1
|
Mandal T, Shukla D, Pattanayak S, Barman R, Ashraf R, Dixit AK, Kumar S, Kumar D, Srivastava AK. Ellagic Acid Induces DNA Damage and Apoptosis in Cancer Stem-like Cells and Overcomes Cisplatin Resistance. ACS OMEGA 2024; 9:48988-49000. [PMID: 39713677 PMCID: PMC11656259 DOI: 10.1021/acsomega.3c08819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 12/24/2024]
Abstract
Cancer stem cells (CSCs) are responsible for chemoresistance and tumor relapse in many solid malignancies, including lung and ovarian cancer. Ellagic acid (EA), a natural polyphenol, exhibits anticancer effects on various human malignancies. However, its impact and mechanism of action on cancer stem-like cells (CSLCs) are only partially understood. In this study, we evaluated the therapeutic potential and underlying molecular mechanism of EA isolated from tropical mango against CSLCs. Herein, we observed that EA treatment reduces the stem-like phenotypes in cancer cells, thereby lowering the cell survival and self-renewal potential of ovarian and lung CSLCs. Additionally, EA treatment limits the populations of lung and ovarian CSLCs characterized by CD133+ and CD44+CD117+, respectively. A mechanistic investigation showed that EA treatment induces ROS generation by altering mitochondrial dynamics, causing changes in the levels of Drp1 and Mfn2, which lead to an increased level of accumulation of DNA damage and eventually trigger apoptosis in CSLCs. Moreover, pretreatment with EA sensitizes CSLCs to cisplatin treatment by enhancing DNA damage accumulation and impairing the DNA repair ability of the CSLCs. Furthermore, EA pretreatment significantly reduces cisplatin-induced mutation frequency and improves drug retention in CSLCs, potentially suppressing the development of acquired drug resistance. Taken together, our results demonstrate an unreported finding that EA inhibits CSLCs by targeting mitochondrial function and triggering apoptosis. Thus, EA can be used either alone or in combination with other chemotherepeutic drugs for the management of cancer.
Collapse
Affiliation(s)
- Tanima Mandal
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devendra Shukla
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Pattanayak
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Raju Barman
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Rahail Ashraf
- Division
of Biology, Indian Institute of Science
Education & Research Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amit Kumar Dixit
- CCRAS-Central
Ayurveda Research Institute, Kolkata, West Bengal 700091, India
| | - Sanjay Kumar
- Division
of Biology, Indian Institute of Science
Education & Research Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Deepak Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Chauhan A, Yadav M, Chauhan R, Basniwal RK, Pathak VM, Ranjan A, Kapardar RK, Srivastav R, Tuli HS, Ramniwas S, Mathkor DM, Haque S, Hussain A. Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions. Oncol Ther 2024; 12:685-699. [PMID: 39222186 PMCID: PMC11574235 DOI: 10.1007/s40487-024-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Gastrointestinal (GI) cancers are a significant global health concern with diverse etiologies and limited treatment options. Ellagic acid (EA), a natural polyphenolic compound, exhibits promising anticancer properties against various GI malignancies. In this article, we have reviewed recent research on the anticancer potential of EA across esophageal, gastric, colorectal, pancreatic, and liver cancers. In esophageal cancer, EA inhibits the formation of O6-methylguanine (O6-meGua) adducts induced by carcinogens like N-nitrosomethylbenzylamine (NMBA), thereby suppressing tumor growth. Additionally, EA inhibits STAT3 signaling and stabilizes tumor suppressor proteins, showing potential as an anti-esophageal cancer agent. In gastric cancer, EA regulates multiple pathways involved in cell proliferation, invasion, and apoptosis, including the p53 and PI3K-Akt signaling pathways. It also demonstrates anti-inflammatory and antioxidant effects, making it a promising therapeutic candidate against gastric cancer. In colorectal cancer (CRC), EA inhibits cell proliferation, induces apoptosis, and modulates the Wnt/β-catenin and PI3K/Akt pathways, suggesting its efficacy in preventing CRC progression. Furthermore, EA has shown promise in pancreatic cancer by inhibiting nuclear factor-kappa B, inducing apoptosis, and suppressing epithelial-mesenchymal transition. In liver cancer, EA exhibits radio-sensitizing effects, inhibits inflammatory pathways, and modulates the tumor microenvironment, offering potential therapeutic benefits against hepatocellular carcinoma. Studies on EA potential in combination therapies and the development of targeted delivery systems are required for enhanced efficacy against gastrointestinal cancers.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, U.P., India
| | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, U.P., India
| | - Vinay Mohan Pathak
- Parwatiya Shiksha Sabha (PASS), Near Transport Nagar Develchaur Kham, Haldwani, Nainital, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, 344090, Russia
| | | | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Hardeep Singh Tuli
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
3
|
Chen X, Shi X, Li X. Multi-component analyses of raspberry: Optimization of extraction procedure and network pharmacology. Heliyon 2023; 9:e21826. [PMID: 38027894 PMCID: PMC10663849 DOI: 10.1016/j.heliyon.2023.e21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The contents of ellagic acid and kaempferol-3-O-rutinoside, the chief active components of raspberry, are considered the quality control indices of raspberry. This work employed the ant colony neural network (ACO-BPNN) to optimize their extraction processes, and the combination of network pharmacology and molecular docking technology to unveil the potential pharmacological effects of these components. Based on the single-factor test (ultrasonic time, ethanol concentration, ultrasonic temperature, and solid-liquid ratio), a factorial experiment with 4-factors and 3-levels was conducted in parallel for 3 times. The multi-factor analysis of variance results revealed high-order interactions among the factors. Then, the ACO-BPNN model was established to characterize the complex relationship of experimental data. After further verification, relative errors were all less than 8 %, implying the model's effectiveness and reliability. Moreover, with the network pharmacology, 66 key targets were screened out and mainly concentrated in PI3K-AKT, MAPK, and Ras signal pathways. Molecular docking revealed the binding sites between active components and key targets.
Collapse
Affiliation(s)
- Xuming Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaochun Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaohong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238459. [PMID: 36500567 PMCID: PMC9738881 DOI: 10.3390/molecules27238459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Oroxylum indicum is a traditionally used plant in Ayurvedic and folk medicines. The plant is useful for the management of gastrointestinal diseases as well as skin diseases. In the present study, we analyzed the antitumor potential of O. indicum in Dalton's lymphoma ascites tumor cells (DLA) and Ehrlich ascites carcinoma (EAC)-induced solid and ascites tumors. Further, the potential of O. indicum extract (OIM) on skin papilloma induction by dimethyl benz(a) anthracene (DMBA) and croton oil was evaluated. The chemical composition of the extract was analyzed using UPLC-Q-TOF-MS. The predominant compounds present in the extract were demethoxycentaureidin 7-O-rutinoside, isorhamnetin-3-O-rutinoside, baicalein-7-O-glucuronide, 5,6,7-trihydroxyflavone, 3-Hydroxy-3',4',5'-trimethoxyflavone, 5,7-dihydroxy-3-(4-methoxyphenyl) chromen-4-one, and 4'-Hydroxy-5,7-dimethoxyflavanone. Treatment with high-dose OIM enhanced the percentage of survival in ascites tumor-bearing mice by 34.97%. Likewise, high and low doses of OIM reduced the tumor volume in mice by 61.84% and 54.21%, respectively. Further, the skin papilloma formation was brought down by the administration of low- and high-dose groups of OIM (by 67.51% and 75.63%). Overall, the study concludes that the Oroxylum indicum root bark extract is a potentially active antitumor and anticancer agent.
Collapse
|
5
|
Yu ZH, Cao M, Wang YX, Yan SY, Qing LT, Wu CM, Li S, Li TY, Chen Q, Zhao J. Urolithin A Attenuates Helicobacter pylori-Induced Damage In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11981-11993. [PMID: 36106620 DOI: 10.1021/acs.jafc.2c03711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Urolithin A (UA) is a metabolite produced in the gut following the consumption of ellagic acid (EA) rich foods. EA has shown anti-inflammatory, antioxidant, and anticancer properties. Because EA is poorly absorbed in the gastrointestinal tract, urolithins are considered to play a major role in bioactivity. Helicobacter pylori (H. pylori) infection is the most common chronic bacterial infection all over the world. It is potentially hazardous to humans because of its relationship to various gastrointestinal diseases. In this study, we investigated the effect of UA on inflammation by H. pylori. The results indicated that UA attenuated H. pylori-induced inflammation in vitro and in vivo. UA also reduced the secretion of H. pylori virulence factors and tissue injuries in mice. Furthermore, UA decreased the relative abundance of Helicobacteraceae in feces of H. pylori-infected mice. In summary, taking UA effectively inhibited the injury caused by H. pylori.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan-Xiao Wang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shi-Ying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Ting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cheng-Meng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shu Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tian-Yi Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Chen
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Badr-Eldin SM, Aldawsari HM, Fahmy UA, Ahmed OAA, Alhakamy NA, Al-hejaili OD, Alhassan AA, Ammari GA, Alhazmi SI, Alawadi RM, Bakhaidar R, Alamoudi AJ, Neamatallah T, Tima S. Optimized Apamin-Mediated Nano-Lipidic Carrier Potentially Enhances the Cytotoxicity of Ellagic Acid against Human Breast Cancer Cells. Int J Mol Sci 2022; 23:9440. [PMID: 36012704 PMCID: PMC9408819 DOI: 10.3390/ijms23169440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Ellagic acid has recently attracted increasing attention regarding its role in the prevention and treatment of cancer. Surface functionalized nanocarriers have been recently studied for enhancing cancer cells' penetration and achieving better tumor-targeted delivery of active ingredients. Therefore, the present work aimed at investigating the potential of APA-functionalized emulsomes (EGA-EML-APA) for enhancing cytototoxic activity of EGA against human breast cancer cells. Phospholipon® 90 G: cholesterol molar ratio (PC: CH; X1, mole/mole), Phospholipon® 90 G: Tristearin weight ratio (PC: TS; X2, w/w) and apamin molar concentration (APA conc.; X3, mM) were considered as independent variables, while vesicle size (VS, Y1, nm) and zeta potential (ZP, Y2, mV) were studied as responses. The optimized formulation with minimized vs. and maximized absolute ZP was predicted successfully utilizing a numerical technique. EGA-EML-APA exhibited a significant cytotoxic effect with an IC50 value of 5.472 ± 0.21 µg/mL compared to the obtained value from the free drug 9.09 ± 0.34 µg/mL. Cell cycle profile showed that the optimized formulation arrested MCF-7 cells at G2/M and S phases. In addition, it showed a significant apoptotic activity against MCF-7 cells by upregulating the expression of p53, bax and casp3 and downregulating bcl2. Furthermore, NF-κB activity was abolished while the expression of TNfα was increased confirming the significant apoptotic effect of EGA-EML-APA. In conclusion, apamin-functionalized emulsomes have been successfully proposed as a potential anti-breast cancer formulation.
Collapse
Affiliation(s)
- Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar D. Al-hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alhanoof A. Alhassan
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghadeer A. Ammari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shouq I. Alhazmi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raghad M. Alawadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmohsen J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Kamel AKA, Hozayen W, El-Kawi SHA, Hashem KS. Galaxaura elongata Extract (GE) Modulates Vanadyl Sulfate-Induced Renal Damage via Regulating TGF-β/Smads and Nrf2/NF-κB Pathways. Biol Trace Elem Res 2022; 200:3187-3204. [PMID: 34533747 DOI: 10.1007/s12011-021-02913-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Nephrotoxicity becomes a provoked problem as the kidneys are the target of many chemotherapies. For this reason, we aimed to study the protective effect of Galaxaura elongata extract (GE) against the vanadyl sulfate (Van) induced nephrotoxicity in rats. Forty Wistar albino rats (male) were divided into four groups (n = 10) as follows: control group: rats received 0.5% carboxymethyl cellulose (CMC). Galaxa group: rats received GE at a dose (100 mg/kg orally) daily for 6 weeks. Van group: rats injected with Van at a dose (50 mg/kg i.p.) once weekly for 6 successive weeks. Galaxa + Van group: rats received GE at a dose (100 mg/kg orally) daily for 6 weeks concurrently with Van at a dose (50 mg/kg i.p.) for 6 weeks. Our results showed that Van significantly raised urea and creatinine serum levels as compared to the control group as well as disordered renal oxidative/antioxidant redox. Administration of GE with Van alleviated the adverse impact of Van over the kidney tissues. Furthermore, GE administration in Galaxa + Van group downregulates angiotensin-converting enzyme (ACE1) mRNA expression, angiotensin II (Ang II) concentration, transforming growth factor β (TGF-β) mRNA expression and protein concentration and Nuclear factor κB (NF-κB) mRNA expression as compared to Van group. Also, GE administration caused a noticeable upregulation of Nrf2 and heme oxygenase-1 (HO-1) expressions with a consequent decrease of DNA fragmentation % compared to Van group. The results of the current study show that simultaneous treatment with GE can alleviate nephrotoxicity caused by Van in diabetic rats. The GE treatment of the Van treated animals restored altered renal oxidative/antioxidant redox values towards normal and lessened fibrosis. These results are consistent with these effects being caused by interactions with the TGF-B/Smads and Nrf2/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Al Khansaa A Kamel
- Biochemistry Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Walaa Hozayen
- Biochemistry Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Samraa H Abd El-Kawi
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Khalid S Hashem
- Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
8
|
Toxicity, Antioxidant Activity, and Phytochemicals of Basil ( Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan. Foods 2022; 11:foods11091239. [PMID: 35563962 PMCID: PMC9102432 DOI: 10.3390/foods11091239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Basil (Ocimum basilicum L.) is one of the most common aromatic herbs, a rich source of bioactive compounds, and is used extensively to add aroma and flavor to food. The leaves, both in fresh and dried form, are used as a culinary ingredient in different cultures. O. basilicum is also famous for its therapeutic potential and preservation effects. The present study investigated the cytotoxicity of basil at three different growth stages (GS), i.e., GS-1 (58 days of growth), GS-2 (69 days of growth), and GS-3 (93 days of growth) using the brine shrimp lethality assay. The results revealed that cytotoxicity was influenced by GS and the concentration of extracts. Aqueous extracts of basil at a concentration of 10 to 1000 µg/mL did not show notable toxicity. The lowest mortality rate, i.e., 8.9%, was recorded for GS-2 at the highest tested dose of basil extracts. The mortality rate at GS-1, GS-2, and GS-3 was found to be 26.7 ± 3.34%, 8.91 ± 0.10%, and 16.7 ± 0.34%, respectively, at 1000 µg/mL. GS-2 basil powder with the lowest toxicological risk was extracted with different solvents, viz., n-hexane, dichloromethane, ethanol, and water. The highest concentration of plant secondary metabolites including total phenolic acid, flavonoids, and tannin content was observed in ethanol extracts. Ethanol extracts also exhibited the highest antioxidant activity in DPPH, FRAP and H2O2 assays. LC-ESI-MS/MS analysis presented ethanol extracts of basil as a promising source of known health-promoting and therapeutic compounds such as rosmarinic acid, ellagic acid, catechin, liquiritigenin, and umbelliferone. The results suggest basil, a culinary ingredient, as a potential source of bioactive compounds which may offer an array of health promoting and therapeutic properties.
Collapse
|
9
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
10
|
Teslić N, Santos F, Oliveira F, Stupar A, Pojić M, Mandić A, Pavlić B, Kljakić AC, Duarte ARC, Paiva A, Mišan A. Simultaneous Hydrolysis of Ellagitannins and Extraction of Ellagic Acid from Defatted Raspberry Seeds Using Natural Deep Eutectic Solvents (NADES). Antioxidants (Basel) 2022; 11:254. [PMID: 35204137 PMCID: PMC8868079 DOI: 10.3390/antiox11020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Defatted raspberry seeds were used as an alternative source of antioxidants and ellagic acid (EA) extracted using Natural deep eutectic solvents (NADES). In the preliminary study, the best NADES combination (citric acid-betaine) and the most influential variables (temperature, time, and NADES/plant ratio) were selected for the further optimization process. All samples were analyzed in terms of total polyphenol, EA content, and antioxidant activity. Two sets of optimal conditions were generated by response surface methodology. The first set (Opt1) was designed for higher conversion of ellagitannins to EA while the latter set (Opt2) for higher EA content/100 g extract. Opt1 and Opt2 had higher values for all investigated responses compared to 80% ethanolic extract but had a lower conversion rate of ellagitannins to EA compared to acidified methanol extract. The third set of parameters (Opt3) selected beyond the initial experimental domain was used to obtain a sample with the highest EA content/100 g extract. Due to their nature, NADES extracts are ready to use and could have various technological roles in products since they are antioxidants, acidifiers, and colorants. NADES raspberry extracts exhibited higher anti-proliferative activity compared to ethanolic extracts in terms of EC50 values. However, the main contributor of anti-cancer activity in NADES raspberry extracts were individual NADES compounds and/or their newly formed NADES structure.
Collapse
Affiliation(s)
- Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.S.); (M.P.); (A.M.); (A.M.)
| | - Filipa Santos
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (F.S.); (F.O.); (A.R.C.D.); (A.P.)
| | - Filipe Oliveira
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (F.S.); (F.O.); (A.R.C.D.); (A.P.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.S.); (M.P.); (A.M.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.S.); (M.P.); (A.M.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.S.); (M.P.); (A.M.); (A.M.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (A.C.K.)
| | | | - Ana Rita C. Duarte
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (F.S.); (F.O.); (A.R.C.D.); (A.P.)
| | - Alexandre Paiva
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (F.S.); (F.O.); (A.R.C.D.); (A.P.)
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (A.S.); (M.P.); (A.M.); (A.M.)
| |
Collapse
|
11
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
12
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
13
|
Al-Harbi SA, Abdulrahman AO, Zamzami MA, Khan MI. Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review. Front Nutr 2021; 8:647582. [PMID: 34164422 PMCID: PMC8215145 DOI: 10.3389/fnut.2021.647582] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer as a disease continues to ravage the world population without regard to sex, age, and race. Due to the growing number of cases worldwide, cancer exerts a significant negative impact on global health and the economy. Interestingly, chemotherapy has been used over the years as a therapeutic intervention against cancer. However, high cost, resistance, and toxic by-effects to treatment have overshadowed some of its benefits. In recent times, efforts have been ongoing in searching for anticancer therapeutics of plant origin, focusing on polyphenols. Urolithins are secondary polyphenol metabolites derived from the gut microbial action on ellagitannins and ellagic acid-rich foods such as pomegranate, berries, and nuts. Urolithins are emerging as a new class of anticancer compounds that can mediate their cancer-preventive activities through cell cycle arrest, aromatase inhibition, induction of apoptosis, tumor suppression, promotion of autophagy, and senescence, transcriptional regulation of oncogenes, and growth factor receptors. In this review, we discussed the growing shreds of evidence supporting these secondary phenolic metabolites' anticancer properties. Furthermore, we have pointed out some of the future directions needed to establish urolithins as anticancer agents.
Collapse
Affiliation(s)
- Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Wu YS, Ho JY, Yu CP, Cho CJ, Wu CL, Huang CS, Gao HW, Yu DS. Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine Transporters. Cancers (Basel) 2021; 13:cancers13092032. [PMID: 33922395 PMCID: PMC8122772 DOI: 10.3390/cancers13092032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Chemoresistance of bladder cancer has become a major obstacle to clinical treatment, especially in first-line treatments involving gemcitabine (GCB). Epithelial-mesenchymal transition (EMT) is highly correlated with GCB resistance but less correlated with GCB metabolism and less reported as a novel therapeutic strategy. Our findings indicated that EMT-related GCB resistance occurs through the TGF-β/Smad signaling pathways and involves repressed expression of the GCB transporters hCNT1 and hENT1. Ellagic acid (EA) combined with GCB intensified the chemosensitivity of GCB in resistant cells by repressing Smad2, Smad3, and Smad4 expression and rescuing hCNT1 and hENT transcription. These data suggest that EA is a good adjuvant agent for blocking TGF-β/Smad signaling-related GCB resistance in bladder cancer. Abstract Gemcitabine (GCB) resistance is a major issue in bladder cancer chemoresistance, but its underlying mechanism has not been determined. Epithelial-mesenchymal transition (EMT) has been shown to be comprehensively involved in GCB resistance in several other cancer types, but the direct connection between EMT and GCB remains unclear. This study was designed to elucidate the mechanism of EMT-related GCB resistance in bladder cancer and identify a potential phytochemical to modulate drug sensitivity. The biological effects of ellagic acid (EA) or its combined effects with GCB were compared in GCB-resistant cells and the GCB-sensitive line in terms of cell viability, apoptosis, motility, and in vivo tumorigenicity. The molecular regulation of EMT-related GCB resistance was evaluated at both the mRNA and protein expression levels. Our results indicated that TGF-β/Smad induced the overactivation of EMT in GCB-resistant cells and reduced the expression of GCB influx transporters (hCNT1 and hENT1). Moreover, ellagic acid (EA) inhibited the TGF-β signaling pathway both in vitro and in vivo by reducing Smad2, Smad3, and Smad4 expression and thereby resensitized GCB sensitivity. In conclusion, our results demonstrate that TGF-β/Smad-induced EMT contributes to GCB resistance in bladder cancer by reducing GCB influx and also elucidate the novel mechanisms of EA-mediated inhibition of TGF-β/Smad-induced EMT to overcome GCB resistance. Our study warrants further investigation of EA as an effective therapeutic adjuvant agent for overcoming GCB resistance in bladder cancer.
Collapse
Affiliation(s)
- Ying-Si Wu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Ping Yu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Jung Cho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
| | - Chia-Lun Wu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Shuo Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Hong-Wei Gao
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (H.-W.G.); (D.-S.Y.)
| | - Dah-Shyong Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (H.-W.G.); (D.-S.Y.)
| |
Collapse
|
15
|
Mironescu M, Lazea-Stoyanova A, Barbinta-Patrascu ME, Virchea LI, Rexhepi D, Mathe E, Georgescu C. Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. Polymers (Basel) 2021; 13:1190. [PMID: 33917150 PMCID: PMC8067845 DOI: 10.3390/polym13081190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
A critical overview of current approaches to the development of starch-containing packaging, integrating the principles of green chemistry (GC), green technology (GT) and green nanotechnology (GN) with those of green packaging (GP) to produce materials important for both us and the planet is given. First, as a relationship between GP and GC, the benefits of natural bioactive compounds are analyzed and the state-of-the-art is updated in terms of the starch packaging incorporating green chemicals that normally help us to maintain health, are environmentally friendly and are obtained via GC. Newer approaches are identified, such as the incorporation of vitamins or minerals into films and coatings. Second, the relationship between GP and GT is assessed by analyzing the influence on starch films of green physical treatments such as UV, electron beam or gamma irradiation, and plasma; emerging research areas are proposed, such as the use of cold atmospheric plasma for the production of films. Thirdly, the approaches on how GN can be used successfully to improve the mechanical properties and bioactivity of packaging are summarized; current trends are identified, such as a green synthesis of bionanocomposites containing phytosynthesized metal nanoparticles. Last but not least, bioinspiration ideas for the design of the future green packaging containing starch are presented.
Collapse
Affiliation(s)
- Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, 550012 Sibiu, Romania;
| | - Andrada Lazea-Stoyanova
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Ilfov, Romania
| | - Marcela Elisabeta Barbinta-Patrascu
- Department of Electricity, Faculty of Physics, Solid-State Physics and Biophysics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Bucharest-Magurele, Romania
| | - Lidia-Ioana Virchea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania;
| | - Diana Rexhepi
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (D.R.); (E.M.)
| | - Endre Mathe
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (D.R.); (E.M.)
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania
| | - Cecilia Georgescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, 550012 Sibiu, Romania;
| |
Collapse
|
16
|
AlQathama A, Ezuruike UF, Mazzari ALDA, Yonbawi A, Chieli E, Prieto JM. Effects of Selected Nigerian Medicinal Plants on the Viability, Mobility, and Multidrug-Resistant Mechanisms in Liver, Colon, and Skin Cancer Cell Lines. Front Pharmacol 2020; 11:546439. [PMID: 33071779 PMCID: PMC7533547 DOI: 10.3389/fphar.2020.546439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Medicinal plants indicated for chronic diseases usually have good safety margins as they are intended for lifelong treatments. We hypothesized that they may provide patients with baseline protection to cancers and multidrug resistance-reversing phytochemicals resulting in successful prevention and/or adjuvant treatment of chemotherapy-resistant cancers. We selected 27 popular herbal infusions widely used in Nigeria for diabetes and studied their effects on a panel of liver (HepG2), colon (Caco2), and skin (B16-F10) cancer cells. Cytotoxicity was measured using the SRB staining assay. The 2D antimigratory effect was evaluated using an Oris™ platform. The P-glycoprotein (P-gp) efflux activity was evaluated using Rh-123 as a fluorescent probe. The inhibition of tyrosinase-mediated melanogenesis was evaluated by colorimetric enzymatic assays. Our results show that melanoma cell proliferation was strongly inhibited by Anogeissus leiocarpus (Combretaceae), Bridelia ferruginea (Phyllanthaceae), D. ogea (Leguminosae), and Syzygium guineense (Myrtaceae) extracts (GI50 = 50 µg/ml). Alstonia boonei (Apocynaceae), Gongronema latifolium (Asclepiadaceae), and Strophanthus hispidus (Apocynaceae) were preferentially toxic against Caco2 (GI50 = 50, 5 and 35 µg/ml, respectively). The most active extracts against different drug resistance mechanisms were B. ferruginea (inhibition of P-gp efflux, and impairing tyrosinase activity) and X. americana (inhibition of P-gp efflux). A. leiocarpus, Kaya senegalensis (Meliaceae), S. guineense, and Terminalia avicennioides (Combretaceae) significantly inhibited B16-F10 cell migration. Lupeol, ursolic acid, quercitrin, epicatechin, gallic acid, and ellagic acid were dereplicated by HPLC and HPTLC as their bioactive phytochemicals. In conclusion, the above in-vitro activities of herbal infusions regularly consumed by Nigerian diabetic patients may either act as a baseline chemoprotection or as sensitizing agents.
Collapse
Affiliation(s)
- Aljawharah AlQathama
- School of Pharmacy, University College London, London, United Kingdom.,Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | | | - Ahmed Yonbawi
- School of Pharmacy, University College London, London, United Kingdom.,Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elisabetta Chieli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jose M Prieto
- School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
17
|
Alhakamy NA, Ahmed OAA, Kurakula M, Caruso G, Caraci F, Asfour HZ, Alfarsi A, Eid BG, Mohamed AI, Alruwaili NK, Abdulaal WH, Fahmy UA, Alhadrami HA, Eldakhakhny BM, Abdel-Naim AB. Chitosan-Based Microparticles Enhance Ellagic Acid's Colon Targeting and Proapoptotic Activity. Pharmaceutics 2020; 12:E652. [PMID: 32660035 PMCID: PMC7407221 DOI: 10.3390/pharmaceutics12070652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed at improving the targeting and cytotoxic effect of ellagic acid (EA) on colon cancer cells. EA was encapsulated in chitosan (CHIT) polymers then coated by eudragit S100 (ES100) microparticles. The release of EA double-coated microparticles (MPs) was tested at simulative pH values. Maximum release was observed at 24 h and pH 7.4. The cytotoxicity of EA MPs on HCT 116 colon cancer cells was synergistically improved as compared with raw EA. Cell-cycle analysis by flow cytometry suggested enhanced G2-M phase colon cancer cell accumulation. In addition, a significantly higher cell fraction was observed in the pre-G phase, which highlighted the enhancement of the proapoptotic activity of EA formulated in the double-coat mixture. Annexin-V staining was used for substantiation of the observed cell-death-inducing activity. Cell fractions were significantly increased in early, late, and total cell death. This was backed by high elevation in cellular content of caspase 3. Effectiveness of the double-coated EA to target colonic tissues was confirmed using real-time iohexol dye X-ray radiography. In conclusion, CHIT loaded with EA and coated with ES100 formula exhibits improved colon targeting as well as enhanced cytotoxic and proapoptotic activity against HCT 116 colon cancer when compared with the administration of raw EA.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
| | - Mallesh Kurakula
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina, Italy; (G.C.); (F.C.)
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina, Italy; (G.C.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Anas Alfarsi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amir I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo 11757, Egypt;
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, Faculty of Pharmacy, Jouf University, Skaka P.O. Box 2014, Saudi Arabia;
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
| | - Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
- Special Infectious Agent Unit (Biosafety Level 3), King Fahd Medical Research Centre, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
18
|
Neamatallah T, El-Shitany N, Abbas A, Eid BG, Harakeh S, Ali S, Mousa S. Nano Ellagic Acid Counteracts Cisplatin-Induced Upregulation in OAT1 and OAT3: A Possible Nephroprotection Mechanism. Molecules 2020; 25:E3031. [PMID: 32630784 PMCID: PMC7411712 DOI: 10.3390/molecules25133031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an anticancer drug commonly used for solid tumors. However, it causes nephrotoxicity. OAT1 and OAT3 are organic anion transporters known to contribute to the uptake of cisplatin into renal tubular cells. The present study was designed to examine the protective role of ellagic acid nanoformulation (ellagic acid nano) on cisplatin-induced nephrotoxicity in rats, and the role of OAT1/OAT3 in this effect. Four groups of male Wistar rats were used (n = 6): (1) control, (2) cisplatin (7.5 mg/kg single dose, intraperitoneal), (3) cisplatin + ellagic acid nano (1 mg/kg), and (4) cisplatin + ellagic acid nano (2 mg/kg). Nephrotoxic rats treated with ellagic acid nano exhibited a significant reduction in elevated serum creatinine, urea, and oxidative stress marker, malondialdehyde (MDA). Additionally, ellagic acid nano restored renal glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Ellagic acid nano improved the histopathological changes induced by cisplatin, such as tubular dilatation, necrosis, and degeneration. Interestingly, OAT1 and OAT3 showed significantly lower expression at both mRNA and protein levels following ellagic acid nano treatment relative to the cisplatin-exposed group. These findings reveal a potential inhibitory role of ellagic acid antioxidant on OAT1 and OAT3 expression and thus explains its nephroprotective effect against cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
| | - Nagla El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Aymn Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (S.H.)
- Biotechnology Research Laboratories, Gastroenterology Surgery Center, Mansoura University, Mansoura 35511, Egypt
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
| | - Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (S.H.)
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Soad Ali
- Anatomy Department of Cytology and Histology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker Mousa
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
19
|
Heruye SH, Maffofou Nkenyi LN, Singh NU, Yalzadeh D, Ngele KK, Njie-Mbye YF, Ohia SE, Opere CA. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel) 2020; 13:E15. [PMID: 31963166 PMCID: PMC7168925 DOI: 10.3390/ph13010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Collapse
Affiliation(s)
- Segewkal H. Heruye
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Leonce N. Maffofou Nkenyi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Neetu U. Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Kalu K. Ngele
- Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo, Abakaliki, Nigeria
| | - Ya-Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
20
|
Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WKB, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. Lagerstroemia speciosa (L.) Pers Leaf Extract Attenuates Lung Tumorigenesis via Alleviating Oxidative Stress, Inflammation and Apoptosis. Biomolecules 2019; 9:E871. [PMID: 31842482 PMCID: PMC6995620 DOI: 10.3390/biom9120871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
One of the major etiological factors that account for lung cancer is tobacco use. Benzo(a)pyrene [B(a)P], one of the main constituents of tobacco smoke, has a key role in lung carcinogenesis. The present study was conducted to investigate the cytotoxicity of an aqueous ethanolic extract of Lagerstroemia speciosa (L.) Pers leaves (LLE) on human lung adenocarcinoma cells (A549), as well as its in vivo antitumor effect on a lung tumorigenesis mice model. Our results revealed that LLE possesses cytotoxic activity against the A549 cell line. Mice orally administered B(a)P (50 mg/kg body weight) showed an increase in relative lung weight with subsequent decrease in final body weight. Serum levels of tumor marker enzymes AHH, ADA and LDH and the inflammatory mediator NF-κB increased, while total antioxidant capacity (TAC) decreased. In addition, we observed the increased activity of metalloproteinases (MMP-2 and MMP-12) and levels of the tumor angiogenesis marker VEFG and the lipid peroxidation marker MDA, as well as decreased levels of the non-enzymatic antioxidant GSH and enzymatic antioxidants CAT and GSH-Px in lung tissues. Moreover, B(a)P administration up-regulated the expression of the COX-2 gene, pro-inflammatory cytokines TNF-α and IL-6, and an anti-apoptotic gene Bcl-2, and at the same time down-regulated expression of pro-apoptotic genes BAX and caspase-3 and the p53 gene. Pre- and post-treatment with LLE (250 mg/kg body weight) attenuated all these abnormalities. Histopathological observations verified the protective effect of LLE. Overall, the present data positively confirm the potent antitumor effect of L. speciosa leaves against lung tumorigenesis.
Collapse
Affiliation(s)
- Amria M. Mousa
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nermin M. El-Sammad
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Abeer H. Abdel-Halim
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nayera Anwar
- Pathology Department, National Cancer Institute, Cairo University, Cairo 12796, Egypt
| | - Wagdy K. B. Khalil
- Cell Biology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mahmoud Nawwar
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Amani N. Hashim
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Elsayed A. Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt
| | - Sherien K. Hassan
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| |
Collapse
|
21
|
Gupta A, Singh AK, Kumar R, Ganguly R, Rana HK, Pandey PK, Sethi G, Bishayee A, Pandey AK. Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Molecules 2019; 24:E3399. [PMID: 31546767 PMCID: PMC6767293 DOI: 10.3390/molecules24183399] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), an ellagitannin, is one of the major bioactive compounds present in various plants. Ellagitannins belong to the hydrolyzable tannins, a group of polyphenols. Corilagin shows broad-spectrum biological, and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions. Natural compounds possessing antitumor activities have attracted significant attention for treatment of cancer. Corilagin has shown inhibitory activity against the growth of numerous cancer cells by prompting cell cycle arrest at the G2/M phase and augmented apoptosis. Corilagin-induced apoptosis and autophagic cell death depends on production of intracellular reactive oxygen species in breast cancer cell line. It blocks the activation of both the canonical Smad and non-canonical extracellular-signal-regulated kinase/Akt (protein kinase B) pathways. The potential apoptotic action of corilagin is mediated by altered expression of procaspase-3, procaspase-8, procaspase-9, poly (ADP ribose) polymerase, and Bcl-2 Bax. In nude mice, corilagin suppressed cholangiocarcinoma growth and downregulated the expression of Notch1 and mammalian target of rapamycin. The aim of this review is to summarize the anticancer efficacy of corilagin with an emphasis on the molecular mechanisms involving various signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Prabhash Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| |
Collapse
|
22
|
Wang Y, Ren F, Li B, Song Z, Chen P, Ouyang L. Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer. J Cancer 2019; 10:3303-3314. [PMID: 31293633 PMCID: PMC6603400 DOI: 10.7150/jca.29738] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/29/2019] [Indexed: 01/06/2023] Open
Abstract
Ellagic acid (EA) is a polyphenol found in several fruits and plants. EA has been reported to exert antitumor activity in many types of cancers. However, the effect and potential molecular mechanism of EA in endometrial cancer are still unclear. Therefore, the aim of this study was to explore the underlying antitumor function and targets by which EA inhibits endometrial cancer. By using multiplatform bioinformatics analysis tools, including DrugBank, STRING, WebGestalt and cBioPortal, the core targets of EA were identified as PIK3CA and PIK3R1. In addition, through transwell assays, EA was strongly found to inhibit cell invasion and migration. Based on CCK8 assays and flow cytometry, EA exhibited a suppressive effect on endometrial cancer cell proliferation by causing cell cycle arrest and inducing apoptosis. The results of real-time PCR confirmed that the expression of PIK3CA and PIK3R was decreased by EA. Furthermore, western blotting analysis demonstrated that EA inhibited PI3K phosphorylation, downregulating the expression of MMP9. In vivo, EA suppressed lung metastasis in BALB/c nude mice based on the SUVmax value determined from PET scans and HE staining. According to all these data, it comprehensively demonstrated the inhibitory effect of EA on endometrial cancer through bioinformatics analysis and experimental verification. Our findings suggest that EA may potentially be beneficial for treating endometrial cancer.
Collapse
Affiliation(s)
- Yizi Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zixuan Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Peng Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
23
|
Beshbishy AM, Batiha GES, Yokoyama N, Igarashi I. Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo. Parasit Vectors 2019; 12:269. [PMID: 31138282 PMCID: PMC6537213 DOI: 10.1186/s13071-019-3520-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/20/2019] [Indexed: 11/23/2022] Open
Abstract
Background There are no effective vaccines against Babesia and Theileria parasites; therefore, therapy depends heavily on antiprotozoal drugs. Treatment options for piroplasmosis are limited; thus, the need for new antiprotozoal agents is becoming increasingly urgent. Ellagic acid (EA) is a polyphenol found in various plant products and has antioxidant, antibacterial and effective antimalarial activity in vitro and in vivo without toxicity. The present study documents the efficacy of EA and EA-loaded nanoparticles (EA-NPs) on the growth of Babesia and Theileria. Methods In this study, the inhibitory effect of EA, β-cyclodextrin ellagic acid (β-CD EA) and antisolvent precipitation with a syringe pump prepared ellagic acid (APSP EA) was evaluated on four Babesia species and Theileria equi in vitro, and on the multiplication of B. microti in mice. The cytotoxicity assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cell lines. Results The half-maximal inhibitory concentration (IC50) values of EA and β-CD EA on B. bovis, B. bigemina, B. divergens, B. caballi and T. equi were 9.58 ± 1.47, 7.87 ± 5.8, 5.41 ± 2.8, 3.29 ± 0.42 and 7.46 ± 0.6 µM and 8.8 ± 0.53, 18.9 ± 0.025, 11 ± 0.37, 4.4 ± 0.6 and 9.1 ± 1.72 µM, respectively. The IC50 values of APSP EA on B. bovis, B. bigemina, B. divergens, B. caballi and T. equi were 4.2 ± 0.42, 9.6 ± 0.6, 2.6 ± 1.47, 0.92 ± 5.8 and 7.3 ± 0.54 µM, respectively. A toxicity assay showed that EA, β-CD EA and APSP EA affected the viability of cells with a half-maximal effective concentration (EC50) higher than 800 µM. In the experiments on mice, APSP EA at a concentration of 70 mg/kg reduced the peak parasitemia of B. microti by 68.1%. Furthermore, the APSP EA-atovaquone (AQ) combination showed a higher chemotherapeutic effect than that of APSP EA monotherapy. Conclusions To our knowledge, this is the first study to demonstrate the in vitro and in vivo antibabesial action of EA-NPs and thus supports the use of nanoparticles as an alternative antiparasitic agent. Electronic supplementary material The online version of this article (10.1186/s13071-019-3520-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amani Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.,Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El-Beheira, Egypt
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
24
|
Duan J, Zhan JC, Wang GZ, Zhao XC, Huang WD, Zhou GB. The red wine component ellagic acid induces autophagy and exhibits anti-lung cancer activity in vitro and in vivo. J Cell Mol Med 2018; 23:143-154. [PMID: 30353639 PMCID: PMC6307804 DOI: 10.1111/jcmm.13899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Red wine consists of a large amount of compounds such as resveratrol, which exhibits chemopreventive and therapeutic effects against several types of cancers by targeting cancer driver molecules. In this study, we tested the anti‐lung cancer activity of 11 red wine components and reported that a natural polyphenol compound ellagic acid (EA) inhibited lung cancer cell proliferation at an efficacy approximately equal to that of resveratrol. EA markedly increased the expression of the autophagosomal marker LC3‐II as well as inactivation of the mechanistic target of rapamycin signalling pathway. EA elevated autophagy‐associated cell death by down‐regulating the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), and CIP2A overexpression attenuated EA‐induced autophagy of lung cancer cells. Treating tumour‐bearing mice with EA resulted in significant inhibition of tumour growth with suppression of CIP2A levels and increased autophagy. In addition, EA potentiated the inhibitory effects of the natural compound celastrol on lung cancer cells in vitro and in vivo by enhancing autophagy and down‐regulating CIP2A. These findings indicate that EA may be a promising chemotherapeutic agent for lung cancer, and that the combination of EA and celastrol may have applicability for the treatment of this disease.
Collapse
Affiliation(s)
- Jing Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Heath, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ji-Cheng Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Heath, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Chun Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Dong Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Heath, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Boehning AL, Essien SA, Underwood EL, Dash PK, Boehning D. Cell type-dependent effects of ellagic acid on cellular metabolism. Biomed Pharmacother 2018; 106:411-418. [PMID: 29990828 DOI: 10.1016/j.biopha.2018.06.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 01/31/2023] Open
Abstract
Ellagic acid is a botanical polyphenol which has been shown to have numerous effects on cellular function. Ellagic acid can induce apoptosis and inhibit the proliferation of various cancer cell types in vitro and in vivo. As such, ellagic acid has attracted significant interest as a potential chemotherapeutic compound. One mechanism by which ellagic acid has been proposed to affect cellular physiology is by regulating metabolic pathways. Here we show the dose-dependent effects of ellagic acid on cellular energy production and downstream induction of the apoptotic program in HEK293, HeLa, MCF7, and HepG2 cells. At physiologically relevant doses, ellagic acid has pleiotropic and cell-type specific effects on mitochondrial function. At high doses ellagic acid can also influence glycolytic pathways and induce cell death. Our results demonstrate that ellagic acid can influence mitochondrial function at therapeutically relevant concentrations. The observed effects of ellagic acid on cellular respiration are complex and cell type-specific, which may limit the chemotherapeutic utility of this compound.
Collapse
Affiliation(s)
- Alexandra L Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX, 77030, United States
| | - Safia A Essien
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX, 77030, United States
| | - Erica L Underwood
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX, 77030, United States
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX, 77030, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX, 77030, United States.
| |
Collapse
|
26
|
Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol Cell Biochem 2018; 448:27-41. [PMID: 29388153 DOI: 10.1007/s11010-018-3310-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/27/2018] [Indexed: 01/20/2023]
Abstract
Oxidative stress is a biological condition produced by a variety of factors, causing several chronic diseases. Oxidative stress was, therefore, treated with natural antioxidants, such as ellagic acid (EA). EA has a major role in protecting against different diseases associated with oxidative stress. This review critically discussed the antioxidant role of EA in biological systems. The in vitro and in vivo studies have confirmed the protective role of EA in suppressing oxidative stress. The review also discussed the mechanism of EA in suppressing of oxidative stress, which showed that EA activates specific endogenous antioxidant enzymes and suppresses specific genes responsible for inflammation, diseases, or disturbance of biochemical systems. The amount of EA used and duration, which plays a significant role in the treatment of oxidative stress has been discussed. In conclusion, EA is a strong natural antioxidant, which possesses the suppressing power of oxidative stress in biological systems.
Collapse
Affiliation(s)
- Alam Zeb
- Laboratory of Biochemistry, Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
27
|
Wang H, Zhang Y, Tian Z, Ma J, Kang M, Ding C, Ming D. Preparation of β-CD-Ellagic Acid Microspheres and Their Effects on HepG2 Cell Proliferation. Molecules 2017; 22:molecules22122175. [PMID: 29292740 PMCID: PMC6149914 DOI: 10.3390/molecules22122175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE In this study, β-cyclodextrin (β-CD) was chosen as the coating for ellagic acid to prepare ellagic acid microspheres, and the effect of microspheres on the growth of HepG2 cells was observed. METHODS Scanning electron microscopy, infrared spectroscopy, and release rate analysis were used to identify the formation of ellagic acid microspheres. Methyl thiazolyl tetrazolium (MTT) assay was used to detect the effect of different concentrations of ellagic acid microspheres on tumor cell proliferation at 6, 12, 24 and 36 h, and cell morphology and quantity were observed using hematoxylin-eosin (HE) staining. Single-cell gel electrophoresis was used to observe the effect of ellagic acid microspheres on the DNA damage of HepG2 cells, and the Olive tail moment and the mRNA expression of tumor suppressor protein gene p53 was measured. RESULTS β-CD could be used as wrapping material of ellagic acid to prepare ellagic acid microspheres. HepG2 cell proliferation could be inhibited by 0.1, 0.3 and 0.5 g/L of ellagic acid microspheres in a dose- and time-dependent manner, and the mechanism of proliferation inhibition was related to DNA damage and cell apoptosis. CONCLUSION Preparing ellagic acid microspheres with β-CD is feasible, and ellagic acid microspheres have potential therapeutic value (anticancer).
Collapse
Affiliation(s)
- Hongkai Wang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Yingxia Zhang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Jing Ma
- College of Medical Science, Zaozhuang Vocational College, Zaozhuang 277800, China.
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Dongfeng Ming
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| |
Collapse
|
28
|
Mady FM, Shaker MA. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int J Nanomedicine 2017; 12:7405-7417. [PMID: 29066891 PMCID: PMC5644528 DOI: 10.2147/ijn.s147740] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.
Collapse
Affiliation(s)
- Fatma M Mady
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madina Al Munawara, Saudi Arabia.,Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia
| | - Mohamed A Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madina Al Munawara, Saudi Arabia.,Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
29
|
Wei Y, Kim TJ, Peng DH, Duan D, Gibbons DL, Yamauchi M, Jackson JR, Le Saux CJ, Calhoun C, Peters J, Derynck R, Backes BJ, Chapman HA. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 2017; 127:3675-3688. [PMID: 28872461 DOI: 10.1172/jci94624] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
TGF-β1 signaling is a critical driver of collagen accumulation and fibrotic disease but also a vital suppressor of inflammation and epithelial cell proliferation. The nature of this multifunctional cytokine has limited the development of global TGF-β1 signaling inhibitors as therapeutic agents. We conducted phenotypic screens for small molecules that inhibit TGF-β1-induced epithelial-mesenchymal transition without immediate TGF-β1 receptor (TβR) kinase inhibition. We identified trihydroxyphenolic compounds as potent blockers of TGF-β1 responses (IC50 ~50 nM), Snail1 expression, and collagen deposition in vivo in models of pulmonary fibrosis and collagen-dependent lung cancer metastasis. Remarkably, the functional effects of trihydroxyphenolics required the presence of active lysyl oxidase-like 2 (LOXL2), thereby limiting effects to fibroblasts or cancer cells, the major LOXL2 producers. Mechanistic studies revealed that trihydroxyphenolics induce auto-oxidation of a LOXL2/3-specific lysine (K731) in a time-dependent reaction that irreversibly inhibits LOXL2 and converts the trihydrophenolic to a previously undescribed metabolite that directly inhibits TβRI kinase. Combined inhibition of LOXL2 and TβRI activities by trihydrophenolics resulted in potent blockade of pathological collagen accumulation in vivo without the toxicities associated with global inhibitors. These findings elucidate a therapeutic approach to attenuate fibrosis and the disease-promoting effects of tissue stiffness by specifically targeting TβRI kinase in LOXL2-expressing cells.
Collapse
Affiliation(s)
- Ying Wei
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - Thomas J Kim
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - David H Peng
- Departments of Thoracic/Head and Neck Medical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dana Duan
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Don L Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia R Jackson
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - Claude J Le Saux
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA.,Department of Pulmonary and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cheresa Calhoun
- Department of Pulmonary and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jay Peters
- Department of Pulmonary and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Bradley J Backes
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| | - Harold A Chapman
- Department of Medicine, UCSF Cardiovascular Research Institute, San Francisco, California, USA
| |
Collapse
|
30
|
Ding Y, Wang L, Song J, Zhou S. Protective effects of ellagic acid against tetrachloride-induced cirrhosis in mice through the inhibition of reactive oxygen species formation and angiogenesis. Exp Ther Med 2017; 14:3375-3380. [PMID: 29042921 PMCID: PMC5639323 DOI: 10.3892/etm.2017.4966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Ellagic acid has been proven to have anticancer, antimutation, antimicrobial and antiviral functions. The present study investigated whether treatment with ellagic acid was able to prevent tetrachloride (CCl4)-induced cirrhosis through the inhibition of reactive oxygen species (ROS) formation and angiogenesis. CCl4 diluted in olive oil at a final concentration of 10% was used to induce a cirrhosis model. A total of 40 mice were random allocated into four groups, as follows: Control, cirrhosis model, 7.5 mg/kg ellagic acid and 15 mg/kg ellagic acid groups. In the control group, mice were given normal saline. The results indicated that ellagic acid exerted a protective effect, evidently preventing CCl4-induced cirrhosis. In addition, treatment with ellagic acid significantly inhibited collagen I and inducible nitric oxide synthase protein expression levels in CCl4-induced cirrhosis mice. Oxidative stress and ROS formation were also significantly reduced by ellagic acid treatment. The protein expression levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2), and the caspase-3 activity were significantly inhibited by treatment with ellagic acid. In conclusions, these results suggest that ellagic acid exerted protective effects against CCl4-induced cirrhosis through the inhibition of ROS formation and angiogenesis.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lizhou Wang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jie Song
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
31
|
Bhise K, Kashaw SK, Sau S, Iyer AK. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. Int J Pharm 2017; 526:506-515. [PMID: 28502895 PMCID: PMC5577003 DOI: 10.1016/j.ijpharm.2017.04.078] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature.
Collapse
Affiliation(s)
- Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Ceci C, Tentori L, Atzori MG, Lacal PM, Bonanno E, Scimeca M, Cicconi R, Mattei M, de Martino MG, Vespasiani G, Miano R, Graziani G. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth. Nutrients 2016; 8:nu8110744. [PMID: 27879653 PMCID: PMC5133127 DOI: 10.3390/nu8110744] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
Ellagic acid (EA) is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A), an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376) by in vitro proliferation tests (measuring metabolic and foci forming activity), invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1), an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Lucio Tentori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome 00167, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Rosella Cicconi
- "Centro di Servizi Interdipartimentale, Stazione per la Tecnologia Animale", Department of Biology, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Maurizio Mattei
- "Centro di Servizi Interdipartimentale, Stazione per la Tecnologia Animale", Department of Biology, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Maria Gabriella de Martino
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Giuseppe Vespasiani
- Urology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Roberto Miano
- Urology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy.
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00173, Italy.
| |
Collapse
|
33
|
Arun KB, Aswathi U, Venugopal VV, Madhavankutty TS, Nisha P. Nutraceutical properties of cumin residue generated from Ayurvedic industries using cell line models. Journal of Food Science and Technology 2016; 53:3814-3824. [PMID: 28017997 DOI: 10.1007/s13197-016-2372-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Spent cumin (SC), generated from Ayurvedic industry, was evaluated for its nutraceutical potential in terms of antioxidant, antidiabetic and anticancer properties, and compared with that of the raw cumin (RC). SC and RC seeds were extracted with ethyl acetate (E) and methanol (M). SCM (methanol extract) were rich in p-coumaric acid, ferulic acid, ellagic acid and cinnamic acid (6.4445, 5.8286, 2.1519, 4.3085 mg/g dry extract). SCM reduced Fe2+ ion (89.68 µM AA/g dry weight), scavenged DPPH radical (IC50-238.6 µg/mL), better α-amylase inhibition (IC50-337.22 µg/mL) and glucose uptake activity in 30.7% of L6 cells. SCM inhibited viability, retarded migration area up to 41.02%, arrested cell cycle at S phase and induced apoptosis in 2.45% of HT29 colon cancer cells. The results indicated that dietary interventions using nutraceutical food formulation made out of SC can play a significant role in the prevention and management of degenerative diseases.
Collapse
Affiliation(s)
- K B Arun
- Agro Processing and Natural Products Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019 India
| | - U Aswathi
- Agro Processing and Natural Products Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019 India
| | - V V Venugopal
- Agro Processing and Natural Products Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019 India
| | - T S Madhavankutty
- Arya Vaidya Sala, Kottakkal, Malappuram District, Kerala 675603 India
| | - P Nisha
- Agro Processing and Natural Products Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019 India
| |
Collapse
|
34
|
Yim NH, Gu MJ, Hwang YH, Cho WK, Ma JY. Water extract of Galla Rhois with steaming process enhances apoptotic cell death in human colon cancer cells. Integr Med Res 2016; 5:284-292. [PMID: 28462130 PMCID: PMC5390415 DOI: 10.1016/j.imr.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/26/2022] Open
Abstract
Background Galla Rhois has been considered to have medicinal properties against diarrhea, excessive sweating, bleeding, and chronic cough in Asian countries. Gallotannins, which are Galla Rhois-derived tannins, have been reported to possess biological and pharmacological activities, especially anticancer activity. In this study, we evaluated the effect of steaming at a temperature over 120 °C on the chemical constituents and biological activities of the water extract of Galla Rhois (GRE). Methods GRE was steamed at a temperature over 120 °C (AGRE), and its specific constituents were analyzed; the results were validated using a high-performance liquid chromatography–diode array detector system. To evaluate the anticancer effect of GRE and AGRE, cell viability assay, cell cycle analysis, and Western blot analysis were performed in HCT116 human colon cancer cells. Results Steaming markedly increased the contents of gallic acid and ellagic acid in GRE, and GRE or AGRE treatment reduced the viability of HCT116 cells. Notably, the steaming process enhanced the growth inhibitory effect of GRE in cancer cells. AGRE induced apoptosis through the activation of caspase-3, caspase-8, and caspase-9. Additionally, AGRE regulated the activation of mitogen-activated protein kinases including extracellular signal-regulated kinase, p38, and c-Jun NH2-terminal kinase, whereas GRE did not. However, both GRE and AGRE inhibited the activation of AKT. Conclusion Compared with GRE, AGRE is more potent in its ability to induce apoptosis in HCT116 cells; therefore, we suggest that the steaming process may be useful as a feasible method for improving the anticancer effect of GRE.
Collapse
Affiliation(s)
- Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Korea
| | - Min Jung Gu
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Korea
| | - Youn-Hwan Hwang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Korea
| |
Collapse
|
35
|
Yousef AI, El-Masry OS, Yassin EH. The anti-oncogenic influence of ellagic acid on colon cancer cells in leptin-enriched microenvironment. Tumour Biol 2016; 37:13345-13353. [PMID: 27460082 DOI: 10.1007/s13277-016-5284-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
Ellagic acid (EA) has been proposed as a promising candidate for therapeutic use in colon cancer. Investigation of the effectiveness of EA in a leptin-enriched model might have been given a little interest. Here in, we investigated the anti-tumor effect of EA in the presence of leptin to reflect on therapeutic use of EA in obesity-linked colon cancer. Proven effective in leptin-enriched microenvironment, EA inhibited cell proliferation of HCT-116 and CaCo-2 cell lines, modulated cell cycle, translocated Bax to the mitochondrial fraction of cells, activated caspase-8, and reduced PCNA expression. The current study findings cast a beam of light on the potential therapeutic use of EA in obesity-related colon carcinogenesis.
Collapse
Affiliation(s)
- Amany I Yousef
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, 21561, Egypt
| | - Omar S El-Masry
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, 21561, Egypt.
| | - Eman H Yassin
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, 21561, Egypt
| |
Collapse
|
36
|
Saha P, Yeoh BS, Singh R, Chandrasekar B, Vemula PK, Haribabu B, Vijay-Kumar M, Jala VR. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases. PLoS One 2016; 11:e0156811. [PMID: 27254317 PMCID: PMC4890745 DOI: 10.1371/journal.pone.0156811] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in acquiring limiting nutrient iron and thrive in the gut.
Collapse
Affiliation(s)
- Piu Saha
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rajbir Singh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Bhargavi Chandrasekar
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bangalore, Karnataka, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bangalore, Karnataka, India
- Ramalingaswami ReEntry Fellow, Dept. of Biotechnology, Govt. of India
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (MVK); (VRJ)
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (MVK); (VRJ)
| |
Collapse
|
37
|
Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci Rep 2016; 6:26500. [PMID: 27216246 PMCID: PMC4877707 DOI: 10.1038/srep26500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As with human beings, dogs suffer from the consequences of cancer. We investigated the potential of a formulation comprised of resveratrol, ellagic acid, genistein, curcumin and quercetin to modulate biomarkers indicative of disease prevention. Dog biscuits were evaluated for palatability and ability to deliver the chemopreventive agents. The extent of endogenous DNA damage in peripheral blood lymphocytes from dogs given the dietary supplement or placebo showed no change. However, H2O2-inducible DNA damage was significantly decreased after consumption of the supplement. The expression of 11 of 84 genes related to oxidative stress was altered. Hematological parameters remained in the reference range. The concept of chemoprevention for the explicit benefit of the canine is compelling since dogs are an important part of our culture. Our results establish a proof-of-principle and provide a framework for improving the health and well-being of “man’s best friend”.
Collapse
|
38
|
Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytother Res 2016; 30:1287-97. [PMID: 27215200 DOI: 10.1002/ptr.5648] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/27/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Abstract
Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, antibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the compounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other polyphenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. angustifolium extracts will benefit further development of therapeutic treatments from this plant. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew G Ramstead
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
39
|
Bak MJ, Das Gupta S, Wahler J, Suh N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin Cancer Biol 2016; 40-41:170-191. [PMID: 27016037 DOI: 10.1016/j.semcancer.2016.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
40
|
Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 2015; 6:461-471. [PMID: 26418626 PMCID: PMC4588415 DOI: 10.1016/j.redox.2015.08.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
To investigate the effects ofellagic acid (EA) on the cytotoxicity, B-lymphocytes isolated from CLL patients and healthy individuals. Flow cytometric assay was used to measure the percentage of apoptosis versus necrosis, intracellular active oxygen radicals (ROS), mitochondrial membrane potential (MMP) and the caspase-3 activity and then mitochondria were isolated from both groups B-lymphocytes and parameters of mitochondrial toxicity was investigated. Based on our results EA decreased the percentage of viable cells and induced apoptosis. EA increased ROS formation, mitochondria swelling, MMP decrease and cytochrome c release in mitochondria isolated from CLL BUT NOT healthy B-lymphocytes while pre-treatment with cyclosporine A and Butylated hydroxyl toluene (BHT) prevented these effects. Our results suggest that EA can act as an anti cancer candidate by directly and selectively targeting mitochondria could induce apoptosis through mitochondria pathway with increasing ROS production which finally ends in cytochrome c release, caspase 3 activation and apoptosis in cancerous B-lymphocytes isolated from CLL patients.
Collapse
Affiliation(s)
- Ahmad Salimi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Sadeghi
- Shohadaye Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Enayatollah Seydi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Pirahmadi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Shiraz University, Shiraz, Iran
| | - Jalal Pourahmad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Wu S, Li WQ, Qureshi AA, Cho E. Alcohol consumption and risk of cutaneous basal cell carcinoma in women and men: 3 prospective cohort studies. Am J Clin Nutr 2015; 102:1158-66. [PMID: 26423390 PMCID: PMC4625594 DOI: 10.3945/ajcn.115.115196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/26/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alcohol consumption has been associated with an increased prevalence of sunburn, which is an established skin cancer risk factor. OBJECTIVE We investigated whether alcohol consumption is associated with risk of cutaneous basal cell carcinoma (BCC). DESIGN We conducted a prospective analysis on alcohol consumption and risk of BCC on the basis of data from 167,765 women in the NHS (Nurses' Health Study) (1984-2010) and NHS II (1991-2011) and 43,697 men in the Health Professionals Follow-Up Study (1986-2010). Alcohol intake was repeatedly assessed every 2-4 y over the follow-up period. HRs and 95% CIs for BCC in association with alcohol intake were computed with the use of Cox proportional hazards models with adjustment for sun exposure and other skin cancer risk factors. RESULTS A total of 28,951 incident BCC cases were documented over 3.74 million person-years of follow-up. Increased alcohol intake was associated with increased BCC risk in both women and men (both P-trend < 0.0001). Pooled multivariable-adjusted HRs over increasing cumulative averaged alcohol intake categories were 1.00 (reference) for nondrinkers, 1.13 (95% CI: 1.06, 1.20) for 0.1-9.9 g/d, 1.24 (95% CI: 1.14, 1.35) for 10.0-19.9 g/d, 1.27 (95% CI: 1.20, 1.35) for 20.0-29.9 g/d, and 1.22 (95% CI: 1.15, 1.30) for ≥30.0 g/d (P-trend < 0.0001, P-heterogeneity by study = 0.10 ). The association remained consistent when we used alcohol intakes over different latency periods (0-4, 4-8, 8-12, and 12-16 y) as exposures and over categories of sun exposure-related factors. In the individual alcoholic beverages, white wine and liquor were positively associated with BCC risk. CONCLUSION Alcohol consumption is associated with increased risk of cutaneous BCC in both women and men.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Dermatology, Warren Alpert Medical School, and Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA;
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, and Department of Epidemiology, School of Public Health, Brown University, Providence, RI
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School, and Department of Epidemiology, School of Public Health, Brown University, Providence, RI; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and Department of Dermatology, Rhode Island Hospital, Providence, RI
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, and Department of Epidemiology, School of Public Health, Brown University, Providence, RI; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| |
Collapse
|
42
|
Dubey A, Park DW, Kwon JE, Jeong YJ, Kim T, Kim I, Kang SC, Chi KW. Investigation of the biological and anti-cancer properties of ellagic acid-encapsulated nano-sized metalla-cages. Int J Nanomedicine 2015; 10 Spec Iss:227-40. [PMID: 26366074 PMCID: PMC4562765 DOI: 10.2147/ijn.s88289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Three new large hexanuclear metalla-prisms 9-11 incorporating 1,3, 5-tris(pyridin-4-ylethynyl)benzene (tpeb) 4 and one of the dinuclear arene ruthenium clips [Ru2(p-iPrC6H4Me)2(OO∩OO)][CF3SO3]2 (OO∩OO =2,5-dioxydo-1,4-benzoquinonato [dobq] 1, 5,8-dihydroxy-1,4-naphthaquinonato (donq) 2, and 6,11-dihydroxy-5,12-naphthacenedionato [dotq] 3), which encapsulate the guest molecule ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione, 5) were prepared. All complexes were isolated as triflate salts in good yields and were fully characterized by (1)H NMR spectroscopy and electrospray ionization mass spectrometry. The photophysical properties of these metalla-prisms were also investigated. Compounds 9 and 10 showed potent antioxidant activity, but 10 had the superior ORACPE value (1.30 ± 0.020). Ellagic acid (5) and compound 11 showed weaker activity than that of Trolox. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the metalla-prism compounds exhibit anticancer properties in vitro. Compound 10 inhibited the growth of all cancer cell lines at micromolar concentrations, with the highest cytotoxicity observed against A549 human lung cancer cells (IC50 =25.9 μM). However, these compounds had a lower anti-cancer activity than that of doxorubicin. In a tumoricidal assay, ellagic acid (5) and compound 10 induced cytotoxicity in tumor cells, while doxorubicin did not. While free ellagic acid had no effect on the granulocyte-colony stimulating factor and regulated on activation normal T cell expressed and secreted protein, the encapsulated metalla-prism 10 stimulated granulocyte-colony stimulating factor and reduced regulated on activation normal T cell expressed and secreted protein expression in the RAW264.7 macrophage line. Our results show that ellagic acid encapsulated in metalla-prisms inhibited cancer cells via the modulation of mRNA induction and protein expression levels of the granulocyte-colony stimulating factor and regulated on activation normal T cell expressed and secreted protein in macrophages.
Collapse
Affiliation(s)
- Abhishek Dubey
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Dae Won Park
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Jung Eun Kwon
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Yong Joon Jeong
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Taegeun Kim
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Inhye Kim
- Laboratory of Bio-Resources, Yongin-si, Gyeonggi-Do, Republic of Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|