1
|
Luo G, Hu W, Yang J, Ding H, Xu C, Tong X, Ding C, Zhao J. Identification of G protein subunit alpha i3 as a promising oncotarget of LUAD. Cell Signal 2024:111582. [PMID: 39733926 DOI: 10.1016/j.cellsig.2024.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Exploring new oncotargets essential for lung adenocarcinoma (LUAD) cell growth is important. Here the bioinformatical studies revealed that Gαi3 expression is elevated in LUAD tissues and its overexpression correlates with poor survival of the patients. Moreover, overexpression of Gαi3 mRNA and protein was detected in LUAD tissues of patients as well as in primary/immortalized LUAD cells. In both primary and immortalized LUAD cells, genetic silencing (by viral shRNA) or knockout ("KO", through CRISPR/Cas9 method) of Gαi3 potently inhibited LUAD cell proliferation and mobility. The results of caspase-3 activity assay, caspase-9 activity assay, histone DNA ELISA, TUNEL nuclear staining and Annexin V staining showed that inhibition of Gαi3 expression promoted apoptosis. In addition, a significant decrease in mitochondrial membrane potential was found in Gαi3-deficient LUAD cells by JC-1 staining. Overexpression of Gαi3 strengthened the proliferation and migration of LUAD cell. Gene set enrichment analysis revealed that Gαi3 was closely related to PI3k/Akt/mTOR, which we validated experimentally. Akt-S6K phosphorylation was downregulated following Gαi3 silencing or KO, but augmented after Gαi3 overexpression in primary LUAD cells. Restoring Akt-S6K phosphorylation by a S473D constitutively-active mutant Akt1 ameliorated Gαi3 KO-induced LUAD cell proliferation inhibition, migration suppression and apoptosis. In vivo, the growth of subcutaneous LUAD xenografts was largely inhibited after intratumoral injection of Gαi3 shRNA-expressing adeno-associated virus (AAV). Gαi3 downregulation, Akt-mTOR inhibition, proliferation inactivation and apoptosis were detected in the Gαi3 shRNA-treated LUAD xenografts. Together, targeting Gαi3 potently inhibited LUAD cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Gaomeng Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenxuan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Tong
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Li Q, Huang Z, Li Z, Fan J, Li K. The critical role of Gαi3 in oral squamous cell carcinoma cell growth. Cell Death Discov 2024; 10:420. [PMID: 39349425 PMCID: PMC11443079 DOI: 10.1038/s41420-024-02191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The identification of novel and effective therapeutic targets for oral squamous cell carcinoma (OSCC) is of paramount importance. This study investigates the expression, potential functions, and mechanistic insights of G protein inhibitory subunit 3 (Gαi3) in OSCC. Gαi3 is found to be upregulated in human OSCC tissues as well as in various primary and established OSCC cells. In different OSCC cells, silencing of Gαi3 through shRNA resulted in inhibited cell proliferation and migration, while also inducing apoptosis. Knockout (KO) of Gαi3 via the CRISPR/Cas9 method produced significant anti-cancer effects in OSCC cells. Conversely, ectopic overexpression of Gαi3 enhanced OSCC cell growth, promoting cell proliferation and migration. Gαi3 plays a crucial role in activating the Akt-mTOR signaling pathway in OSCC cells. Silencing or KO of Gαi3 led to decreased phosphorylation levels of Akt and S6K, whereas overexpression of Gαi3 increased their phosphorylation. Restoration of Akt-mTOR activation through a constitutively active mutant Akt1 mitigated the anti-OSCC effects induced by Gαi3 shRNA. In vivo, Gαi3 silencing significantly suppressed the growth of subcutaneous OSCC xenografts in nude mice, concomitant with inactivation of the Akt-mTOR pathway and induction of apoptosis. Collectively, these findings underscore the critical role of Gαi3 in OSCC cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Quan Li
- Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhiyue Huang
- Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihan Li
- Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianlin Fan
- Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Jiang JZ, Qiao YB, Zhu XR, Gu QH, Lu JJ, Ye ZY, Xu L, Liu YY. Identification of Gαi3 as a promising molecular oncotarget of pancreatic cancer. Cell Death Dis 2024; 15:699. [PMID: 39349432 PMCID: PMC11442978 DOI: 10.1038/s41419-024-07079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The increasing mortality rate of pancreatic cancer globally necessitates the urgent identification for novel therapeutic targets. This study investigated the expression, functions, and mechanistic insight of G protein inhibitory subunit 3 (Gαi3) in pancreatic cancer. Bioinformatics analyses reveal that Gαi3 is overexpressed in human pancreatic cancer, correlating with poor prognosis, higher tumor grade, and advanced classification. Elevated Gαi3 levels are also confirmed in human pancreatic cancer tissues and primary/immortalized cancer cells. Gαi3 shRNA or knockout (KO) significantly reduced cell viability, proliferation, cell cycle progression, and mobility in primary/immortalized pancreatic cancer cells. Conversely, Gαi3 overexpression enhanced pancreatic cancer cell growth. RNA-sequencing and bioinformatics analyses of Gαi3-depleted cells indicated Gαi3's role in modulating the Akt-mTOR and PKA-Hippo-YAP pathways. Akt-S6 phosphorylation was decreased in Gαi3-depleted cells, but was increased with Gαi3 overexpression. Additionally, Gαi3 depletion elevated PKA activity and activated the Hippo pathway kinase LATS1/2, leading to YAP/TAZ inactivation, while Gαi3 overexpression exerted the opposite effects. There is an increased binding between Gαi3 promoter and the transcription factor TCF7L2 in pancreatic cancer tissues and cells. Gαi3 expression was significantly decreased following TCF7L2 silencing, but increased with TCF7L2 overexpression. In vivo, intratumoral injection of Gαi3 shRNA-expressing adeno-associated virus significantly inhibited subcutaneous pancreatic cancer xenografts growth in nude mice. A significant growth reduction was also observed in xenografts from Gαi3 knockout pancreatic cancer cells. Akt-mTOR inactivation and increased PKA activity coupled with YAP/TAZ inactivation were also detected in xenograft tumors upon Gαi3 depletion. Furthermore, bioinformatic analysis and multiplex immunohistochemistry (mIHC) staining on pancreatic cancer tissue microarrays showed a reduced proportion of M1-type macrophages and an increase in PD-L1 positive cells in Gαi3-high pancreatic cancer tissues. Collectively, these findings highlight Gαi3's critical role in promoting pancreatic cancer cell growth, potentially through the modulation of the Akt-mTOR and PKA-Hippo-YAP pathways and its influence on the immune landscape.
Collapse
Affiliation(s)
- Jian-Zhuo Jiang
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yin-Biao Qiao
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qian-Hui Gu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jing-Jing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zhen-Yu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Lu Xu
- Department of general surgery, The first affiliated hospital of Soochow university, Suzhou, China.
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
4
|
Cheng F, Huang H, Yin S, Liu JS, Sun P. Expression and functional implications of YME1L in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:423. [PMID: 38890304 PMCID: PMC11189534 DOI: 10.1038/s41419-024-06811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Mitochondria play a crucial role in the progression of nasopharyngeal carcinoma (NPC). YME1L, a member of the AAA ATPase family, is a key regulator of mitochondrial function and has been implicated in various cellular processes and diseases. This study investigates the expression and functional significance of YME1L in NPC. YME1L exhibits significant upregulation in NPC tissues from patients and across various primary human NPC cells, while its expression remains relatively low in adjacent normal tissues and primary nasal epithelial cells. Employing genetic silencing through the shRNA strategy or knockout (KO) via the CRISPR-sgRNA method, we demonstrated that YME1L depletion disrupted mitochondrial function, leading to mitochondrial depolarization, reactive oxygen species (ROS) generation, lipid peroxidation, and ATP reduction within primary NPC cells. Additionally, YME1L silencing or KO substantially impeded cell viability, proliferation, cell cycle progression, and migratory capabilities, concomitant with an augmentation of Caspase-apoptosis activation in primary NPC cells. Conversely, ectopic YME1L expression conferred pro-tumorigenic attributes, enhancing ATP production and bolstering NPC cell proliferation and migration. Moreover, our findings illuminate the pivotal role of YME1L in Akt-mTOR activation within NPC cells, with Akt-S6K phosphorylation exhibiting a significant decline upon YME1L depletion but enhancement upon YME1L overexpression. In YME1L-silenced primary NPC cells, the introduction of a constitutively-active Akt1 mutant (caAkt1, at S473D) restored Akt-S6K phosphorylation, effectively ameliorating the inhibitory effects imposed by YME1L shRNA. In vivo studies revealed that intratumoral administration of YME1L-shRNA-expressing adeno-associated virus (AAV) curtailed subcutaneous NPC xenograft growth in nude mice. Furthermore, YME1L downregulation, concurrent with mitochondrial dysfunction and ATP reduction, oxidative injury, Akt-mTOR inactivation, and apoptosis induction were evident within YME1L-silenced NPC xenograft tissues. Collectively, these findings shed light on the notable pro-tumorigenic role by overexpressed YME1L in NPC, with a plausible mechanism involving the promotion of Akt-mTOR activation.
Collapse
Affiliation(s)
- Fuwei Cheng
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiping Huang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiyao Yin
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-Sheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Jin X, Yang S, Lu X, Chen X, Dai W. Increased expression of REG3A promotes tumorigenic behavior in triple negative breast cancer cells. Breast Cancer Res 2024; 26:92. [PMID: 38840145 PMCID: PMC11151570 DOI: 10.1186/s13058-024-01845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Identifying new targets in triple negative breast cancer (TNBC) remains critical. REG3A (regenerating islet-derived protein 3 A), a calcium-dependent lectin protein, was thoroughly investigated for its expression and functions in breast cancer. METHODS Bioinformatics and local tissue analyses were employed to identify REG3A expression in breast cancer. Genetic techniques were employed to modify REG3A expression, and the resulting effects on the behaviors of breast cancer cells were examined. Subcutaneous xenograft models were established to investigate the involvement of REG3A in the in vivo growth of breast cancer cells. RESULTS Analysis of the TCGA database uncovered increased REG3A levels in human breast cancer tissues. Additionally, REG3A mRNA and protein levels were elevated in TNBC tissues of locally treated patients, contrasting with low expression in adjacent normal tissues. In primary human TNBC cells REG3A shRNA notably hindered cell proliferation, migration, and invasion while triggering caspase-mediated apoptosis. Similarly, employing CRISPR-sgRNA for REG3A knockout showed significant anti-TNBC cell activity. Conversely, REG3A overexpression bolstered cell proliferation and migration. REG3A proved crucial for activating the Akt-mTOR cascade, as evidenced by decreased Akt-S6K1 phosphorylation upon REG3A silencing or knockout, which was reversed by REG3A overexpression. A constitutively active mutant S473D Akt1 (caAkt1) restored Akt-mTOR activation and counteracted the proliferation inhibition and apoptosis induced by REG3A knockdown in breast cancer cells. Crucially, REG3A played a key role in maintaining mTOR complex integrity. Bioinformatics identified zinc finger protein 680 (ZNF680) as a potential REG3A transcription factor. Knocking down or knocking out ZNF680 reduced REG3A expression, while its overexpression increased it in primary breast cancer cells. Additionally, enhanced binding between ZNF680 protein and the REG3A promoter was observed in breast cancer tissues and cells. In vivo, REG3A shRNA significantly inhibited primary TNBC cell xenograft growth. In REG3A-silenced xenograft tissues, reduced REG3A levels, Akt-mTOR inhibition, and activated apoptosis were evident. CONCLUSION ZNF680-caused REG3A overexpression drives tumorigenesis in breast cancer possibly by stimulating Akt-mTOR activation, emerging as a promising and innovative cancer target.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, No.30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu, China
| | - Shuyun Yang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, No.30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, No.30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu, China
| | - Xudong Chen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, No.30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu, China.
| | - Wencheng Dai
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, No.30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu, China.
| |
Collapse
|
6
|
Sun X, Shi C, Dai J, Zhang MQ, Pei DS, Yang L. Targeting the mitochondrial protein YME1L to inhibit osteosarcoma cell growth in vitro and in vivo. Cell Death Dis 2024; 15:346. [PMID: 38769124 PMCID: PMC11106333 DOI: 10.1038/s41419-024-06722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Exploring novel diagnostic and therapeutic biomarkers is extremely important for osteosarcoma. YME1 Like 1 ATPase (YME1L), locating in the mitochondrial inner membrane, is key in regulating mitochondrial plasticity and metabolic activity. Its expression and potential functions in osteosarcoma are studied in the present study. We show that YME1L mRNA and protein expression is significantly elevated in osteosarcoma tissues derived from different human patients. Moreover, its expression is upregulated in various primary and immortalized osteosarcoma cells. The Cancer Genome Atlas database results revealed that YME1L overexpression was correlated with poor overall survival and poor disease-specific survival in sarcoma patients. In primary and immortalized osteosarcoma cells, silencing of YME1L through lentiviral shRNA robustly inhibited cell viability, proliferation, and migration. Moreover, cell cycle arrest and apoptosis were detected in YME1L-silenced osteosarcoma cells. YME1L silencing impaired mitochondrial functions in osteosarcoma cells, causing mitochondrial depolarization, oxidative injury, lipid peroxidation and DNA damage as well as mitochondrial respiratory chain complex I activity inhibition and ATP depletion. Contrarily, forced YME1L overexpression exerted pro-cancerous activity and strengthened primary osteosarcoma cell proliferation and migration. YME1L is important for Akt-S6K activation in osteosarcoma cells. Phosphorylation of Akt and S6K was inhibited after YME1L silencing in primary osteosarcoma cells, but was strengthened with YME1L overexpression. Restoring Akt-mTOR activation by S473D constitutively active Akt1 mitigated YME1L shRNA-induced anti-osteosarcoma cell activity. Lastly, intratumoral injection of YME1L shRNA adeno-associated virus inhibited subcutaneous osteosarcoma xenograft growth in nude mice. YME1L depletion, mitochondrial dysfunction, oxidative injury, Akt-S6K inactivation, and apoptosis were detected in YME1L shRNA-treated osteosarcoma xenografts. Together, overexpressed YME1L promotes osteosarcoma cell growth, possibly by maintaining mitochondrial function and Akt-mTOR activation.
Collapse
Affiliation(s)
- Xu Sun
- Department of Hand and Foot Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ce Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Jin Dai
- Department of Orthopedics, Suzhou Wujiang District Children's Hospital, Suzhou, China
| | | | - Dong-Sheng Pei
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Lei Yang
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
| |
Collapse
|
7
|
Bi HE, Zhang J, Yao Y, Wang S, Yao J, Shao Z, Jiang Q. Expression and functional significance of phosphoenolpyruvate carboxykinase 1 in uveal melanoma. Cell Death Discov 2024; 10:196. [PMID: 38670942 PMCID: PMC11053060 DOI: 10.1038/s41420-024-01963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Uveal melanoma (UVM), an uncommon yet potentially life-threatening ocular cancer, arises from melanocytes in the uveal tract of the eye. The exploration of novel oncotargets for UVM is of paramount importance. In this study, we show that PCK1 (phosphoenolpyruvate carboxykinase 1) expression is upregulated in various UVM tissues as well as in primary UVM cells and immortalized lines. Furthermore, bioinformatics studies reveal that PCK1 overexpression in UVM correlates with advanced disease stages and poor patient survival. Genetic silencing (utilizing viral shRNA) or knockout (via CRISPR/Cas9) of PCK1 significantly curtailed cell viability, proliferation, cell cycle progression, and motility, while provoking apoptosis in primary and immortalized UVM cells. Conversely, ectopic overexpression of PCK1, achieved through a viral construct, bolstered UVM cell proliferation and migration. Gαi3 expression and Akt phosphorylation were reduced following PCK1 silencing or knockout, but increased after PCK1 overexpression in UVM cells. Restoring Akt phosphorylation through a constitutively active mutant Akt1 (S473D) ameliorated the growth inhibition, migration suppression, and apoptosis induced by PCK1 silencing in UVM cells. Additionally, ectopic expression of Gαi3 restored Akt activation and counteracted the anti-UVM cell effects by PCK1 silencing. In vivo, the growth of subcutaneous xenografts of primary human UVM cells was significantly inhibited following intratumoral injection of adeno-associated virus (aav) expressing PCK1 shRNA. PCK1 depletion, Gαi3 downregulation, Akt inhibition, proliferation arrest, and apoptosis were detected in PCK1-silenced UVM xenografts. Collectively, our findings demonstrate that PCK1 promotes UVM cell growth possibly by modulating the Gαi3-Akt signaling pathway.
Collapse
Affiliation(s)
- Hui-E Bi
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yujia Yao
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Suyu Wang
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Zhijiang Shao
- Department of Ophthalmology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Qin Jiang
- The Affiliated Eye Hospital, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Bai CW, Lu L, Zhang JN, Zhou C, Ni YC, Li KR, Yao J, Zhou XZ, Lan CG, Cao C. G protein subunit alpha i2's pivotal role in angiogenesis. Theranostics 2024; 14:2190-2209. [PMID: 38505600 PMCID: PMC10945342 DOI: 10.7150/thno.92909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Here we explored the potential role of Gαi2 (G protein subunit alpha i2) in endothelial cell function and angiogenesis. Methods: Genetic methodologies such as shRNA, CRISPR/Cas9, dominant negative mutation, and overexpression were utilized to modify Gαi2 expression or regulate its function. Their effects on endothelial cell functions were assessed in vitro. In vivo, the endothelial-specific Gαi2 shRNA adeno-associated virus (AAV) was utilized to silence Gαi2 expression. The impact of this suppression on retinal angiogenesis in control mice and streptozotocin (STZ)-induced diabetic retinopathy (DR) mice was analyzed. Results: Analysis of single-cell RNA sequencing data revealed Gαi2 (GNAI2) was predominantly expressed in retinal endothelial cells and expression was increased in retinal endothelial cells following oxygen-induced retinopathy (OIR) in mice. Moreover, transcriptome analysis linking Gαi2 to angiogenesis-related processes/pathways, supported by increased Gαi2 expression in experimental OIR mouse retinas, highlighted its possible role in angiogenesis. In various endothelial cell types, shRNA-induced silencing and CRISPR/Cas9-mediated knockout (KO) of Gαi2 resulted in substantial reductions in cell proliferation, migration, invasion, and capillary tube formation. Conversely, Gαi2 over-expression in endothelial cells induced pro-angiogenic activities, enhancing cell proliferation, migration, invasion, and capillary tube formation. Furthermore, our investigation revealed a crucial role of Gαi2 in NFAT (nuclear factor of activated T cells) activation, as evidenced by the down-regulation of NFAT-luciferase reporter activity and pro-angiogenesis NFAT-targeted genes (Egr3, CXCR7, and RND1) in Gαi2-silenced or -KO HUVECs, which were up-regulated in Gαi2-overexpressing endothelial cells. Expression of a dominant negative Gαi2 mutation (S48C) also down-regulated NFAT-targeted genes, slowing proliferation, migration, invasion, and capillary tube formation in HUVECs. Importantly, in vivo experiments revealed that endothelial Gαi2 knockdown inhibited retinal angiogenesis in mice, with a concomitant down-regulation of NFAT-targeted genes in mouse retinal tissue. In contrast, Gαi2 over-expression in endothelial cells enhanced retinal angiogenesis in mice. Single-cell RNA sequencing data confirmed increased levels of Gαi2 specifically in retinal endothelial cells of mice with streptozotocin (STZ)-induced diabetic retinopathy (DR). Importantly, endothelial Gαi2 silencing ameliorated retinal pathological angiogenesis in DR mice. Conclusion: Our study highlights a critical role for Gαi2 in NFAT activation, endothelial cell activation and angiogenesis, offering valuable insights into potential therapeutic strategies for modulating these processes.
Collapse
Affiliation(s)
- Chao-wen Bai
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Lu Lu
- Department of Joint Surgery and Geriatric Orthopedics, Affiliated Hospital of YouJiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City, China
| | - Jia-nan Zhang
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Chengyu Zhou
- Department of Neuroscience, Case Western Reserve University, Cleveland, USA
| | - Yi-chao Ni
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Ke-ran Li
- The Fourth Medical School, Eye hospital, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- The Fourth Medical School, Eye hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-zhong Zhou
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Chang-gong Lan
- Department of Joint Surgery and Geriatric Orthopedics, Affiliated Hospital of YouJiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City, China
| | - Cong Cao
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
10
|
Yin DP, Zhang H, Teng H, Zhang D, Chen P, Xie L, Liu JS. Overexpressed Gαi1 exerts pro-tumorigenic activity in nasopharyngeal carcinoma. Cell Death Dis 2023; 14:792. [PMID: 38049415 PMCID: PMC10696052 DOI: 10.1038/s41419-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
The current study tested the expression and potential functions of Gαi1 in nasopharyngeal carcinoma (NPC). The Cancer Genome Atlas (TCGA) database results demonstrate that Gαi1 transcripts' number in NPC tissues is significantly higher than that in the normal nasal epithelial tissues. Its overexpression correlates with poor survival in certain NPC patients. Moreover, Gαi1 is significantly upregulated in NPC tissues of local primary patients and in different primary human NPC cells. Whereas its expression is relatively low in cancer-surrounding normal tissues and in primary nasal epithelial cells. Genetic silencing (via shRNA strategy) or knockout (via CRISPR-sgRNA method) of Gαi1 substantially suppressed viability, proliferation, cell cycle progression, and migration in primary NPC cells, causing significant caspase-apoptosis activation. Contrarily, ectopic Gαi1 expression exerted pro-tumorigenic activity and strengthened cell proliferation and migration in primary NPC cells. Gαi1 is important for Akt-mTOR activation in NPC cells. Akt-S6K phosphorylation was downregulated after Gαi1 shRNA or KO in primary NPC cells, but strengthened following Gαi1 overexpression. In Gαi1-silenced primary NPC cells, a S473D constitutively-active mutant Akt1 (caAkt1) restored Akt-S6K phosphorylation and ameliorated Gαi1 shRNA-induced proliferation inhibition, migration reduction and apoptosis. Bioinformatics analyses proposed zinc finger protein 384 (ZNF384) as a potential transcription factor of Gαi1. In primary NPC cells, ZNF384 shRNA or knockout (via CRISPR-sgRNA method) decreased Gαi1 mRNA and protein expression, whereas ZNF384 overexpression upregulated it. Importantly, there was an increased binding between ZNF384 protein and the Gαi1 promoter in human NPC tissues and different NPC cells. In vivo studies showed that intratumoral injection of Gαi1-shRNA-expressing adeno-associated virus (AAV) impeded subcutaneous NPC xenograft growth in nude mice. Gαi1 downregulation, Akt-mTOR inactivation, and apoptosis induction were detected in Gαi1-silenced NPC xenograft tissues. Gαi1 KO also effectively inhibited the growth of NPC xenografts in nude mice. Together, overexpressed Gαi1 exerts pro-tumorigenic activity in NPC possibly by promoting Akt-mTOR activation.
Collapse
Affiliation(s)
- De-Pei Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Huanle Zhang
- Department of Radiotherapy, Suzhou Ninth People's Hospital, Suzhou, China
| | - Hua Teng
- Department of Otorhinolaryngology Head and Neck Surgery, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Dan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peipei Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Lixiao Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Ji-Sheng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Zheng Y, Ji S, Li X, Wen L. Qijia rougan formula ameliorates ECM deposition in hepatic fibrosis by regulating the JAK1/STAT6-microRNA-23a feedback loop in macrophage M2 polarization. Biomed Pharmacother 2023; 168:115794. [PMID: 37922651 DOI: 10.1016/j.biopha.2023.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Hepatic fibrosis is the critical pathological stage in the progression of chronic liver disease to cirrhosis and hepatocellular carcinoma (HCC). However, no approved anti-hepatic fibrosis drugs are available currently. Qijia Rougan Formula (QRF) is a traditional Chinese medicine (TCM) with significant clinical efficacy on hepatic fibrosis. It was derived from Sanjiasan, a famous decoction documented in the Book of Treatise on the Pestilence in the Ming Dynasty of China. However, the underlying regulatory mechanisms remain elusive. This study further confirmed the therapeutic effects of QRF on hepatic fibrosis and dissected its underlying molecular mechanisms from the perspective of macrophage M2 polarization, one of the critical events in hepatic fibrosis. Experimentally, QRF significantly improved extracellular matrix (ECM) deposition and fibrosis in the liver of model rats. QRF diminished the proportion of M2 macrophages, decreased the levels of TGF-β, PDGFB and IL-10, and regulated the expression of p-JAK1, p-STAT6, JAK1 and microRNA-23a both in vitro and in vivo. Collectively, it was confirmed that QRF effectively improves liver function and hepatocyte damage, and reduces ECM deposition. QRF ameliorates hepatic fibrosis by regulating JAK1/STAT6-microRNA-23a negative feedback loop to inhibit macrophage M2 polarization and thus reduce ECM deposition. Our study illustrates the potential of QRF for hepatic fibrosis therapy, suggesting that QRF is a promising anti-hepatic fibrosis drug candidate.
Collapse
Affiliation(s)
- Yanfeng Zheng
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaoxiu Ji
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xia Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wen
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Chen ZG, Shi X, Zhang XX, Yang FF, Li KR, Fang Q, Cao C, Chen XH, Peng Y. Neuron-secreted NLGN3 ameliorates ischemic brain injury via activating Gαi1/3-Akt signaling. Cell Death Dis 2023; 14:700. [PMID: 37880221 PMCID: PMC10600254 DOI: 10.1038/s41419-023-06219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xian-Xian Zhang
- Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Fang-Fang Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ke-Ran Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xiong-Hui Chen
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
13
|
Liu TT, Shi X, Hu HW, Chen JP, Jiang Q, Zhen YF, Cao C, Liu XW, Liu JG. Endothelial cell-derived RSPO3 activates Gαi1/3-Erk signaling and protects neurons from ischemia/reperfusion injury. Cell Death Dis 2023; 14:654. [PMID: 37805583 PMCID: PMC10560285 DOI: 10.1038/s41419-023-06176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The current study explores the potential function and the underlying mechanisms of endothelial cell-derived R-spondin 3 (RSPO3) neuroprotection against ischemia/reperfusion-induced neuronal cell injury. In both neuronal cells (Neuro-2a) and primary murine cortical neurons, pretreatment with RSPO3 ameliorated oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced neuronal cell death and oxidative injury. In neurons RSPO3 activated the Akt, Erk and β-Catenin signaling cascade, but only Erk inhibitors reversed RSPO3-induced neuroprotection against OGD/R. In mouse embryonic fibroblasts (MEFs) and neuronal cells, RSPO3-induced LGR4-Gab1-Gαi1/3 association was required for Erk activation, and either silencing or knockout of Gαi1 and Gαi3 abolished RSPO3-induced neuroprotection. In mice, middle cerebral artery occlusion (MCAO) increased RSPO3 expression and Erk activation in ischemic penumbra brain tissues. Endothelial knockdown or knockout of RSPO3 inhibited Erk activation in the ischemic penumbra brain tissues and increased MCAO-induced cerebral ischemic injury in mice. Conversely, endothelial overexpression of RSPO3 ameliorated MCAO-induced cerebral ischemic injury. We conclude that RSPO3 activates Gαi1/3-Erk signaling to protect neuronal cells from ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ting-Tao Liu
- Shandong University, Department of Neurology, Shandong Provincial Hospital, Jinan, China
- Department of Neurology, Shouguang Hospital of T.C.M, Shouguang, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Ping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Changshu, China
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yun-Fang Zhen
- Department of Orthopedics, Children's hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xue-Wu Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jian-Gang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Wang Y, Wan R, Hu C. Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages. Mol Med 2023; 29:100. [PMID: 37488474 PMCID: PMC10367413 DOI: 10.1186/s10020-023-00702-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Obesity-related asthma is a kind of nonallergic asthma with excessive neutrophil infiltration in the airways. However, the underlying mechanisms have been poorly elucidated. Among the adipokines related to obesity, leptin is related to the inflammatory response. However, little is understood about how leptin acts on the leptin receptor (obR) in neutrophilic airway inflammation in obesity-associated asthma. We explored the inflammatory effects of leptin/obR signaling in an obesity-related neutrophilic airway inflammation mouse model. METHODS We established a neutrophilic airway inflammation mouse model using lipopolysaccharide (LPS)/ovalbumin (OVA) sensitization and OVA challenge (LPS + OVA/OVA) in lean, obese, or db/db (obR deficiency) female mice. Histopathological, bronchoalveolar lavage fluid (BALF) inflammatory cell, and lung inflammatory cytokine analyses were used to analyze airway inflammation severity. Western blotting, flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the underlying mechanisms. In vitro bone marrow-derived macrophage (BMDM) and bone marrow-derived neutrophil experiments were performed. RESULTS We found that the serum leptin level was higher in obese than in lean female mice. Compared to LPS/OVA + OVA-treated lean female mice, LPS/OVA + OVA-treated obese female mice had higher peribronchial inflammation levels, neutrophil counts, Th1/Th17-related inflammatory cytokine levels, M1 macrophage polarization levels, and long isoform obR activation, which could be decreased by the obR blockade (Allo-Aca) or obR deficiency, suggesting a critical role of leptin/obR signaling in the pathogenesis of obesity-related neutrophilic airway inflammation in female mice. In in vitro experiments, leptin synergized with LPS/IFN-γ to promote the phosphorylation of the long isoform obR and JNK/STAT3/AKT signaling pathway members to increase M1 macrophage polarization, which was reversed by Allo-Aca. Moreover, leptin/obR-mediated M1 macrophage activity significantly elevated CXCL2 production and neutrophil recruitment by regulating the JNK/STAT3/AKT pathways. In clinical studies, obese patients with asthma had higher serum leptin levels and M1 macrophage polarization levels in induced sputum than non-obese patients with asthma. Serum leptin levels were positively correlated with M1 macrophage polarization levels in patients with asthma. CONCLUSIONS Our results demonstrate leptin/obR signaling plays an important role in the pathogenesis of obesity-related neutrophilic airway inflammation in females by promoting M1 macrophage polarization.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Jang H, Ojha U, Jeong JH, Park KG, Lee SY, Lee YM. Myriocin suppresses tumor growth by modulating macrophage polarization and function through the PI3K/Akt/mTOR pathway. Arch Pharm Res 2023; 46:629-645. [PMID: 37468765 DOI: 10.1007/s12272-023-01454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Macrophages within the tumor microenvironment (TME), referred to as tumor-associated macrophages (TAMs), are involved in various aspects of tumor progression including initiation, angiogenesis, metastasis, immunosuppression, and resistance to therapy. Myriocin, a natural compound isolated from Mycelia sterilia, is an immunosuppressant that inhibits tumor growth and angiogenesis. However, the mechanisms underlying the effects of myriocin on TAMs and TAM-mediated tumor growth have not yet been elucidated. In this study, we determined the effects of myriocin on TAMs and the underlying mechanism in vitro and in vivo. Myriocin significantly suppressed monocyte-macrophage differentiation and M2 polarization of macrophages but not M1 polarization. In addition, myriocin inhibited the expression of anti-inflammatory cytokines and secretion of proangiogenic factors, such as vascular endothelial growth factor, in M2 macrophages as well as M2-induced endothelial cell permeability. Myriocin also inhibited the PI3K/Akt/mTOR signaling pathway in M2 macrophages. Myriocin reduced the population of M2-like TAMs within the tumor tissue of a mouse allograft tumor model but not that of M1-like TAMs. Moreover, combined treatment with myriocin and cisplatin synergistically suppressed tumor growth and enhanced survival rate in mice by reducing the population of M2-like TAMs. Overall, these results suggest that myriocin inhibits tumor growth by remodeling the TME through suppression of differentiation and polarization of M2-like TAMs via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hyeonha Jang
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Uttam Ojha
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hak Jeong
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Keun-Gyu Park
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Shin Yup Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Shan HJ, Jiang K, Zhao MZ, Deng WJ, Cao WH, Li JJ, Li KR, She C, Luo WF, Yao J, Zhou XZ, Zhang D, Cao C. SCF/c-Kit-activated signaling and angiogenesis require Gαi1 and Gαi3. Int J Biol Sci 2023; 19:1910-1924. [PMID: 37063428 PMCID: PMC10092767 DOI: 10.7150/ijbs.82855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
The stem cell factor (SCF) binds to c-Kit in endothelial cells, thus activating downstream signaling and angiogenesis. Herein, we examined the role of G protein subunit alpha inhibitory (Gαi) proteins in this process. In MEFs and HUVECs, Gαi1/3 was associated with SCF-activated c-Kit, promoting c-Kit endocytosis, and binding of key adaptor proteins, subsequently transducing downstream signaling. SCF-induced Akt-mTOR and Erk activation was robustly attenuated by Gαi1/3 silencing or knockout (KO), or due to dominant negative mutations but was strengthened substantially following ectopic overexpression of Gαi1/3. SCF-induced HUVEC proliferation, migration, and capillary tube formation were suppressed after Gαi1/3 silencing or KO, or due to dominant negative mutations. In vivo, endothelial knockdown of Gαi1/3 by intravitreous injection of endothelial-specific shRNA adeno-associated virus (AAV) potently reduced SCF-induced signaling and retinal angiogenesis in mice. Moreover, mRNA and protein expressions of SCF increased significantly in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. SCF silencing, through intravitreous injection of SCF shRNA AAV, inhibited pathological retinal angiogenesis and degeneration of retinal ganglion cells in DR mice. Finally, the expression of SCF and c-Kit increased in proliferative retinal tissues of human patients with proliferative DR. Taken together, Gαi1/3 mediate SCF/c-Kit-activated signaling and angiogenesis.
Collapse
Affiliation(s)
- Hua-jian Shan
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Jiang
- Vascular Surgery Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Ming-zhi Zhao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-jing Deng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Wen-hao Cao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-jun Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-ran Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Chang She
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-feng Luo
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-zhong Zhou
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cong Cao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Chen M, Li Z, Gu C, Zheng H, Chen Y, Cheng L. Identification of G protein subunit alpha i2 as a promising therapeutic target of hepatocellular carcinoma. Cell Death Dis 2023; 14:143. [PMID: 36805440 PMCID: PMC9941495 DOI: 10.1038/s41419-023-05675-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem. Its incidence and mortality are increasing. Exploring novel therapeutic targets against HCC is important and urgent. We here explored the expression and potential function of Gαi2 (G protein subunit alpha i2) in HCC. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database shows that the number of Gαi2 transcripts in HCC tissues is significantly higher than that in the normal liver tissues. Moreover, Gαi2 overexpression in HCC correlates with poor prognosis of the patients. Gαi2 mRNA and protein expression are also elevated in local HCC tissues and different human HCC cells. In patient-derived primary HCC cells and immortalized HepG2 cells, Gαi2 silencing (by targeted shRNA) or knockout (KO, by the dCas9-sgRNA method) largely suppressed cell proliferation and motility, while inducing cell cycle arrest and caspase-apoptosis activation. Moreover, Gαi2 silencing or KO-induced reactive oxygen species (ROS) production and oxidative injury in primary and HepG2 HCC cells. Whereas different antioxidants ameliorated Gαi2-shRNA-induced anti-HCC cell activity. Using a lentiviral construct, Gαi2 overexpression further augmented proliferation and motility of primary and immortalized HCC cells. Further studies revealed that the binding between the transcription factor early growth response zinc finger transcription factor 1 (EGR1) and Gαi2 DNA promoter was significantly increased in HCC tissues and cells. In vivo, intratumoral injection of Gαi2 shRNA adeno-associated virus significantly hindered HCC xenograft growth in nude mice. Moreover, the growth of Gαi2-KO HCC xenografts in the nude mice was remarkably slow. Gαi2 depletion, oxidative injury, and apoptosis induction were detected in Gαi2-silenced or Gαi2-KO HCC xenografts. Together, overexpressed Gαi2 is required for HCC cell growth in vitro and in vivo, representing as a novel and promising diagnosis marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Zhifei Li
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Chengtao Gu
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Hao Zheng
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Yan Chen
- General Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Long Cheng
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China.
| |
Collapse
|
18
|
Li Y, Chai JL, Shi X, Feng Y, Li JJ, Zhou LN, Cao C, Li KR. Gαi1/3 mediate Netrin-1-CD146-activated signaling and angiogenesis. Theranostics 2023; 13:2319-2336. [PMID: 37153740 PMCID: PMC10157725 DOI: 10.7150/thno.80749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
Netrin-1 binds to the high-affinity receptor CD146 to activate downstream signaling and angiogenesis. Here, we examine the role and underlying mechanisms of G protein subunit alpha i1 (Gαi1) and Gαi3 in Netrin-1-induced signaling and pro-angiogenic activity. In mouse embryonic fibroblasts (MEFs) and endothelial cells, Netrin-1-induced Akt-mTOR (mammalian target of rapamycin) and Erk activation was largely inhibited by silencing or knockout of Gαi1/3, whereas signaling was augmented following Gαi1/3 overexpression. Netrin-1 induced Gαi1/3 association with CD146, required for CD146 internalization, Gab1 (Grb2 associated binding protein 1) recruitment and downstream Akt-mTOR and Erk activation. Netrin-1-induced signaling was inhibited by CD146 silencing, Gab1 knockout, or Gαi1/3 dominant negative mutants. Netrin-1-induced human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation were inhibited by Gαi1/3 short hairpin RNA (shRNA), but were potentiated by ectopic Gαi1/3 overexpression. In vivo, intravitreous injection of Netrin-1 shRNA adeno-associated virus (AAV) significantly inhibited Akt-mTOR and Erk activation in murine retinal tissues and reduced retinal angiogenesis. Endothelial knockdown of Gαi1/3 significantly inhibited Netrin1-induced signaling and retinal angiogenesis in mice. Netrin-1 mRNA and protein expression were significantly elevated in retinal tissues of diabetic retinopathy (DR) mice. Importantly, silence of Netrin-1, by intravitreous Netrin-1 shRNA AAV injection, inhibited Akt-Erk activation, pathological retinal angiogenesis and retinal ganglion cells degeneration in DR mice. Lastly, Netrin-1 and CD146 expression is significantly increased in the proliferative retinal tissues of human proliferative diabetic retinopathy patients. Together, Netrin-1 induces CD146-Gαi1/3-Gab1 complex formation to mediate downstream Akt-mTOR and Erk activation, important for angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Ya Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-long Chai
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xin Shi
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-jun Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Li-na Zhou
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Cong Cao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- ✉ Corresponding authors: Prof. Cong Cao, Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University.199Ren-ai Road, Suzhou, Jiangsu 215123, China. E-mail: . Prof. Ke-ran Li, The Affiliated Eye Hospital, Nanjing Medical University,138 Hanzhong Rd, Nanjing, Jiangsu, 210029, China. E-mail:
| | - Ke-ran Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- ✉ Corresponding authors: Prof. Cong Cao, Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University.199Ren-ai Road, Suzhou, Jiangsu 215123, China. E-mail: . Prof. Ke-ran Li, The Affiliated Eye Hospital, Nanjing Medical University,138 Hanzhong Rd, Nanjing, Jiangsu, 210029, China. E-mail:
| |
Collapse
|
19
|
Xu Z, Wu L, Tang Y, Xi K, Tang J, Xu Y, Xu J, Lu J, Guo K, Gu Y, Chen L. Spatiotemporal Regulation of the Bone Immune Microenvironment via Dam-Like Biphasic Bionic Periosteum for Bone Regeneration. Adv Healthc Mater 2023; 12:e2201661. [PMID: 36189833 PMCID: PMC11469314 DOI: 10.1002/adhm.202201661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Indexed: 02/03/2023]
Abstract
The bone immune microenvironment (BIM) regulates bone regeneration and affects the prognosis of fractures. However, there is currently no effective strategy that can precisely modulate macrophage polarization to improve BIM for bone regeneration. Herein, a hybridized biphasic bionic periosteum, inspired by the BIM and functional structure of the natural periosteum, is presented. The gel phase is composed of genipin-crosslinked carboxymethyl chitosan and collagen self-assembled hybrid hydrogels, which act as the "dam" to intercept IL-4 released during the initial burst from the bionic periosteum fiber phase, thus maintaining the moderate inflammatory response of M1 macrophages for mesenchymal stem cell recruitment and vascular sprouting at the acute fracture. With the degradation of the gel phase, released IL-4 cooperates with collagen to promote the polarization towards M2 macrophages, which reconfigure the local microenvironment by secreting PDGF-BB and BMP-2 to improve vascular maturation and osteogenesis twofold. In rat cranial defect models, the controlled regulation of the BIM is validated with the temporal transition of the inflammatory/anti-inflammatory process to achieve faster and better bone defect repair. This strategy provides a drug delivery system that constructs a coordinated BIM, so as to break through the predicament of the contradiction between immune response and bone tissue regeneration.
Collapse
Affiliation(s)
- Zonghan Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Wu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yu Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jingzhi Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jian Lu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kaijin Guo
- Department of Orthopedicsthe Affiliated Hospital of Xuzhou Medical University99 Huaihai West RoadXuzhouJiangsu221000P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| |
Collapse
|
20
|
Zhou LN, Peng SQ, Chen XL, Zhu XR, Jin AQ, Liu YY, Zhu LX, Zhu YQ. Triptonide Inhibits the Cervical Cancer Cell Growth via Downregulating the RTKs and Inactivating the Akt-mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8550817. [PMID: 39282148 PMCID: PMC11401660 DOI: 10.1155/2022/8550817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 09/18/2024]
Abstract
The high incidence and mortality of cervical cancer (CC) require an urgent need for exploring novel valuable therapeutics. Triptonide (TN) is a small molecule monomer extracted from the Chinese herb Tripterygium wilfordii Hook. Our results showed that TN, at only nanomolar concentrations, strongly inhibited growth, colony formation, proliferation, migration, and invasion of established and primary human cervical cancer cells. TN induced apoptosis and cell cycle arrest in cervical cancer cells. Moreover, cervical cancer cell in vitro migration and invasion were suppressed by TN. It was however noncytotoxic and proapoptotic to normal cervical epithelial cells and human skin fibroblast cells. Gene set enrichment analysis (GSEA) of RNA sequencing data of differentially expressed genes (DEGs) in TN-treated cervical cancer cells implied that DEGs were enriched in the receptor tyrosine kinase (RTK) signaling and PI3K-Akt-mTOR cascade. In cervical cancer cells, RTKs, including EGFR and PDGFRα, were significantly downregulated and Akt-mTOR activation was largely inhibited after TN treatment. In vivo, oral administration of TN significantly inhibited subcutaneous cervical cancer xenograft growth in nude mice. EGFR and PDGFRα downregulation as well as Akt-mTOR inactivation was detected in TN-treated HeLa xenograft tumor tissues. Thus, TN inhibits human cervical cancer cell growth in vitro and in vivo. Its anticervical cancer activity was associated with RTK downregulation and Akt-mTOR inactivation.
Collapse
Affiliation(s)
- Li-Na Zhou
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiation Oncology, Soochow University, 215004 Suzhou, China
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Xue-Lian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - An-Qi Jin
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Li-Xia Zhu
- Department of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Ya-Qun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiation Oncology, Soochow University, 215004 Suzhou, China
| |
Collapse
|
21
|
Zhang J, Yin DP, Zhang Y, Zhang JN, Yang Y, Zhang ZQ, Zhou L, Lv Y, Huang HW, Cao C. Identification of Gαi3 as a novel molecular therapeutic target of cervical cancer. Int J Biol Sci 2022; 18:5667-5680. [PMID: 36263185 PMCID: PMC9576524 DOI: 10.7150/ijbs.77126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Here we studied expression and potential functions of Gαi3 in cervical cancer. The bioinformatics analysis together with the results from local patients' tissues revealed that Gαi3 expression was remarkably elevated in human cervical cancer tissues and different cervical cancer cells, and was associated with poor overall survival and poor disease-specific survival of patients. Gαi3 depletion resulted in profound anti-cervical cancer activity. In primary or immortalized cervical cancer cells, Gαi3 shRNA or CRISPR/Cas9-caused Gαi3 knockout/KO largely hindered cell proliferation and migration, and provoked apoptosis. On the contrast, ectopic Gαi3 overexpression further enhanced cervical cancer proliferation and migration. Akt-mTOR activation in primary cervical cancer cells was significantly reduced after Gαi3 silencing or KO, but was augmented following Gαi3 overexpression. Further studies revealed that the transcription factor GATA4 binding to Gαi3 promoter region was significantly enhanced in cervical cancer tissues and cells. Gαi3 expression was decreased by GATA4 shRNA, but upregulated following GATA4 overexpression. In vivo, the growth of cervical cancer xenografts was robustly suppressed after Gαi3 silencing or KO. Gαi3 depletion and Akt-mTOR inactivation were detected in Gαi3-silenced/-KO cervical cancer xenograft tissues. Together, upregulated Gαi3 is a valuable oncotarget of cervical cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - De-pei Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Jia-nan Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan Yang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhi-qing Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li Zhou
- Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yan Lv
- Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Hai-wei Huang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cong Cao
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
22
|
Yao J, Wu XY, Yu Q, Yang SF, Yuan J, Zhang ZQ, Xue JS, Jiang Q, Chen MB, Xue GH, Cao C. The requirement of phosphoenolpyruvate carboxykinase 1 for angiogenesis in vitro and in vivo. SCIENCE ADVANCES 2022; 8:eabn6928. [PMID: 35622925 PMCID: PMC9140980 DOI: 10.1126/sciadv.abn6928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
We here examined the potential biological function of phosphoenolpyruvate carboxykinase 1 (PCK1) in angiogenesis. shRNA- or CRISPR-Cas9-induced PCK1 depletion potently inhibited endothelial cell proliferation, migration, sprouting, and tube formation, whereas ectopic PCK1 overexpression exerted opposite activity. In HUVECs, Gαi3 expression and Akt activation were decreased following PCK1 depletion, but were augmented by ectopic PCK1 overexpression. In vivo, retinal expression of PCK1 gradually increased from postnatal day 1 (P1) to P5. The intravitreous injection of endothelial-specific PCK1 shRNA adenovirus at P1 potently inhibited the radial extension of vascular plexus at P5. Conditional endothelial knockdown of PCK1 in adult mouse retina increased vascular leakage and the number of acellular capillaries while decreasing the number of RGCs in murine retinas. In diabetic retinopathy patients, PCK1 mRNA and protein levels were up-regulated in retinal tissues. Together, PCK1 is essential for angiogenesis possibly by mediating Gαi3 expression and Akt activation.
Collapse
Affiliation(s)
- Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-yuan Wu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Shuo-fei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yuan
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-song Xue
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Min-bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Guan-hua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cong Cao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Yang N, Li X. Epigallocatechin gallate relieves asthmatic symptoms in mice by suppressing HIF-1α/VEGFA-mediated M2 skewing of macrophages. Biochem Pharmacol 2022; 202:115112. [DOI: 10.1016/j.bcp.2022.115112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
|
24
|
García-Fojeda B, Minutti CM, Montero-Fernández C, Stamme C, Casals C. Signaling Pathways That Mediate Alveolar Macrophage Activation by Surfactant Protein A and IL-4. Front Immunol 2022; 13:860262. [PMID: 35444643 PMCID: PMC9014242 DOI: 10.3389/fimmu.2022.860262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Activation of tissue repair program in macrophages requires the integration of IL-4/IL-13 cytokines and tissue-specific signals. In the lung, surfactant protein A (SP-A) is a tissue factor that amplifies IL-4Rα-dependent alternative activation and proliferation of alveolar macrophages (AMs) through the myosin18A receptor. However, the mechanism by which SP-A and IL-4 synergistically increase activation and proliferation of AMs is unknown. Here we show that SP-A amplifies IL-4-mediated phosphorylation of STAT6 and Akt by binding to myosin18A. Blocking PI3K activity or the myosin18A receptor abrogates SP-A´s amplifying effects on IL-4 signaling. SP-A alone activates Akt, mTORC1, and PKCζ and inactivates GSK3α/β by phosphorylation, but it cannot activate arginase-1 activity or AM proliferation on its own. The combined effects of IL-4 and SP-A on the mTORC1 and GSK3 branches of PI3K-Akt signaling contribute to increased AM proliferation and alternative activation, as revealed by pharmacological inhibition of Akt (inhibitor VIII) and mTORC1 (rapamycin and torin). On the other hand, the IL-4+SP-A-driven PKCζ signaling axis appears to intersect PI3K activation with STAT6 phosphorylation to achieve more efficient alternative activation of AMs. Consistent with IL-4+SP-A-driven activation of mTORC1 and mTORC2, both agonists synergistically increased mitochondrial respiration and glycolysis in AMs, which are necessary for production of energy and metabolic intermediates for proliferation and alternative activation. We conclude that SP-A signaling in AMs activates PI3K-dependent branched pathways that amplify IL-4 actions on cell proliferation and the acquisition of AM effector functions.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos Montero-Fernández
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Sang X, Zhao X, Yan L, Jin X, Wang X, Wang J, Yin Z, Zhang Y, Meng Z. Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Eng Regen Med 2022; 19:629-642. [PMID: 35435577 PMCID: PMC9130414 DOI: 10.1007/s13770-022-00437-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intra-articular injection is a classic strategy for the treatment of early osteoarthritis (OA). However, the local delivery of traditional therapeutic agents has limited benefits for alleviating OA. Exosomes, an important type of extracellular nanovesicle, show great potential for suppressing cartilage destruction in OA to replace drugs and stem cell-based administration. METHODS In this study, we developed a thermosensitive, injectable hydrogel by in situ crosslinking of Pluronic F-127 and hyaluronic acid, which can be used as a slow-release carrier to durably retain primary chondrocyte-derived exosomes at damaged cartilage sites to effectively magnify their reparative effect. RESULTS It was found that the hydrogel can sustainedly release exosomes, positively regulate chondrocytes on the proliferation, migration and differentiation, as well as efficiently induce polarization of M1 to M2 macrophages. Intra-articular injection of this exosomes-incorporated hydrogel significantly prevented cartilage destruction by promoting cartilage matrix formation. This strategy also displayed a regenerative immune phenotype characterized by a higher infiltration of CD163+ regenerative M2 macrophages over CD86+ M1 macrophages in synovial and chondral tissue, with a concomitant reduction in pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and increase in anti-inflammatory cytokine (IL-10) in synovial fluid. CONCLUSION Our results demonstrated that local sustained-release primary chondrocyte-derived exosomes may relieve OA by promoting the phenotypic transformation of macrophages from M1 to M2, which suggesting a great potential for the application in OA.
Collapse
Affiliation(s)
- Xuehan Sang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xiuhong Zhao
- Department of Integrated Traditional Chinese and Western Medicine, People's Hospital of Qinghai Provincial, Xining, 810007, China
| | - Lianqi Yan
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xing Jin
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xin Wang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Jianjian Wang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Zhenglu Yin
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhaoxiang Meng
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
26
|
The pro-tumorigenic activity of p38γ overexpression in nasopharyngeal carcinoma. Cell Death Dis 2022; 13:210. [PMID: 35246508 PMCID: PMC8897421 DOI: 10.1038/s41419-022-04637-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
It is urgent to identify and validate biomarkers for early diagnosis and efficient treatment of nasopharyngeal carcinoma (NPC). Recent studies have proposed p38 gamma (p38γ) as a cyclin-dependent kinase (CDK)-like kinase that phosphorylates retinoblastoma (Rb) to promote cyclins expression and tumorigenesis. Here the Gene Expression Profiling Interactive Analysis (GEPIA) database and results from the local NPC tissues demonstrate that p38γ is significantly upregulated in NPC tissues, correlating with poor overall survival. Furthermore, p38γ mRNA and protein expression is elevated in established NPC cell lines (CNE-1 HONE-1 and CNE-2) and primary human NPC cells, but low expression detected in human nasal epithelial cells. In established and primary NPC cells, p38γ depletion, using the shRNA strategy or the CRISPR/Cas9 gene-editing method, largely inhibited cell growth, proliferation and migration, and induced significant apoptosis activation. Contrarily, ectopic p38γ overexpression exerted opposite activity and promoted NPC cell proliferation and migration. Retinoblastoma (Rb) phosphorylation and cyclin E1/A expression were decreased in NPC cells with p38γ silencing or knockout, but increased after p38γ overexpression. Moreover, mitochondrial subcellular p38γ localization was detected in NPC cells. Significantly, p38γ depletion disrupted mitochondrial functions, causing mitochondrial depolarization, reactive oxygen species production, oxidative injury and ATP depletion in NPC cells. In vivo, intratumoral injection of adeno-associated virus-packed p38γ shRNA potently inhibited primary human NPC xenograft growth in nude mice. In p38γ shRNA virus-injected NPC xenograft tissues, p38γ expression, Rb phosphorylation, cyclin E1/A expression and ATP levels were dramatically decreased. Taken together, we conclude that p38γ overexpression is required for NPC cell growth, acting as a promising therapeutic target of NPC.
Collapse
|
27
|
Chen H, Tian B, Fang X, Bai J, Ma Q, Zhang Y, Xu J, Wang B, Fan Q, Fei Z, Dai H, Shan H, Gao X, Dong Q, Wang C, Zhou X. Injectable Erythrocyte Gel Loaded with Bulleyaconitine A for the Treatment of Rheumatoid Arthritis. ACS Biomater Sci Eng 2021; 7:5706-5716. [PMID: 34843223 DOI: 10.1021/acsbiomaterials.1c01175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with clinical manifestations including joint cartilage, synovitis, and bone damage. Here we developed an injectable erythrocyte gel loaded with Bulleyaconitine A (BLA) for the treatment of RA and demonstrated its anti-inflammatory effects in vivo and in vitro. In vitro experiments showed that BLA could effectively down-regulate the expression of pro-inflammatory factor in activated macrophages through the nuclear factor-κB (NF-κB) pathway. In vivo experiments have shown that the injection of BLA@RBCs in the inflammatory joints of CIA mice increases the local concentration of BLA in a long time. Improved therapeutic outcomes and reduced toxicity of BLA are demonstrated in our work. Together, the developed BLA@RBCs drug delivery system provides an alternative strategy to treat RA joints and shows high potential in clinical RA treatment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China.,Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu223800, China.,Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| | - Xiyao Fang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Beilei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, China
| |
Collapse
|
28
|
Lu J, Wang J, Yu L, Cui R, Zhang Y, Ding H, Yan G. Treadmill Exercise Attenuates Cerebral Ischemia-Reperfusion Injury by Promoting Activation of M2 Microglia via Upregulation of Interleukin-4. Front Cardiovasc Med 2021; 8:735485. [PMID: 34692788 PMCID: PMC8532515 DOI: 10.3389/fcvm.2021.735485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Exercise has been proven to be an effective therapy for stroke by reducing the microglia-initiated proinflammatory response. Few studies, however, have focused on the phenotypic changes in microglia cells caused by exercise training. The present study was designed to evaluate the influence of treadmill exercise on microglia polarization and the molecular mechanisms involved. Methods: Male Sprague-Dawley rats were randomly assigned into 3 groups: sham, MCAO and exercise. The middle cerebral artery occlusion (MCAO) and exercise groups received MCAO surgery and the sham group a sham operation. The exercise group also underwent treadmill exercise after the surgery. These groups were studied after 4 and 7 days to evaluate behavioral performance using a modified neurological severity score (mNSS), and infarct conditions using 2,3,5-triphenyl tetrazolium chloride. Quantitative real-time polymerase chain reaction (qRT-PCR) and Luminex was employed to determine the expressions of markers of microglia phenotypes. Western blotting was employed to identify the phosphorylation levels of Janus kinase1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Immunofluorescence was conducted to identify microglia phenotypes. Results: Treadmill exercise was found to improve neurobehavioral outcomes, mainly motor and balance functions, reduce infarct volumes and significantly increase interleukin-4 (IL-4) expression. In addition, treadmill exercise inhibited M1 microglia and promoted M2 microglia activation as evidenced by decreased M1 and increased M2 markers. Furthermore, an obvious increase in p-JAK1 and p-STAT6 was observed in the exercise group. Conclusions: Treadmill exercise ameliorates cerebral ischemia-reperfusion injury by enhancing IL-4 expression to promote M2 microglia polarization, possibly via the JAK1-STAT6 pathway.
Collapse
Affiliation(s)
- Juanjuan Lu
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jie Wang
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Long Yu
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Rong Cui
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ying Zhang
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hanqing Ding
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guofeng Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Wang Y, Liu YY, Chen MB, Cheng KW, Qi LN, Zhang ZQ, Peng Y, Li KR, Liu F, Chen G, Cao C. Neuronal-driven glioma growth requires Gαi1 and Gαi3. Theranostics 2021; 11:8535-8549. [PMID: 34373757 PMCID: PMC8343996 DOI: 10.7150/thno.61452] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroligin-3 (NLGN3) is necessary and sufficient to promote glioma cell growth. The recruitment of Gαi1/3 to the ligand-activated receptor tyrosine kinases (RTKs) is essential for mediating oncogenic signaling. Methods: Various genetic strategies were utilized to examine the requirement of Gαi1/3 in NLGN3-driven glioma cell growth. Results: NLGN3-induced Akt-mTORC1 and Erk activation was inhibited by decreasing Gαi1/3 expression. In contrast ectopic Gαi1/3 overexpression enhanced NLGN3-induced signaling. In glioma cells, NLGN3-induced cell growth, proliferation and migration were attenuated by Gαi1/3 depletion with shRNA, but facilitated with Gαi1/3 overexpression. Significantly, Gαi1/3 silencing inhibited orthotopic growth of patient-derived glioma xenografts in mouse brain, whereas forced Gαi1/3-overexpression in primary glioma xenografts significantly enhanced growth. The growth of brain-metastatic human lung cancer cells in mouse brain was largely inhibited with Gαi1/3 silencing. It was however expedited with ectopic Gαi1/3 overexpression. In human glioma Gαi3 upregulation was detected, correlating with poor prognosis. Conclusion: Gαi1/3 mediation of NLGN3-induced signaling is essential for neuronal-driven glioma growth.
Collapse
|
30
|
Shan H, Gao X, Zhang M, Huang M, Fang X, Chen H, Tian B, Wang C, Zhou C, Bai J, Zhou X. Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle. J Tissue Eng 2021; 12:20417314211031378. [PMID: 34345399 PMCID: PMC8283072 DOI: 10.1177/20417314211031378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023] Open
Abstract
Skeletal muscle injury is a common disease accompanied by inflammation, and its treatment still faces many challenges. The local inflammatory microenvironment can be modulated by a novel ROS-scavenging hydrogel (Gel) we constructed. And MSCs could differentiate into myoblasts and contribute to muscle tissue homeostasis and regeneration. Here, Gel loaded with mesenchymal stem cells (MSCs) (Gel@MSCs) was developed for repairing the injured skeletal muscle. Results showed that the Gel improved the survivability and enhanced the proliferation of MSCs (≈two-fold), and the Gel@MSCs inhibited the local inflammatory responses as it promoted polarization of M2 macrophages (increased from 5% to 17%), the mediator of the production of anti-inflammatory factors. Western blotting and qPCR revealed the Gel promoted the expression of proteins (≈two-fold) and genes (≈two to six-fold) related to myogenesis in MSCs. Histological assessment indicated that the Gel or MSCs promoted regeneration of skeletal muscle, and the efficacy was more significant at Gel@MSCs than MSCs alone. Finally, behavioral experiments confirmed that Gel@MSCs improved the motor function of injured mice. In short, the Gel@MSCs system we constructed presented a positive effect on reducing skeletal muscle damage and promoted skeletal muscle regeneration, which might be a novel treatment for such injuries.
Collapse
Affiliation(s)
- Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingchao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Man Huang
- Department of Oncology, Suzhou Dushuhu Public Hospital, Suzhou, Jiangsu, China
| | - Xiyao Fang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu, China
| | - Chenyu Zhou
- Faculty of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Lv Y, Wang Y, Song Y, Wang SS, Cheng KW, Zhang ZQ, Yao J, Zhou LN, Ling ZY, Cao C. LncRNA PINK1-AS promotes Gαi1-driven gastric cancer tumorigenesis by sponging microRNA-200a. Oncogene 2021; 40:3826-3844. [PMID: 33958720 DOI: 10.1038/s41388-021-01812-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
Gastric cancer (GC) is one of the leading causes of human mortality around the world. We have previously shown that Gαi1 (the inhibitory subunit 1 of the heterotrimeric guanine nucleotide-binding protein) recruitment to ligand-activated receptor tyrosine kinases (RTKs) is essential for signaling. Testing its role in GC cancer-promoting functions, we found that Gαi1 is upregulated in human GC, correlating with poor overall survival. In established and primary human GC cells, Gαi1 shRNA (small hairpin RNA) or knockout produced significant anti-GC cell activity, proliferation and migration was inhibited, and apoptosis was activated. Conversely, ectopic Gαi1 overexpression promoted proliferation and migration of GC cells in vitro. By examining the tumor-suppressive miRNA microRNA-200a (miR-200a), we found that miR-200a directly silenced Gαi1 to induce anti-GC cell activity. The expression of miR-200a was downregulated in human GC, correlating with upregulation of a novel miR-200a-targeting long non-coding RNA (LncRNA), PINK1 (PTEN Induced Kinase 1)-AS. RNA immunoprecipitation, RNA-pull down, and RNA fluorescence in situ hybridization assays confirmed that PINK1-AS directly binds to miR-200a. Silencing PINK1-AS in GC cells led to miR-200a accumulation, Gαi1 downregulation, and inhibition of GC cell progression in vitro, whereas PINK1-AS upregulation produced the converse results. Significantly, anti-GC cell activity induced by PINK1-AS shRNA was ameliorated by the expression of miR-200a antisense or the 3'-UTR (untranslated region)-depleted Gαi1. In vivo, the growth of subcutaneous MGC-803 xenografts in nude mice was inhibited by PINK1-AS shRNA, but accelerated by PINK1-AS overexpression. Patient-derived GC xenograft growth in nude mice was largely inhibited after intratumoral injection of PINK1-AS shRNA lentivirus. In conclusion, PINK1-AS promotes Gαi1-driven GC progression by sponging miR-200a.
Collapse
Affiliation(s)
- Yan Lv
- Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Song
- Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Shu-Sheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Kai-Wen Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhi-Qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Li-Na Zhou
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Zhuo-Yan Ling
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China. .,North District, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China.
| |
Collapse
|
32
|
HBO1 overexpression is important for hepatocellular carcinoma cell growth. Cell Death Dis 2021; 12:549. [PMID: 34039960 PMCID: PMC8155027 DOI: 10.1038/s41419-021-03818-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common primary liver malignancy lacking effective molecularly-targeted therapies. HBO1 (lysine acetyltransferase 7/KAT7) is a member of MYST histone acetyltransferase family. Its expression and potential function in HCC are studied. We show that HBO1 mRNA and protein expression is elevated in human HCC tissues and HCC cells. HBO1 expression is however low in cancer-surrounding normal liver tissues and hepatocytes. In HepG2 and primary human HCC cells, shRNA-induced HBO1 silencing or CRISPR/Cas9-induced HBO1 knockout potently inhibited cell viability, proliferation, migration, and invasion, while provoking mitochondrial depolarization and apoptosis induction. Conversely, ectopic overexpression of HBO1 by a lentiviral construct augmented HCC cell proliferation, migration and invasion. In vivo, xenografts-bearing HBO1-KO HCC cells grew significantly slower than xenografts with control HCC cells in severe combined immunodeficient mice. These results suggest HBO1 overexpression is important for HCC cell progression.
Collapse
|