models are cost-effective and effortless. However, the development of orthotopic xenograft models for HCC in zebrafish embryos has been challenging due to the small size of zebrafish livers. In this study, we utilized 7-day-old goldfish embryos as hosts and successfully established an orthotopic xenograft model of HCC in goldfish livers. Through injecting fluorescence labeled HCC cells into the liver of goldfish, we could visualize the proliferation and migration of tumor cells in vivo. In addition, we found that the temperature of 36 °C was better for tumor cell survival in goldfish larvae compared to 28 °C, assessed by EdU and TUNEL assays. Moreover, macrophage infiltration in the goldfish liver could be evaluated by neutral red staining. Finally, we evaluated the efficacy of the targeted therapy drug Sorafenib and the traditional Chinese medicine, Huaier granules, alone or in combination in the goldfish HCC orthotopic xenograft model. We found that the combination therapy showed the best efficacy against HCC cells in terms of macrophage infiltration, polarization as well as tumor cells proliferation, metastasis and apoptosis. In conclusion, the proposed goldfish HCC orthotopic xenograft model opens new avenues for HCC related research, including evaluation of tumor progression, cell interactions in the immune microenvironment, drug efficacy, and screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China.
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Jing Zeng
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Lanxin Yu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| |
Collapse
|
30
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
31
|
He C, Zhou J, Wu X, Zhou Y, Wang S, Liu B, Luo T, Chen Y, Yuan J, Wang D, Zhang C, Shi J. Hyaluronic acid-zein shell-core biopolymer nanoparticles enhance hepatocellular carcinoma therapy of celastrol via CD44-mediated cellular uptake. Int J Biol Macromol 2024; 281:136096. [PMID: 39353524 DOI: 10.1016/j.ijbiomac.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Low concentrations or limited residence times in tumor tissues, making celastrol (Cel) difficult to exert significant therapeutic effects. Thus, we developed Zein/hyaluronic acid core-shell nanoparticles (Cel/Zein@HA NPs) for active targeted delivery of Cel via CD44 receptor over-expression on cancer cells, which may strengthen the therapeutic efficacy of Cel and improve delivery targeting. Cel-loaded Zein nanoparticles (core), are elegantly enveloped by a hydrophilic HA coating that forms the shell, resulting in significantly improved encapsulation efficiency and ensured good stability. The cellular uptake of Cel/Zein@HA NPs in HepG2 cells was 1.57-fold higher than nontargeting Cel/Zein NPs. Near-infrared fluorescence imaging confirmed the accumulation of Cel/Zein@HA NPs in H22 liver cancer tumors in mice, resulting in effective antitumor effects and good biosafety. Besides, in vitro and in vivo experiments showed that compared with Cel/Zein NPs, Cel/Zein@HA NPs had more efficient inhibitory effect on tumor proliferation and lower systemic toxicity. Further studies revealed that Cel/Zein@HA NPs induced apoptosis in hepatocellular carcinoma cells by modulating Bax and Bcl-2 expression, while also inhibiting tumor angiogenesis by decreasing CD31 and VEGF levels. Overall, this study presents a promising strategy for enhancing targeted liver cancer therapy through the utilization of biopolymer nanoparticle-based nano-pharmaceuticals that facilitate CD44-mediated cellular uptake.
Collapse
Affiliation(s)
- Congjian He
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jiahui Zhou
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xixi Wu
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yujin Zhou
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Siya Wang
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Bo Liu
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Ting Luo
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Ying Chen
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jia Yuan
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Di Wang
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinfeng Shi
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
32
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
33
|
Bognanni N, Viale M, Sabatino G, Pappalardo G, Vecchio G. New Conjugates of Hyaluronic Acid with γ-Cyclodextrin as Sorafenib Carrier in Cancer Cells. ChemMedChem 2024; 19:e202400219. [PMID: 38856008 DOI: 10.1002/cmdc.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
In recent years, nanoparticles based on cyclodextrins have been widely investigated, mainly for drug delivery. In this work, we synthesized nanoparticles with a hyaluronic acid backbone (11 kDa and 45 kDa) functionalized with γ-cyclodextrins. We tested sorafenib in the presence of the new hyaluronan-cyclodextrin conjugates in A2780 (ovarian cancer), SK-HeP-1 (adenocarcinoma) and MDA-MB-453 (breast cancer) cell lines. We found that hyaluronan-cyclodextrin conjugates improve the antiproliferative activity of sorafenib. Remarkably, the system based on the 11 kDa hyaluronan conjugate was the most effective and, in the MDA-MB-453 cell line, significantly reduced the IC50 value of sorafenib cells by about 75 %.
Collapse
Affiliation(s)
- Noemi Bognanni
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Giuseppina Sabatino
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Giuseppe Pappalardo
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
34
|
Yao Y, Zhao Q, Xu F, Yao T. Enhanced anti-tumor therapy for hepatocellular carcinoma via sorafenib and KIAA1199-siRNA co-delivery liposomes. Saudi Pharm J 2024; 32:102153. [PMID: 39211513 PMCID: PMC11357851 DOI: 10.1016/j.jsps.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. Sorafenib (Sf) is currently the first-line treatment for HCC. However, due to the side effects and unsatisfied efficiency of Sf, it is urgent to combine different therapeutic agents to inhibit HCC progression and increase the therapeutic efficacy. Here, our study constructed a Sf and KIAA1199-siRNA co-loaded liposome Sf-Lp-KIAA, which was prepared by electrostatic interaction of KIAA1199-siRNA and Sf loaded liposome (Sf-Lp). The particle size, zeta potential, the in vitro cumulative release was investigated. The physical and chemical properties were characterized, and the inhibition of HepG2 growth and metastasis in vitro was investigated. The cellular uptake of the co-loaded liposome was significantly higher than that of free siRNA, and the drug/siRNA could be co-delivered to the target cells. Sf-Lp-KIAA could significantly inhibit the growth, migration, invasion and down-regulate KIAA1199 expression of HepG2 cells in vitro than that of single Sf treated group. In addition, the co-delivery liposome accumulated in the HepG2 subcutaneous tumor model and suppress tumor growth after systemic administration without induce obvious toxicity. The present study implied that the co-delivery of Sf and KIAA1199-siRNA through the co-loaded liposomes exerted synergistic antitumor effects on HCC, which would lay a foundation for HCC therapy in the future.
Collapse
Affiliation(s)
- Yao Yao
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Xu C, Su R, Lu Z, Song Y, Zhang X, Shu W, Yang Z, Zhuang R, Xu X, Wei X. Heterogeneity of hepatocellular carcinoma that responds differently to combination therapy with TACE and Sorafenib as determined by digital spatial gene expression profiling. Genes Genomics 2024; 46:1045-1058. [PMID: 39078588 DOI: 10.1007/s13258-024-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The combination of Sorafenib and transcatheter arterial chemoembolization (TACE) exhibits limited efficacy in the treatment of certain advanced hepatocellular carcinomas (HCC), and the molecular mechanisms underlying resistance to this combination remain unclear. OBJECTIVE This study aims to underscore the distinctive contribution of GeoMx DSP technology in elucidating the molecular intricacies of HCC resistance to the Sorafenib and TACE combination. METHODS Patients with advanced HCC during the waiting period before liver transplantation were classified into sensitive and resistant groups based on their response to Sorafenib and TACE combination therapy. Employing GeoMx DSP technology for comprehensive gene expression profiling, we identified pivotal molecular targets linked to resistance against combination therapy. RESULTS The investigation scrutinized intra-tumoral and inter-individual variances, unveiling a spectrum of crucial molecular targets, such as PLG, PLVAP, immunoglobulin genes, ORM1, and NR4A1, among others. Additionally, we explored signaling pathways associated with treatment responsiveness, including the PPAR signaling pathway. Notably, we emphasized the significance of the immune microenvironment characterized by heightened SPP1 expression in HCC resistance to combination therapy. In the resistant group, SPP1+ tumor-associated macrophage (TAM) infiltration was notably pronounced (p = 0.037), while T-cell depletion showed a mitigated presence (p = 0.013). CONCLUSION The study reveals intra- and inter-individual heterogeneity in HCC that is differentially responsive to the combination of Sorafenib and TACE, highlighting multiple key molecular targets associated with treatment resistance. The immune microenvironment is important, and in particular, SPP1+ TAM infiltration may play a key role. Meanwhile, the introduction of immunotherapy in patients resistant to combination therapy may lead to positive results.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaobing Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhe Yang
- Shulan (Hangzhou) Hospital, Hangzhou, 310000, China
| | - Runzhou Zhuang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
36
|
Shi S, Zhu C, Hu Y, Jiang P, Zhao J, Xu Q. ENG is a Biomarker of Prognosis and Angiogenesis in Liver Cancer, and Promotes the Differentiation of Tumor Cells into Vascular ECs. FRONT BIOSCI-LANDMRK 2024; 29:315. [PMID: 39344331 DOI: 10.31083/j.fbl2909315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Liver cancer is a highly lethal malignancy with frequent recurrence, widespread metastasis, and low survival rates. The aim of this study was to explore the role of Endoglin (ENG) in liver cancer progression, as well as its impacts on angiogenesis, immune cell infiltration, and the therapeutic efficacy of sorafenib. METHODS A comprehensive evaluation was conducted using online databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), 76 pairs of clinical specimens of tumor and adjacent non-tumor liver tissue, and tissue samples from 32 hepatocellular carcinoma (HCC) patients treated with sorafenib. ENG expression levels were evaluated using quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), Western blot, and immunohistochemical analysis. Cox regression analysis, Spearman rank correlation analysis, and survival analysis were used to assess the results. Functional experiments included Transwell migration assays and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Tumor cells exhibited retro-differentiation into endothelial-like cells, with a significant increase in ENG expression in these tumor-derived endothelial cells (TDECs). High expression of ENG was associated with more aggressive cancer characteristics and worse patient prognosis. Pathway enrichment and functional analyses identified ENG as a key regulator of immune responses and angiogenesis in liver cancer. Further studies confirmed that ENG increases the expression of Collagen type Iα1 (COL1A1), thereby promoting angiogenesis in liver cancer. Additionally, HCC patients with elevated ENG levels responded well to sorafenib treatment. CONCLUSIONS This study found that ENG is an important biomarker of prognosis in liver cancer. Moreover, ENG is associated with endothelial cell differentiation in liver cancer and plays a crucial role in formation of the tumor vasculature. The assessment of ENG expression could be a promising strategy to identify liver cancer patients who might benefit from targeted immunotherapies.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Cell Differentiation
- Endoglin/metabolism
- Endoglin/genetics
- Male
- Female
- Middle Aged
- Cell Line, Tumor
- Phenylurea Compounds/pharmacology
- Human Umbilical Vein Endothelial Cells/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Angiogenesis
Collapse
Affiliation(s)
- Shangheng Shi
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Cunle Zhu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Yue Hu
- Hepatobiliary and Pancreatic Surgery Department, Affiliated First Hospital of Ningbo University, 315000 Ningbo, Zhejiang, China
| | - Peng Jiang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Jinxin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Qingguo Xu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| |
Collapse
|
37
|
Li S, Hao L, Yu F, Li N, Deng J, Zhang J, Xiong S, Hu X. Capsaicin: a spicy way in liver disease. Front Pharmacol 2024; 15:1451084. [PMID: 39281271 PMCID: PMC11392895 DOI: 10.3389/fphar.2024.1451084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The incidence of liver disease continues to rise, encompassing a spectrum from simple steatosis or non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Dietary habits in individuals with liver disease may significantly impact the treatment and prevention of these conditions. This article examines the role of chili peppers, a common dietary component, in this context, focusing on capsaicin, the active ingredient in chili peppers. Capsaicin is an agonist of the transient receptor potential vanilloid subfamily 1 (TRPV1) and has been shown to exert protective effects on liver diseases, including liver injury, NAFLD, liver fibrosis and liver cancer. These protective effects are attributed to capsaicin's anti-oxidant, anti-inflammatory, anti-steatosis and anti-fibrosis effects. This article reviewed the different molecular mechanisms of the protective effect of capsaicin on liver diseases.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shuai Xiong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Wang S, Ye W, Yang K, Lv X, Luan J. Prognostic Hypoxia-Angiogenesis-Related Gene Signature in Hepatocellular Carcinoma, in Which HILPDA Contributes to Tumor Progression. J Inflamm Res 2024; 17:5663-5683. [PMID: 39219818 PMCID: PMC11365521 DOI: 10.2147/jir.s476388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the predominant form of liver cancer. Hypoxia can be involved in HCC tumor growth, invasion and metastasis through inducing angiogenesis. Nevertheless, the assessment of the impact of hypoxia and angiogenesis on the prognosis of HCC remains inadequate. Methods According to hypoxia-angiogenesis-related genes (HARGs) expression information and clinical data from patients within the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort, we constructed a prognostic model (HARG-score) using bioinformatic tools. In addition to assessing the predictive ability of this prognostic model in both Liver Cancer-Riken-Japan (LIRI-JP) and GSE14520 cohorts, we analyzed the correlation between HARG-score and clinical characteristics, immune infiltration and immunotherapy efficacy. Moreover, we investigated the exact role and underlying mechanism of key HARGs through molecular experiments. Results We constructed a 5-gene prognostic model HARG-score consisting of hypoxia-inducible lipid droplet-associated (HILPDA), erythropoietin (EPO), solute carrier family 2 member 1 (SLC2A1), proteasome subunit alpha type 7 (PSMA7) and cAMP responsive element-binding protein 1 (CREB1) through differentially expressed HARGs. The findings demonstrated that HARG-score was a good predictor of the prognosis of HCC patients from distinct cohorts and was correlated with clinical characteristics and immune infiltration. Furthermore, the HARG-score was identified as an independent prognostic factor. Lower HARG-score implied greater immunotherapy efficacy and better response. The expression and prognostic significance of these 5 genes were additionally validated in clinical data. In addition, experimental data revealed that the key gene HILPDA contributes to the progression of HCC through facilitating angiogenesis and affecting the expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA4). Conclusion HARG-score has promising applications in prognosis prediction of HCC patients, in which HILPDA may be a latent prognostic biomarker and therapeutic target, providing a foundation for further research and treatment of HCC.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| |
Collapse
|
39
|
Xing L, Chen Y, Zheng T. Research progress of nanoparticles in diagnosis and treatment of hepatocellular carcinoma. Open Life Sci 2024; 19:20220932. [PMID: 39220591 PMCID: PMC11365471 DOI: 10.1515/biol-2022-0932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignant liver tumors. Despite progress in anticancer drugs and surgical approaches, early detection of HCC remains challenging, often leading to late-stage diagnosis where rapid disease progression precludes surgical intervention, leaving chemotherapy as the only option. However, the systemic toxicity, low bioavailability, and significant adverse effects of chemotherapy drugs often lead to resistance, rendering treatments ineffective for many patients. This article outlines how nanoparticles, following functional modification, offer high sensitivity, reduced drug toxicity, and extended duration of action, enabling precise targeting of drugs to HCC tissues. Combined with other therapeutic modalities and imaging techniques, this significantly enhances the diagnosis, treatment, and long-term prognosis of HCC. The advent of nanomedicine provides new methodologies and strategies for the precise diagnosis and integrated treatment of HCC.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Hubei University of Medicine, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| |
Collapse
|
40
|
Elleithi Y, El-Gayar A, Amin MN. Autophagy modulation attenuates sorafenib resistance in HCC induced in rats. Cell Death Dis 2024; 15:595. [PMID: 39152108 PMCID: PMC11329791 DOI: 10.1038/s41419-024-06955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) has risen as the villain of cancer-related death globally, with a usual cruel forecasting. Sorafenib was officially approved by the FDA as first-line treatment for advanced HCC. Despite the brilliant promise revealed in research, actual clinical results are limited due to the widespread appearance of drug resistance. The tumor microenvironment (TME) has been correlated to pharmacological resistance, implying that existing cellular level strategies may be insufficient to improve therapy success. The role of autophagy in cancer is a two-edged sword. On one hand, autophagy permits malignant cells to overcome stress, such as hypoxic TME and therapy-induced starvation. Autophagy, on the other hand, plays an important role in damage suppression, which can reduce carcinogenesis. As a result, controlling autophagy is certainly a viable technique in cancer therapy. The goal of this study was to investigate at the impact of autophagy manipulation with sorafenib therapy by analyzing autophagy induction and inhibition to sorafenib monotherapy in rats with HCC. Western blot, ELISA, immunohistochemistry, flow cytometry, and quantitative-PCR were used to investigate autophagy, apoptosis, and the cell cycle. Routine biochemical and pathological testing was performed. Ultracellular features and autophagic entities were observed using a transmission electron microscope (TEM). Both regimens demonstrated significant reductions in chemotherapeutic resistance and hepatoprotective effects. According to the findings, both autophagic inhibitors and inducers are attractive candidates for combating sorafenib-induced resistance in HCC.
Collapse
Affiliation(s)
- Yomna Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Amal El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed N Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
41
|
Wang Y, Li N, Qu L, Zhang M, Li Z, Li X, Cai D. Hemoglobin nanoclusters-mediated regulation of KPNA4 in hypoxic tumor microenvironment enhances photodynamic therapy in hepatocellular carcinoma. J Nanobiotechnology 2024; 22:473. [PMID: 39135024 PMCID: PMC11318167 DOI: 10.1186/s12951-024-02717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor known for its hypoxic environment, which contributes to resistance against the anticancer drug Sorafenib (SF). Addressing SF resistance in HCC requires innovative strategies to improve tumor oxygenation and effectively deliver therapeutics. RESULTS In our study, we explored the role of KPNA4 in mediating hypoxia-induced SF resistance in HCC. We developed hemoglobin nanoclusters (Hb-NCs) capable of carrying oxygen, loaded with indocyanine green (ICG) and SF, named HPRG@SF. In vitro, HPRG@SF targeted HCC cells, alleviated hypoxia, suppressed KPNA4 expression, and enhanced the cytotoxicity of PDT against hypoxic, SF-resistant HCC cells. In vivo experiments supported these findings, showing that HPRG@SF effectively improved the oxygenation within the tumor microenvironment and countered SF resistance through combined photodynamic therapy (PDT). CONCLUSION The combination of Hb-NCs with ICG and SF, forming HPRG@SF, presents a potent strategy to overcome drug resistance in hepatocellular carcinoma by improving hypoxia and employing PDT. This approach not only targets the hypoxic conditions that underlie resistance but also provides a synergistic anticancer effect, highlighting its potential for clinical applications in treating resistant HCC.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Nu Li
- Department of breast surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Letian Qu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Mu Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zhuo Li
- The Fourth People's Hospital of Shenyang, 110002, Liaoning Province, China
| | - Xiang Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| | - Dasheng Cai
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
42
|
Ke J, Liu Y, Liu F, Cai H, Li X, Zhang Z, Wang N, Shao B, Wang Z, Han M, Ji B. In-situ-formed immunotherapeutic and hemostatic dual drug-loaded nanohydrogel for preventing postoperative recurrence of hepatocellular carcinoma. J Control Release 2024; 372:141-154. [PMID: 38885842 DOI: 10.1016/j.jconrel.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by an exceedingly high recurrence rate post-surgery, significantly impairing the prognosis of HCC patients. However, a standard in-care strategy for postoperative therapy is still lacking. Although encouraging results have been obtained in a newly published clinical trial for postoperative therapy by targeting the vascular endothelial growth factor (VEGF) and programmed death ligand 1 (anti-PD-L1), its efficacy remains constrained. Combining a hemostatic hydrogel with a nanoparticle-based drug delivery system presents an opportunity to optimize the antitumor effect. Herein, we developed a nanoplatform, termed HMSN@Sor/aP@Gel, comprising a hemostatic fibrin hydrogel and functionalized hollow mesoporous silica nanoparticles (HMSNs) loaded with sorafenib and anti-PD-L1 for locally administered targeted-immunotherapy to prevent the postoperative recurrence and metastasis of HCC. The antitumor mechanism is grounded in dual inhibition of Ras/Raf/MEK/ERK (MAPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathways, synergistically complemented by PD-L1 blockade. HMSN@Sor/aP@Gel facilitates dendritic cell maturation, enhances cytotoxic T-lymphocyte infiltration, promotes the polarization of tumor-associated macrophages to M1 phenotype, induces tumor immunogenic cell death, reverses immunosuppression, and establishes immune memory to counter postoperative recurrence. Animal studies corroborate that HMSN@Sor/aP@Gel-mediated targeted immunotherapy significantly impedes primary and metastatic tumor growth and establishes immune memory to prevent recurrence post-surgery. This investigation presents a promising strategy for postoperative therapy with considerable potential for clinical translation.
Collapse
Affiliation(s)
- Jianji Ke
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Feiqi Liu
- Department of Critical Care Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Hongqiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Xiaocheng Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Zhiyuan Zhang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bingru Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
43
|
Fan QQ, Tian H, Cheng JX, Zou JB, Luan F, Qiao JX, Zhang D, Tian Y, Zhai BT, Guo DY. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother 2024; 177:117118. [PMID: 39002440 DOI: 10.1016/j.biopha.2024.117118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.
Collapse
Affiliation(s)
- Qiang-Qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, 710021, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jia-Xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
44
|
Srivastava G, Mukherjee E, Mittal R, Ganjewala D. Geraniol and citral: recent developments in their anticancer credentials opening new vistas in complementary cancer therapy. Z NATURFORSCH C 2024; 79:163-177. [PMID: 38635829 DOI: 10.1515/znc-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.
Collapse
Affiliation(s)
- Gauri Srivastava
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Esha Mukherjee
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Ruchika Mittal
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
45
|
Guo T, Wang Y, Chen D, Cui S, Guo S, Feng Y, Zhu J, Chang L, Zhang J, Gao X, Wei X. Dual-Drug Loaded Nanobubbles Combined with Sonodynamic and Chemotherapy for Hepatocellular Carcinoma Therapy. Int J Nanomedicine 2024; 19:7367-7381. [PMID: 39050872 PMCID: PMC11268764 DOI: 10.2147/ijn.s460329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Chemotherapy remains the primary therapeutic approach for advanced Hepatocellular Carcinoma (HCC). The therapeutic effect of chemotherapy is limited and the toxic side effects are serious. The aim of this study is to develop a nanobubble that is ultrasonically responsive to reduce the toxic side effects of direct chemotherapy. Methods We developed curcumin/doxorubicin-cis-aconitic anhydride-polyethylene glycol nanobubble (C/DCNB) surface modified with acid-sensitive polyethylene glycol (PEG). And it is loaded with curcumin (CUR) and doxorubicin (DOX), as liposomes at the nanoscale for diagnosis and therapy of tumors. Results In this study, the acid-sensitive PEG on the surface layer of nanobubbles serves to stabilize them in the blood circulatory system and in normal tissues, while peeling off in the acidic tumor microenvironment (pH 6.8). C/DCNB can identify tumor sites through contrast-enhanced ultrasound (CEUS). And ultrasound-mediated nanobubbles promote permeability of the tumor vascular, thus improving the enhanced permeability and retention (EPR) effects in the tumor, leading to the accumulation of nanobubbles in the tumor. After endocytosis of nanobubbles, drugs are released and curcumin generates reactive oxygen species (ROS) under ultrasound conditions. CUR can enhance the sensitivity of tumor cells to DOX by inhibiting the expression of P-glycoprotein. In vitro and vivo experiments demonstrate that C/DCNB can facilitate contrast-enhanced ultrasound imaging while simultaneously delivering drugs, enabling both imaging and treatment. Conclusion The combination of C/DCNB and ultrasound provides an effective strategy for improving the efficiency of HCC therapy and imaging.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Yao Wang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Dixuan Chen
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Sifan Cui
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Shuyue Guo
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Yixing Feng
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Jialin Zhu
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Luchen Chang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| | - Jiawei Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Xiujun Gao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, People’s Republic of China
| |
Collapse
|
46
|
Kong F, Lu Z, Xiong Y, Zhou L, Ye Q. A novel cancer-associated fibroblasts risk score model predict survival and immunotherapy in lung adenocarcinoma. Mol Genet Genomics 2024; 299:70. [PMID: 39017768 DOI: 10.1007/s00438-024-02156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide. Cancer-associated fibroblasts (CAFs) are a special type of fibroblasts, which play an important role in the development and immune escape of tumors. Weighted gene co-expression network analysis (WGCNA) was used to construct the co-expression module. In combination with univariate Cox regression and analysis of least absolute shrinkage operator (LASSO), characteristics associated with CAFs were developed for a prognostic model. The migration and proliferation of lung cancer cells were evaluated in vitro. Finally, the expression levels of proteins were analyzed by Western blot. LASSO Cox regression algorithm was then performed to select hub genes. Finally, a total of 2 Genes (COL5A2, COL6A2) were obtained. We then divided LUAD patients into high- and low-risk groups based on CAFs risk scores. Survival analysis, CAFs score correlation analysis and tumor mutation load analysis showed that COL5A2 and COL6A2 were high-risk genes for LUAD. Human Protein Atlas (HPA), western blot and PCR results showed that COL5A2 and COL6A2 were up-regulated in LUAD tissues. When COL5A2 and COL6A2 were knocked down, the proliferation, invasion and migration of lung cancer cells were significantly decreased. Finally, COL5A2 can affect LUAD progression through the Wnt/β-Catenin and TGF-β signaling pathways. Our CAFs risk score model offers a new approach for predicting the prognosis of LUAD patients. Furthermore, the identification of high-risk genes COL5A2 and COL6A2 and drug sensitivity analysis can provide valuable candidate clues for clinical treatment of LUAD.
Collapse
Affiliation(s)
- Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China.
| | - Lihua Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, Hubei, 430071, China.
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China.
| |
Collapse
|
47
|
Zhang Y, Xu W, Peng C, Ren S, Zhang C. Intricate effects of post-translational modifications in liver cancer: mechanisms to clinical applications. J Transl Med 2024; 22:651. [PMID: 38997696 PMCID: PMC11245821 DOI: 10.1186/s12967-024-05455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Liver cancer is a significant global health challenge, with hepatocellular carcinoma (HCC) being the most prevalent form, characterized by high incidence and mortality rates. Despite advances in targeted therapies and immunotherapies, the prognosis for advanced liver cancer remains poor. This underscores the urgent need for a deeper understanding of the molecular mechanisms underlying HCC to enable early detection and the development of novel therapeutic strategies. Post-translational modifications (PTMs) are crucial regulatory mechanisms in cellular biology, affecting protein functionality, interactions, and localization. These modifications, including phosphorylation, acetylation, methylation, ubiquitination, and glycosylation, occur after protein synthesis and play vital roles in various cellular processes. Recent advances in proteomics and molecular biology have highlighted the complex networks of PTMs, emphasizing their critical role in maintaining cellular homeostasis and disease pathogenesis. Dysregulation of PTMs has been associated with several malignant cellular processes in HCC, such as altered cell proliferation, migration, immune evasion, and metabolic reprogramming, contributing to tumor growth and metastasis. This review aims to provide a comprehensive understanding of the pathological mechanisms and clinical implications of various PTMs in liver cancer. By exploring the multifaceted interactions of PTMs and their impact on liver cancer progression, we highlight the potential of PTMs as biomarkers and therapeutic targets. The significance of this review lies in its potential to inform the development of novel therapeutic approaches and improve prognostic tools for early intervention in the fight against liver cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Marin JJG, Macias RIR, Asensio M, Romero MR, Temprano AG, Pereira OR, Jimenez S, Mauriz JL, Di Giacomo S, Avila MA, Efferth T, Briz O. Strategies to enhance the response of liver cancer to pharmacological treatments. Am J Physiol Cell Physiol 2024; 327:C11-C33. [PMID: 38708523 DOI: 10.1152/ajpcell.00176.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Alvaro G Temprano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Silvia Jimenez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Servicio de Farmacia Hospitalaria, Hospital de Salamanca, Salamanca, Spain
| | - Jose L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IdisNA), Pamplona, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
49
|
Liu Y, Huang Y, Le Y, Gao Y, Wang H, Yang J, Wang J, Zou C, Li Q. Prognostic insights, immune infiltration, and therapeutic response: Cytoplasmic poly(A) tail regulators in hepatocellular carcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200816. [PMID: 38948919 PMCID: PMC11214399 DOI: 10.1016/j.omton.2024.200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024]
Abstract
The presence of a poly(A) tail is indispensable for the post-transcriptional regulation of gene expression in cancer. This dynamic and modifiable feature of transcripts is under the control of various nuclear and cytoplasmic proteins. This study aimed to develop a novel cytoplasmic poly(A)-related signature for predicting prognosis, clinical attributes, tumor immune microenvironment (TIME), and treatment response in hepatocellular carcinoma (HCC). Utilizing RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), non-negative matrix factorization (NMF), and principal-component analysis (PCA) were employed to categorize HCC patients into three clusters, thus demonstrating the pivotal prognostic role of cytoplasmic poly(A) tail regulators. Furthermore, machine learning algorithms such as least absolute shrinkage and selection operator (LASSO), survival analysis, and Cox proportional hazards modeling were able to distinguish distinct cytoplasmic poly(A) subtypes. As a result, a 5-gene signature derived from TCGA was developed and validated using International Cancer Genome Consortium (ICGC) HCC datasets. This novel classification based on cytoplasmic poly(A) regulators has the potential to improve prognostic predictions and provide guidance for chemotherapy, immunotherapy, and transarterial chemoembolization (TACE) in HCC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yan Huang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunting Le
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yating Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jialin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin, Heilongjiang 150081, China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
50
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|