1
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
2
|
Tinkov AA, Aschner M, Santamaria A, Bogdanov AR, Tizabi Y, Virgolini MB, Zhou JC, Skalny AV. Dissecting the role of cadmium, lead, arsenic, and mercury in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2023; 238:117134. [PMID: 37714366 DOI: 10.1016/j.envres.2023.117134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid β-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alfred R Bogdanov
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Russian State Social University, 129226, Moscow, Russia; Municipal State Hospital No. 13 of the Moscow City Health Department, 115280, Moscow, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Miriam B Virgolini
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
3
|
Xue Y, Gong Y, Li X, Peng F, Ding G, Zhang Z, Shi J, Savul IS, Xu Y, Chen Q, Han L, Mao S, Sun Z. Sex differences in paternal arsenic-induced intergenerational metabolic effects are mediated by estrogen. Cell Biosci 2023; 13:165. [PMID: 37691128 PMCID: PMC10493026 DOI: 10.1186/s13578-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences. METHODS After weaning, C57BL/6 WT male mice were treated with 250 ppb iAs in drinking water (iAsF0) or normal water (conF0) for 6 weeks and then bred with 15-week-old, non-exposed females for 3 days in cages with only normal water (without iAs), to generate iAsF1 or conF1 mice, respectively. F0 females and all F1 mice drank normal water without iAs all the time. RESULTS We find that exposure of male mice to 250 ppb iAs leads to glucose intolerance and insulin resistance in F1 female offspring (iAsF1-F), with almost no change in blood lipid profiles. In contrast, F1 males (iAsF1-M) show lower liver and blood triglyceride levels than non-exposed control, with improved glucose tolerance and insulin sensitivity. The liver of F1 offspring shows sex-specific transcriptomic changes, with hepatocyte-autonomous alternations of metabolic fluxes in line with the sex-specific phenotypes. The iAsF1-F mice show altered levels of circulating estrogen and follicle-stimulating hormone. Ovariectomy or liver-specific knockout of estrogen receptor α/β made F1 females resemble F1 males in their metabolic responses to paternal iAs exposure. CONCLUSIONS These results demonstrate that disrupted reproductive hormone secretion in alliance with hepatic estrogen signaling accounts for the sex-specific intergenerational effects of paternal iAs exposure, which shed light on the sex disparities in long-term gene-environment interactions.
Collapse
Affiliation(s)
- Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yingyun Gong
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Li
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fei Peng
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guolian Ding
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junchao Shi
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ilma Saleh Savul
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zheng Sun
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Yang X, Weber AA, Mennillo E, Secrest P, Chang M, Wong S, Le S, Liu J, Benner CW, Karin M, Gordts PL, Tukey RH, Chen S. Effects of Early Life Oral Arsenic Exposure on Intestinal Tract Development and Lipid Homeostasis in Neonatal Mice: Implications for NAFLD Development. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97001. [PMID: 37668303 PMCID: PMC10478510 DOI: 10.1289/ehp12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/01/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Newborns can be exposed to inorganic arsenic (iAs) through contaminated drinking water, formula, and other infant foods. Epidemiological studies have demonstrated a positive association between urinary iAs levels and the risk of developing nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults. OBJECTIVES The present study examined how oral iAs administration to neonatal mice impacts the intestinal tract, which acts as an early mediator for NAFLD. METHODS Neonatal mice were treated with a single dose of iAs via oral gavage. Effects on the small intestine were determined by histological examination, RNA sequencing, and biochemical analysis. Serum lipid profiling was analyzed by fast protein liquid chromatography (FPLC), and hepatosteatosis was characterized histologically and biochemically. Liver X receptor-alpha (LXR α ) knockout (L x r α - / - ) mice and liver-specific activating transcription factor 4 (ATF4)-deficient (A t f 4 Δ H e p ) mice were used to define their roles in iAs-induced effects during the neonatal stage. RESULTS Neonatal mice exposed to iAs via oral gavage exhibited accumulation of dietary fat in enterocytes, with higher levels of enterocyte triglycerides and free fatty acids. These mice also showed accelerated enterocyte maturation and a longer small intestine. This was accompanied by higher levels of liver-derived very low-density lipoprotein and low-density lipoprotein triglycerides, and a lower level of high-density lipoprotein cholesterol in the serum. Mice exposed during the neonatal period to oral iAs also developed hepatosteatosis. Compared with the control group, iAs-induced fat accumulation in enterocytes became more significant in neonatal L x r α - / - mice, accompanied by accelerated intestinal growth, hypertriglyceridemia, and hepatosteatosis. In contrast, regardless of enterocyte fat accumulation, hepatosteatosis was largely reduced in iAs-treated neonatal A t f 4 Δ H e p mice. CONCLUSION Exposure to iAs in neonatal mice resulted in excessive accumulation of fat in enterocytes, disrupting lipid homeostasis in the serum and liver, revealing the importance of the gut-liver axis and endoplasmic reticulum stress in mediating iAs-induced NAFLD at an early age. https://doi.org/10.1289/EHP12381.
Collapse
Affiliation(s)
- Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - André A. Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Patrick Secrest
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, UC San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, UC San Diego, La Jolla, California, USA
| | | | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, UC San Diego, La Jolla, California, USA
| | - Philip L.S.M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, California, USA
| | - Robert H. Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| |
Collapse
|
5
|
Chen X, Wu R, Wu H, Hu Y, Wang H, Fu J, Pi J, Xu Y. Integrated miRNA-mRNA analysis reveals the dysregulation of lipid metabolism in mouse liver induced by developmental arsenic exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130459. [PMID: 36463740 DOI: 10.1016/j.jhazmat.2022.130459] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Developmental arsenic exposure leads to increased susceptibility to liver diseases including nonalcoholic fatty liver diseases, but the mechanism is incompletely understood. In this study, C57BL/6J mice were used to establish a lifetime arsenic exposure model covering developmental stage. We found that arsenic-exposed offspring in later life showed hepatic lipid deposition and increased triglyceride content. Despite no significant hepatic pathological changes in the offspring at weaning, 86 miRNAs and 136 mRNAs were differentially expressed according to miRNA array and mRNA sequencing. The differentially expressed genes (DEGs) were crossed with the target genes predicted by differentially expressed miRNAs (DEMs), and 47 differentially expressed target genes (DETGs) were obtained. Functional annotation suggested that lipid metabolism related pathways were significantly enriched. The pivotal regulator in the four major pathways to maintain liver lipid homeostasis were further determined, with significant alterations found in FABP5, SREBP1, ACOX1 and EHHADH. Of note, miRNA-mRNA integration analysis revealed that miR-7118-5p, miR-7050-5p, miR-27a/b-3p, and miR-103-3p acted as key regulators of fatty acid metabolism genes. Taken together, miRNA-mRNA integration analysis indicates that the lipid metabolism pathway in the liver of weaned mice was dysregulated by developmental arsenic exposure, which may contribute to the development of NAFLD in later life.
Collapse
Affiliation(s)
- Xin Chen
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ruirui Wu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Hengchao Wu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuxin Hu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huihui Wang
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China
| | - Jingqi Fu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Zhang X, Wang X, Cao X, Xiao G, Miao H. Heavy element contents of vegetables and health-risk assessment in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154552. [PMID: 35292325 DOI: 10.1016/j.scitotenv.2022.154552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study analyzed five heavy elements (HEs), including cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), and arsenic (As), in fresh vegetables (i.e., legume, rhizome and potato, gourd, bulb, solanaceous fruit, leafy, and brassica; total: 7214) collected from 31 provinces in China from 2016 to the first half of 2017. By analyzing the concentration level of the five HEs in seven regions (the Northeast, North China, East China, South China, Central China, the Northwest, and the Southwest), except for As, average HEs concentrations were higher in the Southwest than that in the other six regions. According to the maximum permissible limit (MPL), the highest rate of HEs concentration above the MPL was found in the Southwest (11.038%). Analysis of variance (ANOVA) showed varying degrees of variability between regions and categories. By using principal component analysis (PCA), it was found that two principal components account for 73.79% of the total variance in the data. Together with hierarchical cluster analysis (HCA), concluded that Tibet was significantly different from the other 30 provinces. By calculating estimated daily intake (EDI) and the target hazard quotient (THQ), the EDI of Cr in the Southwest was the highest, with results of 1.2119 μg/kg/day for children and 0.8073 μg/kg/day for adults. North China had the highest total target hazard quotient (TTHQ) for HEs in vegetables ingested by children, with a result of 0.933.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Xueli Wang
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China.
| | - Xianbing Cao
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Gexin Xiao
- National institute of Hospital Administration, Beijing 100044, China
| | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
7
|
Gong Y, Xue Y, Li X, Zhang Z, Zhou W, Marcolongo P, Benedetti A, Mao S, Han L, Ding G, Sun Z. Inter- and Transgenerational Effects of Paternal Exposure to Inorganic Arsenic. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002715. [PMID: 33854880 PMCID: PMC8025034 DOI: 10.1002/advs.202002715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/26/2020] [Indexed: 05/03/2023]
Abstract
The rise of metabolic disorders in modern times is mainly attributed to the environment. However, heritable effects of environmental chemicals on mammalian offsprings' metabolic health are unclear. Inorganic arsenic (iAs) is the top chemical on the Agency for Toxic Substances and Disease Registry priority list of hazardous substances. Here, we assess cross-generational effects of iAs in an exclusive male-lineage transmission paradigm. The exposure of male mice to 250 ppb iAs causes glucose intolerance and hepatic insulin resistance in F1 females, but not males, without affecting body weight. Hepatic expression of glucose metabolic genes, glucose output, and insulin signaling are disrupted in F1 females. Inhibition of the glucose 6-phosphatase complex masks the intergenerational effect of iAs, demonstrating a causative role of hepatic glucose production. F2 offspring from grandpaternal iAs exposure show temporary growth retardation at an early age, which diminishes in adults. However, reduced adiposity persists into middle age and is associated with altered gut microbiome and increased brown adipose thermogenesis. In contrast, F3 offspring of the male-lineage iAs exposure show increased adiposity, especially on a high-calorie diet. These findings have unveiled sex- and generation-specific heritable effects of iAs on metabolic physiology, which has broad implications in understanding gene-environment interactions.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Yanfeng Xue
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
- National Center for International Research on Animal Gut NutritionCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Xin Li
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular BiologyMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Wenjun Zhou
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Paola Marcolongo
- Department of Molecular and Developmental MedicineUniversity of SienaSiena53100Italy
| | - Angiolo Benedetti
- Department of Molecular and Developmental MedicineUniversity of SienaSiena53100Italy
| | - Shengyong Mao
- National Center for International Research on Animal Gut NutritionCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Leng Han
- Department of Biochemistry and Molecular BiologyMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Guolian Ding
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan UniversityShanghai Key Laboratory of Embryo Original DiseasesShanghai200011China
| | - Zheng Sun
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
8
|
Navas-Acien A, Spratlen MJ, Abuawad A, LoIacono NJ, Bozack AK, Gamble MV. Early-Life Arsenic Exposure, Nutritional Status, and Adult Diabetes Risk. Curr Diab Rep 2019; 19:147. [PMID: 31758285 PMCID: PMC7004311 DOI: 10.1007/s11892-019-1272-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW In utero influences, including nutrition and environmental chemicals, may induce long-term metabolic changes and increase diabetes risk in adulthood. This review evaluates the experimental and epidemiological evidence on the association of early-life arsenic exposure on diabetes and diabetes-related outcomes, as well as the influence of maternal nutritional status on arsenic-related metabolic effects. RECENT FINDINGS Five studies in rodents have evaluated the role of in utero arsenic exposure with diabetes in the offspring. In four of the studies, elevated post-natal fasting glucose was observed when comparing in utero arsenic exposure with no exposure. Rodent offspring exposed to arsenic in utero also showed elevated insulin resistance in the 4 studies evaluating it as well as microRNA changes related to glycemic control in 2 studies. Birth cohorts of arsenic-exposed pregnant mothers in New Hampshire, Mexico, and Taiwan have shown that increased prenatal arsenic exposure is related to altered cord blood gene expression, microRNA, and DNA methylation profiles in diabetes-related pathways. Thus far, no epidemiologic studies have evaluated early-life arsenic exposure with diabetes risk. Supplementation trials have shown B vitamins can reduce blood arsenic levels in highly exposed, undernourished populations. Animal evidence supports that adequate B vitamin status can rescue early-life arsenic-induced diabetes risk, although human data is lacking. Experimental animal studies and human evidence on the association of in utero arsenic exposure with alterations in gene expression pathways related to diabetes in newborns, support the potential role of early-life arsenic exposure in diabetes development, possibly through increased insulin resistance. Given pervasive arsenic exposure and the challenges to eliminate arsenic from the environment, research is needed to evaluate prevention interventions, including the possibility of low-cost, low-risk nutritional interventions that can modify arsenic-related disease risk.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Nancy J LoIacono
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| |
Collapse
|
9
|
Kozłowska L, Janasik B, Nowicka K, Wąsowicz W. A urinary metabolomics study of a Polish subpopulation environmentally exposed to arsenic. J Trace Elem Med Biol 2019; 54:44-54. [PMID: 31109620 DOI: 10.1016/j.jtemb.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Almost every organ in the human body can be affected by arsenic (As) exposure associated with various industrial processes, as well as with contaminated food, drinking water and polluted air. Much is known about high exposure to inorganic As but there is little data on the metabolic changes connected to a low exposure e.g. in people living in smelter areas. OBJECTIVES The objectives of the study were: (1) characterise urinary concentration of total arsenic (AsT) in Polish inhabitants of the vicinity of a copper smelter area, (2) speciation analysis of various forms of arsenic in girls (GL), boys (BL), women (WL) and men (ML) with a slightly elevated AsT concentration and age/sex matched groups with a substantially higher AsT concentration, (GH, BH, WH and MH - respectively), (3) comparison of metabolomics profiles of urine between the age/sex matched people with low and high AsT concentrations. METHODS Urine samples were analysed for total arsenic and its chemical forms (AsIII; AsV, methylarsonic acid, dimethylarsinic acid, arsenobetaine) using HPLC-ICP-MS. Untargeted metabolomics analysis of the urine samples was performed using UPLC system connected to Q-TOF-MS equipped with an electrospray source. The XCMS Online program was applied for feature detection, retention time correction, alignment, statistics, annotation and identification. Potentially identified compounds were fragmented and resulting spectra were compared to the spectra in the Human Metabolome Database. RESULTS Urine concentration of AsT was, as follows: GL 16.40 ± 0.83; GH 115.23 ± 50.52; BL 16.48 ± 0.83; BH 95.00 ± 50.03; WL 16.93 ± 1.21; WH 170.13 ± 96.47; ML 16.91 ± 1.20; MH 151.71 ± 84.31 μg/l and percentage of arsenobetaine in AsT was, as follows: GL 65.5 ± 13.8%, GH 87.2 ± 4.7%, BL 59.8 ± 12.5%, BH 90.5 ± 2.4%, WL 50.8 ± 14.1%, WH 90.4 ± 3.5%, ML 53.3 ± 10.0%, MH 74.6 ± 20.2%. In the people with low and high AsT concentrations there were significant differences in the intensity of signal (is.) from numerous compounds being metabolites of neurotransmitters, nicotine and hormones transformation (serotonin in the girls and women; catecholamines in the girls, boys and women; mineralocorticoids and glucocorticoids in the boys, androgens in the women and men and nicotine in the boys, women and men). These changes might have been associated with higher is. from metabolites of leucine, tryptophan, purine degradation (in the GH, WH), urea cycle (in the WH and MH), glycolysis (in the WH) and with lower is. from metabolites of tricarboxylic acid cycle (in the BH) in comparison with low AsT matched groups. In the MH vs. ML higher is. from metabolite of lipid peroxidation (4-hydroxy-2-nonenal) was observed. Additionally, the presence of significant differences was reported in is. from food components metabolites, which might have modulated the negative effects of As (vitamin C in the girls, boys and men, vitamin B6 in the girls, boys and women as well as phenolic compounds in the boys and girls). We hypothesize that the observed higher is. from metabolites of sulphate (in MH) and glucoronate degradation (in BH, WH and MH) than in the matched low AsT groups may be related to the impaired glucuronidation and sulfonation and higher is. from catecholamines, nicotine and hormones. CONCLUSION Our results indicated that even a low exposure to As is associated with metabolic changes and that urine metabolomics studies could be a good tool to reflect their wide spectrum connected to specific environmental exposure to As, e.g. in smelter areas.
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Beata Janasik
- Departament of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| | - Katarzyna Nowicka
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Wojciech Wąsowicz
- Departament of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Św. Teresy od Dzieciątka Jezus 8, 91-348, Łódź, Poland.
| |
Collapse
|
10
|
Wang Z, Tao Y, Qiu T, Yao X, Jiang L, Wang N, Wei S, Jia X, Pei P, Yang G, Liu X, Liu S, Sun X. Taurine protected As 2O 3-induced the activation of hepatic stellate cells through inhibiting PPARα-autophagy pathway. Chem Biol Interact 2019; 300:123-130. [PMID: 30677399 DOI: 10.1016/j.cbi.2019.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
The activation of hepatic stellate cells (HSCs) is a key event in the development of hepatic fibrosis caused by arsenic. However, it is unclear how arsenic induces the activation of HSCs. In the present study, we found that arsenic trioxide (As2O3) induced liver tissue damage, stimulated autophagy and HSCs activation, and increased collagen accumulation in the liver of mice. Supplemented with taurine (Tau) attenuated the changes mentioned above caused by As2O3. In human hepatic stellate cell line LX-2 cells, we found that As2O3-induced activation of HSCs was autophagy-dependent, and we found that peroxisome proliferator activated receptors alpha (PPARα) played an important role in arsenic-induced HSCs activation. In addition, inhibiting autophagy and PPARα alleviated the activation of HSCs and lipid droplet loss induced by As2O3. Moreover, we found that Tau alleviated As2O3-induced elevation of autophagy and PPARα expression, and activation of the HSCs. Our results indicated that autophagy was regulated by PPARα and was involved in lipid droplet loss during the activation of HSCs. Tau alleviated As2O3-induced HSCs activation by inhibiting the PPARα/autophagy pathway. These findings give an innovative insight into the association of PPARα, autophagy, the activation of HSCs and hepatic fibrosis induced by As2O3.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Ye Tao
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Sen Wei
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xue Jia
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Pei Pei
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Shuang Liu
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Department of Occupational and Environment Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
11
|
Sawut R, Kasim N, Maihemuti B, Hu L, Abliz A, Abdujappar A, Kurban M. Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:864-878. [PMID: 29925057 DOI: 10.1016/j.scitotenv.2018.06.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate heavy metal contamination in four major vegetable bases and determine the health risks of residents in the vicinity of the highly urbanized city Urumqi in Xinjiang, China. In this paper, we determined the contents of six heavy metals (i.e., As, Zn, Cd, Cr, Hg, and Pb) in surface soil and groundwater to evaluate the levels of heavy metal pollution and human health risks using the pollution index (PI), the Nemerow integrated pollution index (NIPI), the ecological risk factor (Eir), risk index (RI) and the health risk assessment model. The results showed that (1) The PI, NIPI, the ecological risk factor and risk index indicated that Cd and Hg were the primary pollutants in Sishihu village. These indices suggested moderate to slightly heavy potential ecological risks. In Anningqu town, Hg and Cd led to high levels of pollution and posed slightly heavy potential ecological risks. In Qinggedahu village, it was concluded that the metals Zn, Cr, Cd, Hg, and Pb caused moderate to heavy pollution. In Liushihu village, the pollution trends in the area were low. The results of the pollution level of the irrigation well water (i.e., groundwater) indicated that the well water was considerably safer than the soil, but Cr posed a slight pollution risk. (2) The non-carcinogenic risks for adults based on the HI values of these four vegetable bases were <1. However, when considering the non-carcinogenic risks for children, the HI values were larger than 1 in all areas, indicating the local children have a higher potential non-carcinogenic risk. In addition, CR (Carcinogenic risk) from dermal contact with the vegetables bases did not pose a high risk for residents. However, for adults, the carcinogenic risk posed by Arsenic (As) through trough inhalation was the primary pathway of exposure in three of the vegetable bases, generally in the order of Qinggedahu village > Sishihu village > Anningqu town. For children, the carcinogenic risks posed by As through trough inhalation and ingestion were the main exposure pathways. From the TCR results, it can be seen that in Sishihu village, Anningqu town, and Qinggedahu village, the TCR values for adults and children were >1 × 10-4 (unitless), and this degree of carcinogenic risk is unacceptable. (3) The identification of risk sources determined the main pollution sources affecting the vegetable bases were human activities and natural sources. Anthropogenic activities were most often related to traffic pollution sources and agricultural pollution sources, such as the irrational use of pesticides and fertilizers and stock farming. The results are important for designing remediation scenarios to control the spread of contamination as well as for serving as a reference point for soil environmental protection efforts in this region.
Collapse
Affiliation(s)
- Rukeya Sawut
- College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China; Key Laboratory of Oasis Ecology Xinjiang University, Urumqi 830046, China
| | - Nijat Kasim
- College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China; Key Laboratory of Oasis Ecology Xinjiang University, Urumqi 830046, China
| | - Balati Maihemuti
- College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China; Key Laboratory of Xinjiang General Institutions of Higher Learning for Smart City and Environment Modeling, Xinjiang University, Urumqi 830046, China; Key Laboratory of Oasis Ecology Xinjiang University, Urumqi 830046, China.
| | - Li Hu
- Xinjiang Engineering Center of Satellite Applications, Urumqi 83000, China
| | - Abdugheni Abliz
- Key Laboratory of Oasis Ecology Xinjiang University, Urumqi 830046, China; Institute of Arid Ecology and Environment, Urumqi 830046, Xinjiang, China
| | - Abdusalam Abdujappar
- College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China; Key Laboratory of Oasis Ecology Xinjiang University, Urumqi 830046, China
| | - Miradil Kurban
- College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
12
|
Huang MC, Douillet C, Dover EN, Stýblo M. Prenatal arsenic exposure and dietary folate and methylcobalamin supplementation alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner. Arch Toxicol 2018; 92:1925-1937. [PMID: 29721587 DOI: 10.1007/s00204-018-2206-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Inorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied. The role of factors that modulate iAs metabolism and toxicity in adults and their potential to influence diabetogenic effects of prenatal iAs exposure are also unclear. The goal of this study was to determine if prenatal exposure to iAs impairs glucose metabolism in mice and if maternal supplementation with folate and methylcobalamin (B12) can modify this outcome. C57BL/6J dams were exposed to iAs in drinking water (0, 100, and 1000 µg As/L) and fed a folate/B12 adequate or supplemented diet from before mating to birth of offspring. After birth, dams and offspring drank deionized water and were fed the folate/B12 adequate diet. The metabolic phenotype of offspring was assessed over the course of 14 weeks. Male offspring from iAs-exposed dams fed the folate/B12-adequate diet developed fasting hyperglycemia and insulin resistance. Maternal folate/B12 supplementation rescued this phenotype but had only marginal effects on iAs metabolism in dams. The diabetogenic effects of prenatal iAs exposure in male offspring were not associated with changes in global DNA methylation in the liver. Only minimal effects of prenatal iAs exposure or maternal supplementation were observed in female offspring. These results suggest that prenatal iAs exposure impairs glucose metabolism in a sex-specific manner and that maternal folate/B12 supplementation may improve the metabolic phenotype in offspring. Further studies are needed to identify the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA
| | - Ellen N Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Treviño LS, Katz TA. Endocrine Disruptors and Developmental Origins of Nonalcoholic Fatty Liver Disease. Endocrinology 2018; 159:20-31. [PMID: 29126168 PMCID: PMC5761605 DOI: 10.1210/en.2017-00887] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic worldwide, particularly in countries that consume a Western diet, and can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma. With increasing prevalence of NAFLD in both children and adults, an understanding of the factors that promote NAFLD development and progression is crucial. Environmental agents, including endocrine-disrupting chemicals (EDCs), which have been linked to other diseases, may play a role in NAFLD development. Increasing evidence supports a developmental origin of liver disease, and early-life exposure to EDCs could represent one risk factor for the development of NAFLD later in life. Rodent studies provide the strongest evidence for this link, but further studies are needed to define whether there is a causal link between early-life EDC exposure and NAFLD development in humans. Elucidating the molecular mechanisms underlying development of NAFLD in the context of developmental EDC exposures may identify biomarkers for people at risk, as well as potential intervention and/or therapeutic opportunities for the disease.
Collapse
Affiliation(s)
- Lindsey S. Treviño
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Tiffany A. Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
14
|
Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 2017; 387:81-94. [PMID: 28602540 PMCID: PMC5535741 DOI: 10.1016/j.tox.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite-induced mitochondrial deficits, and these disruptions are exacerbated in the absence of mitochondrial fusion. This research demonstrates the importance of mitochondrial dynamics in limiting arsenite toxicity by permitting mitochondrial adaptability. It also suggests that individuals suffering from deficiencies in mitodynamic processes may be more susceptible to the mitochondrial toxicity of arsenic and other toxicants.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tewodros R Godebo
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Latasha L Smith
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tess C Leuthner
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, 08801-3059, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
15
|
Luz AL, Godebo TR, Bhatt DP, Ilkayeva OR, Maurer LL, Hirschey MD, Meyer JN. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans. Toxicol Sci 2016; 152:349-62. [PMID: 27208080 PMCID: PMC4960910 DOI: 10.1093/toxsci/kfw093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Collapse
Affiliation(s)
- Anthony L Luz
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Tewodros R Godebo
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | | | - Olga R Ilkayeva
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center
| | - Laura L Maurer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Joel N Meyer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
16
|
Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA. Arsenic and Environmental Health: State of the Science and Future Research Opportunities. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:890-9. [PMID: 26587579 PMCID: PMC4937867 DOI: 10.1289/ehp.1510209] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/10/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with "arsenic" in the title, the question becomes, what questions would best drive future research directions? OBJECTIVES The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines. METHODS The National Institutes of Health's National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop. DISCUSSION More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and susceptibility to disease mechanisms and outcomes. CONCLUSIONS Promising research strategies and technologies for arsenic exposure and adverse health effect mitigation are being pursued, and future research is moving toward deeper collaborations and integration of information across disciplines to address data gaps. CITATION Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA. 2016. Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124:890-899; http://dx.doi.org/10.1289/ehp.1510209.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Karen D. Bradham
- Human Exposure & Atmospheric Science Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - John Cowden
- National Center for Computational Toxicology, and
| | - Michelle Heacock
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Heather F. Henry
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Janice S. Lee
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. EPA, Research Triangle Park, North Carolina, USA
| | - David J. Thomas
- Integrated Systems Toxicology Division, National Human and Environmental Health Effects Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Erik J. Tokar
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Michael P. Waalkes
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
- NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - William A. Suk
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
17
|
Ditzel EJ, Nguyen T, Parker P, Camenisch TD. Effects of Arsenite Exposure during Fetal Development on Energy Metabolism and Susceptibility to Diet-Induced Fatty Liver Disease in Male Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:201-9. [PMID: 26151952 PMCID: PMC4749082 DOI: 10.1289/ehp.1409501] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 07/02/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chronic exposure to arsenicals at various life stages and across a range of exposures has been implicated in cardiometabolic and liver disease, but disease predisposition from developmental exposures remains unclear. OBJECTIVES In utero and post-weaning exposure to trivalent arsenic (AsIII) was examined on the background of a Western-style diet to determine whether AsIII exposure affects metabolic disease. METHODS Male Swiss Webster mice were exposed to 100 ppb AsIII in utero, after weaning, or both. Ad libitum access to a Western-style diet was provided after weaning, and the plasma metabolome, liver histopathology, liver enzyme activity, and gene expression were analyzed. RESULTS Hepatic lipid composition and histopathology revealed that developmental AsIII exposure exacerbated Western-style diet-induced fatty liver disease. Continuous AsIII exposure increased cardiometabolic risk factors including increased body weight, insulin resistance, hyperglycemia, and plasma triglycerides. AsIII exposure produced a decrease in the intermediates of glycolysis and the TCA cycle while increasing ketones. Hepatic isocitrate dehydrogenase activity was also decreased, which confirmed disruption of the TCA cycle. Developmental AsIII exposure increased the expression of genes involved in fatty acid synthesis, lipogenesis, inflammation, and packaging of triglycerides, suggesting an increased acetyl coenzyme A (acetyl-CoA) load. CONCLUSIONS In utero and continuous early-life exposure to AsIII disrupted normal metabolism and elevated the risk for fatty liver disease in mice maintained on a high-fat diet. Our findings suggest that individuals exposed to AsIII during key developmental periods and who remain exposed to AsIII on the background of a Western-style diet may be at increased risk for metabolic disease later in life.
Collapse
Affiliation(s)
- Eric J. Ditzel
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Thu Nguyen
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Patricia Parker
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, College of Pharmacy,
- Steele Children’s Research Center,
- Southwest Environmental Health Sciences Center,
- Sarver Heart Center, and
- Bio5 Institute, University of Arizona, Tucson, Arizona, USA
- Address correspondence to T.D. Camenisch, 1703 E. Mabel St., P.O. Box 210207, Tucson, AZ 85721 USA. Telephone: (520) 626-0240. E-mail:
| |
Collapse
|
18
|
Barrett JR. Arsenic Exposure and the Western Diet: A Recipe for Metabolic Disorders? ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A39. [PMID: 26829820 PMCID: PMC4749074 DOI: 10.1289/ehp.124-a39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
19
|
Broka D, Ditzel E, Quach S, Camenisch TD. Methylation of inorganic arsenic by murine fetal tissue explants. Drug Chem Toxicol 2015; 39:279-83. [PMID: 26446802 DOI: 10.3109/01480545.2015.1092043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (∼7% of total arsenic/48 h incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues.
Collapse
Affiliation(s)
- Derrick Broka
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| | - Eric Ditzel
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| | - Stephanie Quach
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| | - Todd D Camenisch
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| |
Collapse
|