1
|
Imbabi TA, El-Sayed AI, El-Habbak MH, Nasr MA, Halawa EH. Ameliorative effects of silymarin on aflatoxin B1 toxicity in weaned rabbits: impact on growth, blood profile, and oxidative stress. Sci Rep 2024; 14:21666. [PMID: 39289432 PMCID: PMC11408635 DOI: 10.1038/s41598-024-70623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Natural plant extracts offer numerous health benefits for rabbits, including improved feed utilization, antimycotic and antiaflatoxigenic effect, antioxidants, immunological modulation, and growth performance. The aim of the current study was to investigate the effects of silymarin on the performance, hemato-biochemical indices, antioxidants, and villus morphology. A total of 45 Moshtohor 4 weeks old weaned male rabbits were randomly allocated into three groups (15 rabbit/each) each group with 5 replicates. The first group served as the control group feed on an infected diet by aflatoxin B1 (AFB1) 0.02 mg/kg BW, while the second and third groups received an infected diet by AFB1 (0.02 mg/kg BW) and was treated with Silymarin 20 mg/kg BW/day or 30 mg/kg BW/day, respectively. Regarding the growth performance, silymarin supplementation significantly improved the final body weight compared with the control group. Physiologically, silymarin induced high level of dose-dependent total red blood cell count, hematocrit, eosinophils, high-density lipoprotein cholesterol, superoxid dismutase, catalase activity, total antioxidant capacityand intestinal villi width and length. Moreover, silymarin significantly restricted oxidative stress indicators, malondialdehyde, Alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglyceridein rabbits treated with (AFB1). In conclusion, silymarin supplementation to AFB1 contaminated rabbit diet may mitigate the negative effect of AFB1 on the rabbit performance and health status and increase growth performance, average daily gain, immunological modulation and antioxidants and provide a theoretical basis for the application of silymarin in livestock production.
Collapse
Affiliation(s)
- Tharwat A Imbabi
- Department of Animal Production, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Abdelkarim I El-Sayed
- Department of Animal Production, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Mohamed H El-Habbak
- Department of Plant Pathology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Mohammed A Nasr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Eman H Halawa
- Department of Animal Production, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
2
|
Hamza M, Sankhyan D, Shukla S, Pandey P. Advances in body fluid identification: MiRNA markers as powerful tool. Int J Legal Med 2024; 138:1223-1232. [PMID: 38467753 DOI: 10.1007/s00414-024-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.
Collapse
Affiliation(s)
- Mohd Hamza
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deeksha Sankhyan
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preeti Pandey
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
3
|
Avula K, Singh B, Samantaray S, Syed GH. The Early Secretory Pathway Is Crucial for Multiple Aspects of the Hepatitis C Virus Life Cycle. J Virol 2023:e0018023. [PMID: 37338368 PMCID: PMC10373535 DOI: 10.1128/jvi.00180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.
Collapse
Affiliation(s)
- Kiran Avula
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Delhi, India
| | - Bharati Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
4
|
Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans. Nat Commun 2023; 14:1215. [PMID: 36869085 PMCID: PMC9984368 DOI: 10.1038/s41467-023-36858-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.94-0.99) of DO and HV. In addition, we show that FBP1, alone or in combination with glutathione S-transferase A1 and leukocyte cell-derived chemotaxin 2, could potentially assist in clinical diagnosis by distinguishing NDO from DO (AUC range: 0.65-0.78), but further technical and clinical validation of these candidate biomarkers is needed.
Collapse
|
5
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|
6
|
Driessen M, van der Plas-Duivesteijn S, Kienhuis AS, van den Brandhof EJ, Roodbergen M, van de Water B, Spaink HP, Palmblad M, van der Ven LTM, Pennings JLA. Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology 2022; 477:153262. [PMID: 35868597 DOI: 10.1016/j.tox.2022.153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.
Collapse
Affiliation(s)
- Marja Driessen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Anne S Kienhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Marianne Roodbergen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
7
|
Damiano S, Longobardi C, Andretta E, Prisco F, Piegari G, Squillacioti C, Montagnaro S, Pagnini F, Badino P, Florio S, Ciarcia R. Antioxidative Effects of Curcumin on the Hepatotoxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2021; 10:125. [PMID: 33477286 PMCID: PMC7830919 DOI: 10.3390/antiox10010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) is a powerful mycotoxin found in various foods and feedstuff, responsible for subchronic and chronic toxicity, such as nephrotoxicity, hepatotoxicity, teratogenicity, and immunotoxicity to both humans and several animal species. The severity of the liver damage caused depends on both dose and duration of exposure. Several studies have suggested that oxidative stress might contribute to increasing the hepatotoxicity of OTA, and several antioxidants, including curcumin (CURC), have been tested to counteract the toxic hepatic action of OTA in various classes of animals. Therefore, the present study was designed to evaluate the protective effect of CURC, a bioactive compound with different therapeutic properties on hepatic injuries caused by OTA in rat animal models. CURC effects were examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. At the end of the experiment, rats treated with OTA showed alterations in biochemical parameters and oxidative stress in the liver. CURC dosing significantly attenuated oxidative stress and lipid peroxidation versus the OTA group. Furthermore, liver histological tests showed that CURC reduced the multifocal lymphoplasmacellular hepatitis, the periportal fibrosis, and the necrosis observed in the OTA group. This study provides evidence that CURC can preserve OTA-induced oxidative damage in the liver of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Paola Badino
- Department of Veterinary Science, University of Turin, L. go P. Braccini 2-5, 10095 Grugliasco, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| |
Collapse
|
8
|
Monroe JJ, Tanis KQ, Podtelezhnikov AA, Nguyen T, Machotka SV, Lynch D, Evers R, Palamanda J, Miller RR, Pippert T, Cabalu TD, Johnson TE, Aslamkhan AG, Kang W, Tamburino AM, Mitra K, Agrawal NGB, Sistare FD. Application of a Rat Liver Drug Bioactivation Transcriptional Response Assay Early in Drug Development That Informs Chemically Reactive Metabolite Formation and Potential for Drug-induced Liver Injury. Toxicol Sci 2020; 177:281-299. [PMID: 32559301 PMCID: PMC7553701 DOI: 10.1093/toxsci/kfaa088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug-induced liver injury is a major reason for drug candidate attrition from development, denied commercialization, market withdrawal, and restricted prescribing of pharmaceuticals. The metabolic bioactivation of drugs to chemically reactive metabolites (CRMs) contribute to liver-associated adverse drug reactions in humans that often goes undetected in conventional animal toxicology studies. A challenge for pharmaceutical drug discovery has been reliably selecting drug candidates with a low liability of forming CRM and reduced drug-induced liver injury potential, at projected therapeutic doses, without falsely restricting the development of safe drugs. We have developed an in vivo rat liver transcriptional signature biomarker reflecting the cellular response to drug bioactivation. Measurement of transcriptional activation of integrated nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) electrophilic stress, and nuclear factor erythroid 2-related factor 1 (NRF1) proteasomal endoplasmic reticulum (ER) stress responses, is described for discerning estimated clinical doses of drugs with potential for bioactivation-mediated hepatotoxicity. The approach was established using well benchmarked CRM forming test agents from our company. This was subsequently tested using curated lists of commercial drugs and internal compounds, anchored in the clinical experience with human hepatotoxicity, while agnostic to mechanism. Based on results with 116 compounds in short-term rat studies, with consideration of the maximum recommended daily clinical dose, this CRM mechanism-based approach yielded 32% sensitivity and 92% specificity for discriminating safe from hepatotoxic drugs. The approach adds new information for guiding early candidate selection and informs structure activity relationships (SAR) thus enabling lead optimization and mechanistic problem solving. Additional refinement of the model is ongoing. Case examples are provided describing the strengths and limitations of the approach.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna Lynch
- Safety Assessment & Laboratory Animal Resources
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | - Jairam Palamanda
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | - Randy R Miller
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | | - Tamara D Cabalu
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | | | | - Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | - Kaushik Mitra
- Safety Assessment & Laboratory Animal Resources
- Janssen Research & Development, LLC, Spring House, PA 19486
| | - Nancy G B Agrawal
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | |
Collapse
|
9
|
Gryshchenko VA, Minina VS. Marker changes of blood plasma proteinogram in rats with toxic hepatitis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, there has been a pronounced tendency to increase in the incidence of drug-induced liver damage due to the growing expansion of the pharmaceutical market, which is also observed in the case of incorrect administration of nonsteroidal anti-inflammatory drugs (NSAIDs). In this case, the violation of the functional state of the body has a negative effect on synthetic processes, which in combination with the protein system of tissues significantly affects the metabolic homeostasis of the body. Therefore, the aim of the study was to determine marker changes in the plasma protein spectrum in laboratory rats with diclofenac-induced hepatitis and the effectiveness of reparative therapy based on milk phospholipids. The drug form of toxic hepatitis in laboratory animals was induced according to the author’s model by oral administration of diclofenac sodium (NSAID group) at a dose of 12.5 mg/kg, once a day for 14 days. Thus, in rats with toxic hepatitis there was a probable decrease in plasma total protein content by 15.6% compared with control, indicating a violation of protein-synthesizing function of the liver. With the introduction into the body of clinically healthy and sick animals of the liposomal form of the bioadditive "FLP-MD" based on milk phospholipids, the level of total protein in blood plasma corresponded to control values. As a result of the study of the plasma protein spectrum of Wistar rats, the four most sensitive indicators, which undergo significant probable changes in absolute and relative units of measurement with the development of toxic diclofenac-induced hepatitis, are protein fractions with molecular weights of 180–190, 150–170, 60 and 54–58 kDa and four markers of the effectiveness of restoring the protein-synthesizing function of the liver with the use of corrective therapy, in particular, bioadditives "FLP-MD" – 900, 180–190, 68–70 kDa and the value of A/G ratio, which is important for implementation in applied veterinary medicine, especially in the diagnosis of NSAID hepatopathy, supplementing the picture of its pathogenesis at the molecular level and testing the effectiveness of newly created drugs of hepatoprotective profile.
Collapse
|
10
|
Nishida T, Yamaguchi M, Tatara Y, Kashiwakura I. Proteomic changes by radio-mitigative thrombopoietin receptor agonist romiplostim in the blood of mice exposed to lethal total-body irradiation. Int J Radiat Biol 2020; 96:1125-1134. [PMID: 32602419 DOI: 10.1080/09553002.2020.1787546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The thrombopoietin receptor agonist romiplostim (RP) is a therapeutic agent for immune thrombocytopenia that can achieve complete survival in mice exposed to a lethal dose of ionizing radiation. The estimated mechanism of the radio-protective/mitigative effects of RP has been proposed; however, the detailed mechanism of action remains unclear. This study aimed to elucidate the mechanism of the radio-protective/mitigative effects of RP, the fluctuation of protein in the blood was analyzed by proteomics. MATERIALS AND METHODS Eight-week-old female C57BL/6J mice were randomly divided into 5 groups; control at day 0, total-body irradiation (TBI) groups at day 10 and day 18, and TBI plus RP groups at day 10 and day18, consisting of 3 mice per group, and subjected to TBI with 7 Gy of 137Cs γ-rays at a dose rate of 0.74 Gy/min. RP was administered intraperitoneally to mice at a dose of 50 µg/kg once daily for 3 days starting 2 hours after TBI. On day 10 and day 18 after TBI, serum collected from each mouse was analyzed by liquid chromatography tandem mass spectrometry. RESULTS Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI: keratin, type II cytoskeletal 1 (KRT1), fructose-1, 6-bisphosphatase (FBP1), cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), peptidyl-prolyl cis-trans isomerase A (PPIA), glycine N-methyltransferase (GNMT), glutathione S-transferase Mu 1 (GSTM1), regucalcin (RGN), fructose-bisphosphate aldolase B (ALDOB) and betain-homocysteine S-methyltransferase 1 (BHMT). On the 10th day after TBI, KRT1 was significantly increased (p < 0.05) by 4.26-fold compared to the control group in the TBI group and significantly inhibited in the TBI plus RP group (p < 0.05). Similarly, the expression levels of other 8 proteins detected at 18th day after TBI were significantly increased by 4.29 to 27.44-fold in the TBI group, but significantly decreased in the TBI plus RP group compared to the TBI group, respectively. CONCLUSION Nine proteins were identified by proteomics methods from 269 analyzed proteins detected in mice exposed to a lethal dose of TBI. These proteins are also expected to be indicators of the damage induced by high-dose radiation.
Collapse
Affiliation(s)
- Teruki Nishida
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| |
Collapse
|
11
|
Jagtap U, Sivadas A, Basu S, Verma A, Sivasubbu S, Scaria V, Sachidanandan C. A Temporal Map of Gene Expression Pattern During Zebrafish Liver Regeneration. Zebrafish 2019; 17:1-10. [PMID: 31770088 DOI: 10.1089/zeb.2019.1790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zebrafish is increasingly being used to study liver injury and regeneration. However, very little is known about molecular players that respond to injury and those important for liver regeneration. We use a metronidazole nitroreductase (MTZ-nfsb)-based system to selectively ablate hepatocytes in adult zebrafish to create a model for liver injury and regeneration. In this study, we generate a comprehensive temporal map of gene expression changes during regeneration through RNA sequencing of liver samples at various stages of injury and regeneration. Analyzing these data, we find that soon after injury the immediate early transcription factor MYC induces a battery of genes that respond to the MTZ-induced ROS by activating oxido-reductase pathways and apoptosis machinery. Immediately after injury, liver cells downregulate many functional genes, including complement protein synthesis, bile acid, and lipid biosynthesis, in a concerted manner. At 6 days postinjury, we find a dramatic induction of cholesterol biosynthesis and protein folding machinery, with expression levels returning to predamage levels by 8 days, suggesting an important role for these pathways in liver regeneration. This chronological transcriptomic map of liver regeneration in zebrafish would serve as a framework for further studies in understanding, and for screening for compounds that augment liver regeneration.
Collapse
Affiliation(s)
- Urmila Jagtap
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ambily Sivadas
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sandeep Basu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ankit Verma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
12
|
Lu Y, Fang Z, Zeng T, Li M, Chen Q, Zhang H, Zhou Q, Hu Y, Chen L, Su S. Chronic hepatitis B: dynamic change in Traditional Chinese Medicine syndrome by dynamic network biomarkers. Chin Med 2019; 14:52. [PMID: 31768187 PMCID: PMC6873721 DOI: 10.1186/s13020-019-0275-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background In traditional Chinese medicine (TCM) clinical practice, TCM syndromes help to understand human homeostasis and guide individualized treatment. However, the TCM syndrome changes with disease progression, of which the scientific basis and mechanism remain unclear. Methods To demonstrate the underlying mechanism of dynamic changes in the TCM syndrome, we applied a dynamic network biomarker (DNB) algorithm to obtain the DNBs of changes in the TCM syndrome, based on the transcriptomic data of patients with chronic hepatitis B and typical TCM syndromes, including healthy controls and patients with liver-gallbladder dampness-heat syndrome (LGDHS), liver-depression spleen-deficiency syndrome (LDSDS), and liver-kidney yin-deficiency syndrome (LKYDS). The DNB model exploits collective fluctuations and correlations of the observed genes, then diagnoses the critical state. Results Our results showed that the DNBs of TCM syndromes were comprised of 52 genes and the tipping point occurred at the LDSDS stage. Meanwhile, there were numerous differentially expressed genes between LGDHS and LKYDS, which highlighted the drastic changes before and after the tipping point, implying the 52 DNBs could serve as early-warning signals of the upcoming change in the TCM syndrome. Next, we validated DNBs by cytokine profiling and isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that PLG (plasminogen) and coagulation factor XII (F12) were significantly expressed during the progression of TCM syndrome from LGDHS to LKYDS. Conclusions This study provides a scientific understanding of changes in the TCM syndrome. During this process, the cytokine system was involved all the time. The DNBs PLG and F12 were confirmed to significantly change during TCM-syndrome progression and indicated a potential value of DNBs in auxiliary diagnosis of TCM syndrome in CHB. Trial registration Identifier: NCT03189992. Registered on June 4, 2017. Retrospectively registered (http://www.clinicaltrials.gov)
Collapse
Affiliation(s)
- Yiyu Lu
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Zhaoyuan Fang
- 2Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Tao Zeng
- 2Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Meiyi Li
- 5Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Qilong Chen
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Hui Zhang
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Qianmei Zhou
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yiyang Hu
- 4Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Luonan Chen
- 2Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,3CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Shibing Su
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
13
|
Adewale OO, Samuel ES, Manubolu M, Pathakoti K. Curcumin protects sodium nitrite-induced hepatotoxicity in Wistar rats. Toxicol Rep 2019; 6:1006-1011. [PMID: 31673502 PMCID: PMC6816134 DOI: 10.1016/j.toxrep.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 01/29/2023] Open
Abstract
In this study, the protective effect of curcumin on sodium nitrite (NaNO2) induced hepatotoxicity was assessed in male Wistar rats. Wistar rats were administered orally daily with 20 mg/kg of curcumin for 28 days and NaNO2 was administered as a single dose of 60 mg/kg on day 28. Lipid profile, liver function biomarkers and C-reactive protein were assessed in the serum; lipid peroxidation, non-enzymatic and enzymatic antioxidants were assessed in the liver. Alanine amino transferases (94.67 U/L), aspartate amino transferases (194.33 U/L), alkaline phosphatases, C-reactive proteins (19.56 ng/L) and lipid peroxidation (8.03 × 10-6 μmol/mg protein) were significantly elevated (P < 0.05), while a significant decrease in lipid profiles (total cholesterol, HDL,LDL, and triglycerides): (0.61,0.37, 0.4 and 0.47 mg/dl respectively), reduced glutathione level (4.16 μmol/mg protein), and decreased catalase, superoxide dismutase and glutathione peroxidase activities with severe histological alterations were observed in the livers of rats exposed to NaNO2. Pre-treatment with curcumin significantly (P < 0.05) prevented these alterations by adjusting the lipid profile, liver function markers, and C-reactive proteins and abrogating the elevated markers of oxidative stress as supported by the liver histology. This suggests that dietary consumption of curcumin is beneficial against NaNO2 induced oxidative stress of the liver via its antioxidant potential.
Collapse
Affiliation(s)
- Omowumi Oyeronke Adewale
- Cancer Reasearch and Molecular Toxicology Laboratories, Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Ekundayo Stephen Samuel
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Manjunath Manubolu
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43212, USA
| | - Kavitha Pathakoti
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
14
|
Whittaker K, Burgess R, Jones V, Yang Y, Zhou W, Luo S, Wilson J, Huang R. Quantitative proteomic analyses in blood: A window to human health and disease. J Leukoc Biol 2019; 106:759-775. [PMID: 31329329 DOI: 10.1002/jlb.mr1118-440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Shuhong Luo
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
| | | | - Ruo‐Pan Huang
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical University Guangzhou China
- Guangdong Provincial Hospital of Chinese Medicine Guangzhou China
| |
Collapse
|
15
|
Metabolic Nano-Machines: Extracellular Vesicles Containing Active Enzymes and Their Contribution to Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Liang S, Liang S, Yin N, Faiola F. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:353-362. [PMID: 30849655 DOI: 10.1016/j.ecoenv.2019.02.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 05/25/2023]
Abstract
The liver is one of the major targets of hormones, including thyroid hormones (THs), and many industrial chemicals, such as endocrine-disrupting chemicals. Those compounds may permeate the placenta barrier and pose a risk for embryonic development. Therefore, it is necessary to assess the toxic effects of those kind of industrial chemicals during liver development. In this study, to mimic liver specification in vitro, we differentiated human embryonic stem cells (ESCs) into functional hepatocyte-like cells. We performed this differentiation process in presence of two THs, triiodothyronine (T3) and thyroxine (T4), with the purpose of identifying biomarkers for toxicity screening. TH exposure (3, 30 and 300 nM) yielded to hepatocytes with impaired glycogen storage ability and abnormal lipid droplets' accumulation. Global gene expression analysis by RNA-seq identified a number of genes responsible for hepatic differentiation and function which were affected by 30 nM T3 and T4. Those differentially expressed genes were used to assess the potential developmental liver toxicity of two famous environmental pollutants, 2, 2, 4, 4-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209), at 10 nM to 1 μM treatments. Our findings demonstrate that BDE-47 and BDE-209, dysregulated pathways such as "chemical carcinogenesis", "steroid hormone biosynthesis" and "drug metabolism-cytochrome P450". Moreover, we were able to identify a set of 17 biomarkers, very useful to predict the potential developmental hepatotoxicity of industrial chemicals.
Collapse
Affiliation(s)
- Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
El-Sheikh RM, Mansy SS, Nessim IG, Hosni HN, El Hindawi A, Hassanein MH, AbdelFattah AS. Carbamoyl phosphate synthetase 1 (CPS1) as a prognostic marker in chronic hepatitis C infection. APMIS 2019; 127:93-105. [PMID: 30698308 DOI: 10.1111/apm.12917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
This study aims to assess the value of carbamoyl phosphate synthetase 1 (CPS1), as a non-invasive serum marker, for the evolution of chronic HCV infection and hepatic fibrosis. Seventy-two patients with HCV positive serum RNA and 15 health volunteers were enrolled in this study. Out of 72 patients, 10 patients had decompensated liver with ascites. Quantitative analysis of CPS1 was performed in the harvested sera and corresponding liver biopsies using ELISA and immunohistochemistry techniques respectively. Also, mitochondrial count using electron microscopy, urea analysis and conventional liver tests were done. Patients were grouped into (F1 + F2) and (F3 + F4) representing stages of moderate and severe fibrosis respectively. Tissue and serum CPS1 (s.CPS1) correlated significantly in moderate and severe fibrosis. Patients with severe fibrosis showed significantly higher levels of s.CPS1 (p-value ≤ 0.05) and significantly lower mitochondrial counts (p-value = 0.0065) than those with moderate fibrosis. S.urea positively correlated with s.CPS1 only in the decompensated group, at which s.urea reached maximal levels. In conclusion, s.CPS1 is a potential non-invasive marker for the assessment of severity and progression of HCV in relation to mitochondrial dysfunction. Also, increased s.urea with the progression of the disease is mainly due to a concurrent renal malfunction, which needs further investigation.
Collapse
Affiliation(s)
- Ranya M El-Sheikh
- Electron Microscopy Research Department (Pathology), Theodor Bilharz Research Institute, Giza, Egypt
| | - Soheir S Mansy
- Electron Microscopy Research Department (Pathology), Theodor Bilharz Research Institute, Giza, Egypt
| | - Iris G Nessim
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hala N Hosni
- Faculty of Medicine, Pathology Department, Cairo University, Cairo, Egypt
| | - Ali El Hindawi
- Faculty of Medicine, Pathology Department, Cairo University, Cairo, Egypt
| | - Moataz H Hassanein
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed S AbdelFattah
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
18
|
Protective Effects of Aqueous Extracts of Flos lonicerae Japonicae against Hydroquinone-Induced Toxicity in Hepatic L02 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4528581. [PMID: 30581530 PMCID: PMC6276457 DOI: 10.1155/2018/4528581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Hydroquinone (HQ) is widely used in food stuffs and is an occupational and environmental pollutant. Although the hepatotoxicity of HQ has been demonstrated both in vitro and in vivo, the prevention of HQ-induced hepatotoxicity has yet to be elucidated. In this study, we focused on the intervention effect of aqueous extracts of Flos lonicerae Japonicae (FLJ) on HQ-induced cytotoxicity. We demonstrated that HQ reduced cell viability in a concentration-dependent manner by administering 160 μmol/L HQ for 12 h as the positive control of cytotoxicity. The aqueous FLJ extracts significantly increased cell viability and decreased LDH release, ALT, and AST in a concentration-dependent manner compared with the corresponding HQ-treated groups in hepatic L02 cells. This result indicated that aqueous FLJ extracts could protect the cytotoxicity induced by HQ. HQ increased intracellular MDA and LPO and decreased the activities of GSH, GSH-Px, and SOD in hepatic L02 cells. In addition, aqueous FLJ extracts significantly suppressed HQ-stimulated oxidative damage. Moreover, HQ promoted DNA double-strand breaks (DSBs) and the level of 8-hydroxy-2'-deoxyguanosine and apoptosis. However, aqueous FLJ extracts reversed HQ-induced DNA damage and apoptosis in a concentration-dependent manner. Overall, our results demonstrated that the toxicity of HQ was mediated by intracellular oxidative stress, which activated DNA damage and apoptosis. The findings also proved that aqueous FLJ extracts exerted protective effects against HQ-induced cytotoxicity in hepatic L02 cells.
Collapse
|
19
|
Wei J, Guo F, Zhang M, Xian M, Wang T, Gao J, Wu H, Song L, Zhang Y, Li D, Yang H, Huang L. Signature‐oriented investigation of the efficacy of multicomponent drugs against heart failure. FASEB J 2018; 33:2187-2198. [DOI: 10.1096/fj.201800673rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Feifei Guo
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Minyu Zhang
- Beijing Key Laboratory of TCM Collateral Disease Theory ResearchSchool of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Minghua Xian
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Tingting Wang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Jinhuan Gao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Hongwei Wu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Lei Song
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of Radiation MedicineBeijingChina
| | - Yi Zhang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Defeng Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Hongjun Yang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di HerbsNational Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
20
|
Comparison of the Hepatoprotective Effects of Four Endemic Cirsium Species Extracts from Taiwan on CCl₄-Induced Acute Liver Damage in C57BL/6 Mice. Int J Mol Sci 2018; 19:ijms19051329. [PMID: 29710853 PMCID: PMC5983772 DOI: 10.3390/ijms19051329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
Species of Cirsium (Asteraceae family) have been used in folk hepatoprotective medicine in Taiwan. We collected four Cirsium species—including the aerial part of Cirsium arisanense (CAH), the aerial part of Cirsium kawakamii (CKH), the flower part of Cirsium japonicum DC. var. australe (CJF), and Cirsii Herba (CH)—and then made extractions from them with 70% methanol. We compared the antioxidant contents and activities of these four Cirsium species extracts by a spectrophotometric method and high-performance liquid chromatography⁻photodiode array detector (HPLC-DAD). We further evaluated the hepatoprotective effects of these extracts on CCl₄-induced acute liver damage in C57BL/6 mice. The present study found CAH possesses the highest antioxidant activity among the four Cirsium species, and these antioxidant activities are closely related to phenylpropanoid glycoside (PPG) contents. The extracts decreased serum ALT and AST levels elevated by injection with 0.2% CCl₄. However, only CJF and CH decreased hepatic necrosis. Silibinin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and hepatic necrosis caused by CCl₄. CJF and CH restored the activities of hepatic antioxidant enzymes and decreased hepatic malondialdehyde (MDA) levels. CJF further restored the expression of hepatic antioxidant enzymes including Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), and glutathione S-transferase (GST) proteins. HPLC chromatogram indicated that CKH, CJF, and CH contained silibinin diastereomers (α and β). Only CJF contained diosmetin. Hence, the hepatoprotective mechanism of CJF against CCl₄-induced acute liver damage might be involved in restoring the activities and protein expression of the hepatic antioxidant defense system and inhibiting hepatic inflammation, and these hepatoprotective effects are related to the contents of silibinin diastereomers and diosmetin.
Collapse
|
21
|
Tian J, Yi Y, Zhao Y, Li C, Zhang Y, Wang L, Pan C, Han J, Li G, Li X, Liu J, Deng N, Gao Y, Liang A. Oral chronic toxicity study of geniposide in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:166-175. [PMID: 29128573 DOI: 10.1016/j.jep.2017.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide, the major active constituent of Fructus Gardeniae (FG), has been widely used to treat various diseases in China. AIM OF THE STUDY This chronic toxicity study was conducted to investigate the safety of geniposide. MATERIALS AND METHODS Geniposide was administered to Sprague-Dawley (SD) rats of both sexes by oral gavage at dosages of 25, 50, or 100mg/kg in a volume of 10mL/kg once daily for 26 weeks. Endpoints included clinical observations, food consumption, body weights, blood biochemistry, haematology, and histomorphological observations. RESULTS The administration of geniposide did not influence animal mortality, the general conditions of the animals, body weights or food consumption. After 4 weeks of administration, significant toxicity was not observed. However, in the 13th week of the toxicity study, a few haematological parameters and some relative organ weights of male rats in the 50 and 100mg/kg geniposide groups were significantly increased. The percentage of reticulocytes (Retic %) was significantly increased in male and female rats administered 100mg/kg geniposide. In addition, two female rats in the 100mg/kg geniposide group showed slight pathological changes in hepatic and renal tissues. Furthermore, in a chronic (26 weeks) toxicity study, differences were detected in alanine aminotransferase (ALT), aspartate aminotransferase (AST), sodium (Na+), potassium (K+), white blood cell (WBC), red blood cell (RBC), and haemoglobin (HGB) levels and the relative weights of the liver and spleen in male rats administered 100mg/kg geniposide. In addition, differences were detected in Retic % and the relative weights of the liver, thymus, and kidneys in female rats administered 100mg/kg geniposide. Urinalysis results from male and female rats in the 100mg/kg geniposide group revealed noticeable changes. The histopathological structures of hepatic and renal tissues in the high-dose geniposide group exhibited serious abnormalities and pigment deposition. CONCLUSION Geniposide affected serum biochemistry, urinalysis, and haematological parameters as well as relative organ weights. The treatment also caused noticeable pathological abnormalities in liver and kidney tissues. Therefore, administration of a high dose of geniposide (100mg/kg) for 26 weeks could induced obvious liver and kidney damage.
Collapse
Affiliation(s)
- Jingzhuo Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Chunying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Lianmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Guiqin Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Xiaolong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Nuo Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing 100700, China.
| |
Collapse
|
22
|
Huang W, Whittaker K, Zhang H, Wu J, Zhu SW, Huang RP. Integration of Antibody Array Technology into Drug Discovery and Development. Assay Drug Dev Technol 2018; 16:74-95. [PMID: 29394094 DOI: 10.1089/adt.2017.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Jian Wu
- The Affiliated Third Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Ruo-Pan Huang
- Raybiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia
- South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
23
|
Song HF, Xu P. New serological markers for liver damage. Shijie Huaren Xiaohua Zazhi 2017; 25:2681-2688. [DOI: 10.11569/wcjd.v25.i30.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver is the most important detoxification organ in the human body, and the damage to the liver will seriously affect the health of the body. Alanine transaminase (ALT) and aspartate transaminase (AST) are the most widely used clinical biochemical markers for liver injury. However, elevated serum ALT and AST levels can also occur in other diseases, which reduces their diagnostic value in liver injury. In order to diagnose liver damage more accurately, we need to find serum markers for liver injury.
Collapse
Affiliation(s)
- Hua-Feng Song
- Central Laboratory, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| | - Ping Xu
- Central Laboratory, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China,Suzhou Key Laboratory of Tuberculosis Prevention and Control, Suzhou 215007, Jiangsu Province, China
| |
Collapse
|
24
|
Lu Y, Qiao F, Li Y, Sang XH, Li CR, Jiang JD, Yang XY, You XF. Recombinant expression and biochemical characterization of Mycobacterium tuberculosis 3Fe-4S ferredoxin Rv1786. Appl Microbiol Biotechnol 2017; 101:7201-7212. [DOI: 10.1007/s00253-017-8454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
|
25
|
Lee I, Baxter D, Lee MY, Scherler K, Wang K. The Importance of Standardization on Analyzing Circulating RNA. Mol Diagn Ther 2017; 21:259-268. [PMID: 28039578 PMCID: PMC5426982 DOI: 10.1007/s40291-016-0251-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating RNAs, especially microRNAs (miRNAs), have recently emerged as non-invasive disease biomarkers. Despite enthusiasm and numerous reports on disease-associated circulating miRNAs, currently there is no circulating miRNA-based diagnostic in use. In addition, there are many contradictory reports on the concentration changes of specific miRNA in circulation. Here we review the impact of various technical and non-technical factors related to circulating miRNA measurement and elucidate the importance of having a general guideline for sample preparation and concentration measurement in studying circulating RNA.
Collapse
Affiliation(s)
- Inyoul Lee
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98019, USA
| | - David Baxter
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98019, USA
| | - Min Young Lee
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98019, USA
| | - Kelsey Scherler
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98019, USA
| | - Kai Wang
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98019, USA.
| |
Collapse
|
26
|
Wang J, Sun Z, Jiang J, Wu D, Liu X, Xie Z, Chen E, Zhu D, Ye C, Zhang X, Chen W, Cao H, Li L. Proteomic Signature of Acute Liver Failure: From Discovery and Verification in a Pig Model to Confirmation in Humans. Mol Cell Proteomics 2017; 16:1188-1199. [PMID: 28336726 DOI: 10.1074/mcp.m117.067397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a fatal condition hallmarked by rapid development. The present study aimed to describe the dynamic alterations of serum proteins associated with ALF development, and to seek for novel biomarkers of ALF. Miniature pigs (n = 38) were employed to establish ALF models by infusing d-galactosamine (GALN, 1.3 g/kg). A total of 1310 serum proteins were compared in pooled serum samples (n = 10) before and 36 h after GALN administration through label-free quantitation (LFQ) based shotgun proteomics. Functional analysis suggested a significant enrichment of ALF-related proteins involved in energy metabolism. Temporal changes of 20 energy metabolism related proteins were investigated in individual pigs (n = 8) via parallel reaction monitoring (PRM) based targeted proteomics. In addition, mitochondrion degeneration and gene expression alteration of aerobic metabolism genes were confirmed in GALN-insulted pig liver. In clinical validation study enrolled 34 ALF patients and 40 healthy controls, fructose-1,6-bisphosphatase 1 (FBP1) showed a prognostic value for short-term survival (30 days) equal to that of the Model of End-stage Liver Disease score (ROC-AUC = 0.778). Survival analysis suggested significantly higher death-related hazard in ALF patients with higher FBP1 levels (>16.89 μg/dL) than in those with lower FBP1 levels (p = 0.002). Additionally, serum retinol binding protein 4 (RBP4) level was found decreased prior to ALT elevation in GALN-insulted pig model. We also confirmed that serum level of RBP4 is significantly lower in ALF patients (p < 0.001) as compared with healthy controls. In summary, this translational study, displayed by multistaged proteomics techniques, unveiled underlying functional changes related to the development of ALF and facilitated the discovery of novel ALF markers.
Collapse
Affiliation(s)
- Jie Wang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zeyu Sun
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Jiang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Daxian Wu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoli Liu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongyang Xie
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ermei Chen
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Danhua Zhu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Ye
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoqian Zhang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenqian Chen
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongcui Cao
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lanjuan Li
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
27
|
Lee GH, Lee HY, Choi MK, Chung HW, Kim SW, Chae HJ. Protective effect of Curcuma longa L. extract on CCl 4-induced acute hepatic stress. BMC Res Notes 2017; 10:77. [PMID: 28143589 PMCID: PMC5286822 DOI: 10.1186/s13104-017-2409-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl4)-induced liver stress model. METHODS Acute hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. RESULTS At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl4-treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl4-treated group (p < 0.05), leading to a reduced lipid peroxidase level. CONCLUSION Our data suggested that CLL extract and curcumin protect the liver from acute CCl4-induced injury in a rodent model by suppressing hepatic oxidative stress. Therefore, CLL extract and curcumin are potential therapeutic antioxidant agents against acute hepatotoxicity.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Min-Kyung Choi
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Han-Wool Chung
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| | - Seung-Wook Kim
- CS1 Center, Ottogi Research Center, Ottogi Corporation, Kyeonggi-do, 14060 Republic of Korea
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180 Republic of Korea
| |
Collapse
|
28
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
29
|
Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1796209. [PMID: 28717379 PMCID: PMC5499238 DOI: 10.1155/2017/1796209] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023]
Abstract
High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.
Collapse
|
30
|
Siemionow K, Teul J, Drągowski P, Pałka J, Miltyk W. New potential biomarkers of acetaminophen-induced hepatotoxicity. Adv Med Sci 2016; 61:325-330. [PMID: 27471017 DOI: 10.1016/j.advms.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/29/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022]
Abstract
Acetaminophen (APAP) is one of the most common antipyretic and analgesic drugs. Despite various precautions patients use APAP in amounts exceeding acceptable daily doses. APAP overdosing contributes to APAP intoxication, which leads to acute liver injury or necessity of exigent liver transplantation. Biomarkers that can be helpful in early diagnosis of liver injury during APAP overdosing are studied worldwide. This review presents recent reports on new potential biomarkers and their prospective application in clinical practice.
Collapse
|
31
|
Standardized bioactive fraction of Phaleria macrocarpa (Proliverenol) prevents ethanol-induced hepatotoxicity via down-regulation of NF-κB-TNFα-caspase-8 pathway. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Masuzaki R, Zhao S, Valerius MT, Tsugawa D, Oya Y, Ray KC, Karp SJ. SOCS2 Balances Metabolic and Restorative Requirements during Liver Regeneration. J Biol Chem 2015; 291:3346-58. [PMID: 26703468 DOI: 10.1074/jbc.m115.703264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 01/01/2023] Open
Abstract
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.
Collapse
Affiliation(s)
- Ryota Masuzaki
- From the Transplant Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sophia Zhao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - M Todd Valerius
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Daisuke Tsugawa
- From the Transplant Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yuki Oya
- From the Transplant Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Kevin C Ray
- From the Transplant Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Seth J Karp
- From the Transplant Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232,
| |
Collapse
|
33
|
Beger RD, Bhattacharyya S, Yang X, Gill PS, Schnackenberg LK, Sun J, James LP. Translational biomarkers of acetaminophen-induced acute liver injury. Arch Toxicol 2015; 89:1497-522. [PMID: 25983262 PMCID: PMC4551536 DOI: 10.1007/s00204-015-1519-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) is a commonly used analgesic drug that can cause liver injury, liver necrosis and liver failure. APAP-induced liver injury is associated with glutathione depletion, the formation of APAP protein adducts, the generation of reactive oxygen and nitrogen species and mitochondrial injury. The systems biology omics technologies (transcriptomics, proteomics and metabolomics) have been used to discover potential translational biomarkers of liver injury. The following review provides a summary of the systems biology discovery process, analytical validation of biomarkers and translation of omics biomarkers from the nonclinical to clinical setting in APAP-induced liver injury.
Collapse
Affiliation(s)
- Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, USA,
| | | | | | | | | | | | | |
Collapse
|
34
|
Goldman AW, Burmeister Y, Cesnulevicius K, Herbert M, Kane M, Lescheid D, McCaffrey T, Schultz M, Seilheimer B, Smit A, St Laurent G, Berman B. Bioregulatory systems medicine: an innovative approach to integrating the science of molecular networks, inflammation, and systems biology with the patient's autoregulatory capacity? Front Physiol 2015; 6:225. [PMID: 26347656 PMCID: PMC4541032 DOI: 10.3389/fphys.2015.00225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach. The authors review this integrated body of knowledge and discuss how the emergent conceptual model offers the medical field a new avenue for extending the armamentarium of current treatment and healthcare, with the ultimate goal of improving population health.
Collapse
Affiliation(s)
- Alyssa W Goldman
- Concept Systems, Inc. Ithaca, NY, USA ; Department of Sociology, Cornell University Ithaca, NY, USA
| | | | | | - Martha Herbert
- Transcend Research Laboratory, Massachusetts General Hospital Boston, MA, USA
| | - Mary Kane
- Concept Systems, Inc. Ithaca, NY, USA
| | - David Lescheid
- International Academy of Bioregulatory Medicine Baden-Baden, Germany
| | - Timothy McCaffrey
- Division of Genomic Medicine, George Washington University Medical Center Washington, DC, USA
| | - Myron Schultz
- Biologische Heilmittel Heel GmbH Baden-Baden, Germany
| | | | - Alta Smit
- Biologische Heilmittel Heel GmbH Baden-Baden, Germany
| | | | - Brian Berman
- Center for Integrative Medicine, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
35
|
Liao W, Li B, Li L, Yan L, Wang Z, An X, Zhao J. Erk1/2, CDK8, Src and Ck1e Mediate <i>Evodia rutaecarpa</i> Induced Hepatotoxicity in Mice. Chin Med 2015. [DOI: 10.4236/cm.2015.62011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Shi Q, Yang X, Mattes WB, Mendrick DL, Harrill AH, Beger RD. Circulating mitochondrial biomarkers for drug-induced liver injury. Biomark Med 2015; 9:1215-23. [PMID: 26507261 DOI: 10.2217/bmm.15.59] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver mitochondria affected by drugs can be released into circulation and serve as biomarkers for drug-induced liver injury (DILI). The tissue specificity of ALT was improved by differentiating cytosolic ALT1 and mitochondrial ALT2 isoforms released in circulation. Prior to ALT elevation, mitochondrial cytochrome c, OCT, GLDH, CPS1 and DNA were increased in circulation following DILI. The baseline expression of mt-Nd6 was predictive of individual DILI susceptibility in animals. As mitochondrial DILI biomarkers appeared to be drug or species dependent, they might have value in clinical scenarios when culprit drugs are established, but may not be ideal tools to assess DILI potentials of new drugs.
Collapse
Affiliation(s)
- Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - William B Mattes
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Donna L Mendrick
- Regulatory Activities, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Alison H Harrill
- Department of Environmental & Occupational Health, The University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
37
|
Wei J, Zhang F, Zhang Y, Cao C, Li X, Li D, Liu X, Yang H, Huang L. Proteomic investigation of signatures for geniposide-induced hepatotoxicity. J Proteome Res 2014; 13:5724-33. [PMID: 25336395 DOI: 10.1021/pr5007119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evaluating the safety of traditional medicinal herbs and their major active constituents is critical for their widespread usage. Geniposide, a major active constituent with a defined structure from the traditional medicinal herb Gardenia jasminoides ELLIS fruit, exhibits remarkable anti-inflammatory, antiapoptotic, and antifibrotic properties and has been used in a variety of medical fields, mainly for the treatment of liver diseases. However, geniposide-induced hepatotoxicity and methods for the early detection of hepatotoxicity have yet to be reported. In this study, geniposide-induced hepatotoxicity was investigated. In addition, candidate biomarkers for the earlier detection of geniposide-induced hepatotoxicity were identified using a label-free quantitative proteomics approach on a geniposide overdose-induced liver injury in a rat model. Using an accurate intensity-based, absolute quantification (iBAQ)-based, one-step discovery and verification approach, a candidate biomarker panel was easily obtained from individual samples in response to different conditions. To determine the biomarkers' early detection abilities, five candidate biomarkers were selected and tested using enzyme-linked immunosorbent assays (ELISAs). Two biomarkers, glycine N-methyltransferase (GNMT) and glycogen phosphorylase (PYGL), were found to indicate hepatic injuries significantly earlier than the current gold standard liver biomarker. This study provides a first insight into geniposide-induced hepatotoxicity in a rat model and describes a method for the earlier detection of this hepatotoxicity, facilitating the efficient monitoring of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ma H, Ning J, Jin X, Mao C, Bu X, Wang M, Liu H, Wang K, Lausted C, Hood L, Chen J, Hu Z. Betaine homocysteine methyltransferase (BHMT) as a specific and sensitive blood marker for acute liver injury. Biomarkers 2014; 19:578-84. [PMID: 25144858 DOI: 10.3109/1354750x.2014.951880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Huailei Ma
- National Center for Nanoscience and Technology
BeijingP.R. China
| | - Jing Ning
- Beijing Proteome Research Center, Beijing Institute of Radiation Medicine
BeijingP.R. China
- Department of Laboratory Medicine, Beijing 307 Hospital
BeijingP.R. China
- Department of Laboratory Medicine, Affiliated Hospital, Academy of Military Medicine Science
BeijingP.R. China
- Department of Laboratory Medicine, Beijing Municipal Corps Hospital, Chinese People’s Armed Police Forces
BeijingP.R. China
| | - Xin Jin
- Department of Laboratory Medicine, Beijing 307 Hospital
BeijingP.R. China
| | - Chunming Mao
- Beijing Proteome Research Center, Beijing Institute of Radiation Medicine
BeijingP.R. China
| | - Xiangli Bu
- National Center for Nanoscience and Technology
BeijingP.R. China
| | - Miao Wang
- Department of Laboratory Medicine, Beijing 307 Hospital
BeijingP.R. China
| | - Huan Liu
- Beijing Proteome Research Center, Beijing Institute of Radiation Medicine
BeijingP.R. China
| | - Kun Wang
- Beijing Proteome Research Center, Beijing Institute of Radiation Medicine
BeijingP.R. China
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences ShanghaiP.R. China
| | | | - Leroy Hood
- Institute for Systems Biology, North Seattle
WAUSA
| | - Jiankui Chen
- Department of Laboratory Medicine, Beijing 307 Hospital
BeijingP.R. China
- Department of Laboratory Medicine, Affiliated Hospital, Academy of Military Medicine Science
BeijingP.R. China
| | - Zhiyuan Hu
- National Center for Nanoscience and Technology
BeijingP.R. China
- Beijing Proteome Research Center, Beijing Institute of Radiation Medicine
BeijingP.R. China
- Institute for Systems Biology, North Seattle
WAUSA
| |
Collapse
|
39
|
Weerasinghe SVW, Jang YJ, Fontana RJ, Omary MB. Carbamoyl phosphate synthetase-1 is a rapid turnover biomarker in mouse and human acute liver injury. Am J Physiol Gastrointest Liver Physiol 2014; 307:G355-64. [PMID: 24924744 PMCID: PMC4121638 DOI: 10.1152/ajpgi.00303.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several serum markers are used to assess hepatocyte damage, but they have limitations related to etiology specificity and prognostication. Identification of novel hepatocyte-specific biomarkers could provide important prognostic information and better pathogenesis classification. We tested the hypothesis that hepatocyte-selective biomarkers are released after subjecting isolated mouse hepatocytes to Fas-ligand-mediated apoptosis. Proteomic analysis of hepatocyte culture medium identified the mitochondrial matrix protein carbamoyl phosphate synthetase-1 (CPS1) among the most readily detected proteins that are released by apoptotic hepatocytes. CPS1 was also detected in mouse serum upon acute challenge with Fas-ligand or acetaminophen and in hepatocytes upon hypoosmotic stress, independent of hepatocyte caspase activation. Furthermore, CPS1 was observed in sera of mice chronically fed the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Mouse CPS1 detectability was similar in serum and plasma, and its half-life was 126 ± 9 min. Immune staining showed that CPS1 localized to mouse hepatocytes but not ductal cells. Analysis of a few serum samples from patients with acute liver failure (ALF) due to acetaminophen, Wilson disease, or ischemia showed readily detectable CPS1 that was not observed in several patients with chronic viral hepatitis or in control donors. Notably, CPS1 rapidly decreased to undetectable levels in sera of patients with acetaminophen-related ALF who ultimately recovered, while alanine aminotransferase levels remained elevated. Therefore, CPS1 becomes readily detectable upon hepatocyte apoptotic and necrotic death in culture or in vivo. Its abundance and short serum half-life, compared with alanine aminotransferase, suggest that it may be a useful prognostic biomarker in human and mouse liver injury.
Collapse
Affiliation(s)
- Sujith V. W. Weerasinghe
- 1Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan;
| | - You-Jin Jang
- 1Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan;
| | - Robert J. Fontana
- 2Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - M. Bishr Omary
- 1Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; ,2Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and ,3VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
40
|
Chevillet JR, Lee I, Briggs HA, He Y, Wang K. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 2014; 19:6080-105. [PMID: 24830712 PMCID: PMC6271291 DOI: 10.3390/molecules19056080] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
Cell-free circulating microRNAs (miRNAs) in the blood are good diagnostic biomarker candidates for various physiopathological conditions, including cancer, neurodegeneration, diabetes and other diseases. Since their discovery in 2008 as blood biomarkers, the field has expanded rapidly with a number of important findings. Despite the initial optimistic views of their potential for clinical application, there are currently no circulating miRNA-based diagnostics in use. In this article, we review the status of circulating miRNAs, examine different analytical approaches, and address some of the challenges and opportunities.
Collapse
Affiliation(s)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Hilary A Briggs
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY 10065, USA
| | - Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China.
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
41
|
Li H, Huang Y, Zhang B, Yang D, Zhu X, Li G. A new method to assay protease based on amyloid misfolding: application to prostate cancer diagnosis using a panel of proteases biomarkers. Am J Cancer Res 2014; 4:701-7. [PMID: 24883120 PMCID: PMC4038752 DOI: 10.7150/thno.8803] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/26/2014] [Indexed: 12/22/2022] Open
Abstract
This paper reports a sensitive method with electrochemical technique to detect various proteases, which can be used for the diagnosis of prostate cancer. For the proposed assay method, the working electrode is modified with the peptide probes for the target proteases. These probes contain the substrate sequence of target proteases, as well as the seed peptide sequence that can accelerate the misfolding of amyloid-beta. If there are proteases in the test solution, after protease cleavage of the substrate peptides, the distal seed peptide will be removed from the electrode surface. So, in the absence of proteases, the seed peptides can initiate and accelerate amyloid-beta misfolding on the electrode surface. Consequently, the formed aggregates strongly block the electron transfer of the in-solution electroactive species with the electrode, resulting in suppressed signal readout. Nevertheless, in the presence of proteases, enzyme cleavage may lead to greatly mitigated protein misfolding and evident signal enhancement. Since the contrast in signal readout between the two cases can be amplified by using the protein misfolding step, high sensitivity suitable for direct detection of proteases in serum can be achieved. These results may suggest the feasibility of our new method for the detection of a panel of proteases in offering detailed diagnosis of prostate cancer and a better treatment of the cancer.
Collapse
|
42
|
Wang W, Li M, Wei Z, Wang Z, Bu X, Lai W, Yang S, Gong H, Zheng H, Wang Y, Liu Y, Li Q, Fang Q, Hu Z. Bimodal Imprint Chips for Peptide Screening: Integration of High-Throughput Sequencing by MS and Affinity Analyses by Surface Plasmon Resonance Imaging. Anal Chem 2014; 86:3703-7. [DOI: 10.1021/ac500465e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Menglin Li
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zewen Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiangli Bu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wenjia Lai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Shu Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - He Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Hui Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuqiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ying Liu
- Beijing
Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Qin Li
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Beijing
Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| |
Collapse
|