1
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Blazie SM, Fortunati D, Zhao Y, Jin Y. C. elegans LIN-66 mediates EIF-3/eIF3-dependent protein translation via a cold-shock domain. Life Sci Alliance 2024; 7:e202402673. [PMID: 38886018 PMCID: PMC11184513 DOI: 10.26508/lsa.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Protein translation initiation is a conserved process involving many proteins acting in concert. The 13 subunit eukaryotic initiation factor 3 (eIF3) complex is essential for assembly of the pre-initiation complex that scans mRNA and positions ribosome at the initiation codon. We previously reported that a gain-of-function (gf) mutation affecting the G subunit of the Caenorhabditis elegans eIF3 complex, eif-3.g(gf), selectively modulates protein translation in the ventral cord cholinergic motor neurons. Here, through unbiased genetic suppressor screening, we identified that the gene lin-66 mediates eif-3.g(gf)-dependent protein translation in motor neurons. LIN-66 is composed largely of low-complexity amino acid sequences with unknown functional domains. We combined bioinformatics analysis with in vivo functional dissection and identified a cold-shock domain in LIN-66 critical for its function. In cholinergic motor neurons, LIN-66 shows a close association with EIF-3.G in the cytoplasm. The low-complexity amino acid sequences of LIN-66 modulate its subcellular pattern. As cold-shock domains function broadly in RNA regulation, we propose that LIN-66 mediates stimulus-dependent protein translation by facilitating the interaction of mRNAs with EIF-3.G.
Collapse
Affiliation(s)
- Stephen M Blazie
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Fortunati
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yan Zhao
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Shinoda N, Horikoshi M, Taira Y, Muramoto M, Hirayama S, Murata S, Miura M. Caspase cleaves Drosophila BubR1 to modulate spindle assembly checkpoint function and lifespan of the organism. FEBS J 2023; 290:4200-4223. [PMID: 37151120 DOI: 10.1111/febs.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Caspases cleave over 1500 substrates in the human proteome in both lethal and non-lethal scenarios. However, reports of the physiological consequences of substrate cleavage are limited. Additionally, the manner in which caspase cleaves only a subset of substrates in the non-lethal scenario remains to be elucidated. BubR1, a spindle assembly checkpoint component, is a caspase substrate in humans, the physiological function of which remains unclear. Here, we found that caspases, especially Drice, cleave Drosophila BubR1 between the N-terminal KEN box motif and C-terminal kinase domain. By using proximity labelling, we found that Drice, but not Dcp-1, is in proximity to BubR1, suggesting that protein proximity facilitates substrate preference. The cleaved fragments displayed altered subcellular localization and protein-protein interactions. Flies that harboured cleavage-resistant BubR1 showed longer duration of BubR1 localization to the kinetochore upon colchicine treatment. Furthermore, these flies showed extended lifespan. Thus, we propose that the caspase-mediated cleavage of BubR1 limits spindle assembly checkpoint and organismal lifespan. Our results highlight the importance of the individual analysis of substrates in vivo to determine the biological significance of caspase-dependent non-lethal cellular processes.
Collapse
Affiliation(s)
- Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Misuzu Horikoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masaya Muramoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Okin D, Kagan JC. Inflammasomes as regulators of non-infectious disease. Semin Immunol 2023; 69:101815. [PMID: 37506489 PMCID: PMC10527946 DOI: 10.1016/j.smim.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes. We focus on emerging data that highlight the importance of inflammasome proteins in the regulation of reproduction, development, and malignancy. A framework is proposed to contextualize these findings.
Collapse
Affiliation(s)
- Daniel Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Yuan W, Weaver YM, Earnest S, Taylor CA, Cobb MH, Weaver BP. Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging. Nat Commun 2023; 14:4543. [PMID: 37507441 PMCID: PMC10382525 DOI: 10.1038/s41467-023-40317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved p38 MAPK family is activated by phosphorylation during stress responses and inactivated by phosphatases. C. elegans PMK-1 p38 MAPK initiates innate immune responses and blocks development when hyperactivated. Here we show that PMK-1 signaling is enhanced during early aging by modulating the stoichiometry of non-phospho-PMK-1 to promote tissue integrity and longevity. Loss of pmk-1 function accelerates progressive declines in neuronal integrity and lysosome function compromising longevity which has both cell autonomous and cell non-autonomous contributions. CED-3 caspase cleavage limits phosphorylated PMK-1. Enhancing p38 signaling with caspase cleavage-resistant PMK-1 protects lysosomal and neuronal integrity extending a youthful phase. PMK-1 works through a complex transcriptional program to regulate lysosome formation. During early aging, the absolute phospho-p38 amount is maintained but the reservoir of non-phospho-p38 diminishes to enhance signaling without hyperactivation. Our findings show that modulating the stoichiometry of non-phospho-p38 dynamically supports tissue-homeostasis during aging without hyper-activation of stress response.
Collapse
Affiliation(s)
- Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Colon-Plaza S, Su TT. Non-Apoptotic Role of Apoptotic Caspases in the Drosophila Nervous System. Front Cell Dev Biol 2022; 10:839358. [PMID: 35223857 PMCID: PMC8863954 DOI: 10.3389/fcell.2022.839358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
An increasing number of studies demonstrate that cells can activate apoptotic caspases but not die and, instead, display profound changes in cellular structure and function. In this minireview, we will discuss observations in the nervous system of Drosophila melanogaster that illustrate non-apoptotic roles of apoptotic caspases. We will preface these examples with similar observations in other experimental systems and end with a discussion of how apoptotic caspase activity might be constrained to provide non-lethal functions without killing the cell.
Collapse
Affiliation(s)
- Sarah Colon-Plaza
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
7
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
8
|
Ledru M, Clark CA, Brown J, Verghese S, Ferrara S, Goodspeed A, Su TT. Differential gene expression analysis identified determinants of cell fate plasticity during radiation-induced regeneration in Drosophila. PLoS Genet 2022; 18:e1009989. [PMID: 34990447 PMCID: PMC8769364 DOI: 10.1371/journal.pgen.1009989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Ionizing radiation (IR) is used to treat half of all cancer patients because of its ability to kill cells. IR, however, can induce stem cell-like properties in non-stem cancer cells, potentiating tumor regrowth and reduced therapeutic success. We identified previously a subpopulation of cells in Drosophila larval wing discs that exhibit IR-induced stem cell-like properties. These cells reside in the future wing hinge, are resistant to IR-induced apoptosis, and are capable of translocating, changing fate, and participating in regenerating the pouch that suffers more IR-induced apoptosis. We used here a combination of lineage tracing, FACS-sorting of cells that change fate, genome-wide RNAseq, and functional testing of 42 genes, to identify two key changes that are required cell-autonomously for IR-induced hinge-to-pouch fate change: (1) repression of hinge determinants Wg (Drosophila Wnt1) and conserved zinc-finger transcription factor Zfh2 and (2) upregulation of three ribosome biogenesis factors. Additional data indicate a role for Myc, a transcriptional activator of ribosome biogenesis genes, in the process. These results provide a molecular understanding of IR-induced cell fate plasticity that may be leveraged to improve radiation therapy. Ionizing radiation (IR) is used to treat half of all cancer patients because of its ability to kill cells but treatment failures are common because tumors grow back (regenerate). Here, we asked which changes in the properties of cells facilitate regeneration in Drosophila (fruit flies) after exposure to radiation. We identified six genes whose products increase or decrease the regenerative potential of cells. These results help us understand how tissues regenerate after IR damage and will aid in designing better therapies that involve radiation.
Collapse
Affiliation(s)
- Michelle Ledru
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Caitlin A. Clark
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Jeremy Brown
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Sarah Ferrara
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew Goodspeed
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Fausett S, Poullet N, Gimond C, Vielle A, Bellone M, Braendle C. Germ cell apoptosis is critical to maintain Caenorhabditis elegans offspring viability in stressful environments. PLoS One 2021; 16:e0260573. [PMID: 34879088 PMCID: PMC8654231 DOI: 10.1371/journal.pone.0260573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Maintaining reproduction in highly variable, often stressful, environments is an essential challenge for all organisms. Even transient exposure to mild environmental stress may directly damage germ cells or simply tax the physiology of an individual, making it difficult to produce quality gametes. In Caenorhabditis elegans, a large fraction of germ cells acts as nurse cells, supporting developing oocytes before eventually undergoing so-called physiological germ cell apoptosis. Although C. elegans apoptosis has been extensively studied, little is known about how germline apoptosis is influenced by ecologically relevant environmental stress. Moreover, it remains unclear to what extent germline apoptosis contributes to maintaining oocyte quality, and thus offspring viability, in such conditions. Here we show that exposure to diverse environmental stressors, likely occurring in the natural C. elegans habitat (starvation, ethanol, acid, and mild oxidative stress), increases germline apoptosis, consistent with previous reports on stress-induced apoptosis. Using loss-of-function mutant alleles of ced-3 and ced-4, we demonstrate that eliminating the core apoptotic machinery strongly reduces embryonic survival when mothers are exposed to such environmental stressors during early adult life. In contrast, mutations in ced-9 and egl-1 that primarily block apoptosis in the soma but not in the germline, did not exhibit such reduced embryonic survival under environmental stress. Therefore, C. elegans germ cell apoptosis plays an essential role in maintaining offspring fitness in adverse environments. Finally, we show that ced-3 and ced-4 mutants exhibit concomitant decreases in embryo size and changes in embryo shape when mothers are exposed to environmental stress. These observations may indicate inadequate oocyte provisioning due to the absence of germ cell apoptosis. Taken together, our results show that the central genes of the apoptosis pathway play a key role in maintaining gamete quality, and thus offspring fitness, under ecologically relevant environmental conditions.
Collapse
Affiliation(s)
- Sarah Fausett
- Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | - Anne Vielle
- Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
10
|
Jiang HS, Ghose P, Han HF, Wu YZ, Tsai YY, Lin HC, Tseng WC, Wu JC, Shaham S, Wu YC. BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9 transcription. Development 2021; 148:dev193995. [PMID: 34541605 PMCID: PMC8572009 DOI: 10.1242/dev.193995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here, we report a mechanism controlling tail-spike cell death onset during Caenorhabditis elegans development. We show that the zinc-finger transcription factor BLMP-1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9 and in parallel to DRE-1, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.
Collapse
Affiliation(s)
- Hang-Shiang Jiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Piya Ghose
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hsiao-Fen Han
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Yun-Zhe Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Ya-Yin Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Huang-Chin Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Wei-Chin Tseng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100229, Taiwan
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
- Department of Life Science, Center for Systems Biology, and Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106216, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan
| |
Collapse
|
11
|
Abstract
This Open Question article highlights current advances in the study of non-apoptotic roles of apoptotic proteins. Apoptosis is a highly regulated and energy-requiring process in which cells actively kill themselves. Apoptosis helps remove extra cells to sculpt organs during embryo development and culls damaged cells throughout the body. Apoptosis relies on evolutionarily conserved proteins that include a family of proteases called caspases. Caspases activity has long been considered a hallmark of apoptosis. Yet an emerging body of literature indicates that caspase activity is required for a number of non-lethal processes that range from sculpting cells, removing protein aggregates, changing cell identity during differentiation or de-differentiation, and rebuilding tissues. Failure in each of these processes is associated with human disease. This article is not meant to be an exhaustive review but an introduction to the subject for an educated public, with caspases as a gateway example. I propose that it is time to explore non-apoptotic roles of caspases and other apoptotic proteins, in order to better understand their non-apoptosis function and to leverage new knowledge into new therapies.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology. University of Colorado, 347 UCB, Boulder, CO 80309-0347, USA.,Molecular and Cellular Oncology Program, University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
12
|
Weaver BP, Weaver YM, Omi S, Yuan W, Ewbank JJ, Han M. Non-Canonical Caspase Activity Antagonizes p38 MAPK Stress-Priming Function to Support Development. Dev Cell 2020; 53:358-369.e6. [PMID: 32302544 PMCID: PMC7641037 DOI: 10.1016/j.devcel.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/15/2019] [Accepted: 03/15/2020] [Indexed: 02/02/2023]
Abstract
Recent studies have revealed non-canonical activities of apoptotic caspases involving specific modulation of gene expression, such as limiting asymmetric divisions of stem-like cell types. Here we report that CED-3 caspase negatively regulates an epidermal p38 stress-responsive MAPK pathway to promote larval development in C. elegans. We show that PMK-1 (p38 MAPK) primes animals for encounters with hostile environments at the expense of retarding post-embryonic development. CED-3 counters this function by directly cleaving PMK-1 to promote development. Moreover, we found that CED-3 and PMK-1 oppose each other to balance developmental and stress-responsive gene expression programs. Specifically, expression of more than 300 genes is inversely regulated by CED-3 and PMK-1. Analyses of these genes showed enrichment for epidermal stress-responsive factors, including the fatty acid synthase FASN-1, anti-microbial peptides, and genes involved in lethargus states. Our findings demonstrate a non-canonical role for a caspase in promoting development by limiting epidermal stress response programs.
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA.
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA
| | - Shizue Omi
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan J Ewbank
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA
| |
Collapse
|
13
|
Intertwined Functions of Separase and Caspase in Cell Division and Programmed Cell Death. Sci Rep 2020; 10:6159. [PMID: 32273538 PMCID: PMC7145830 DOI: 10.1038/s41598-020-63081-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Timely sister chromatid separation, promoted by separase, is essential for faithful chromosome segregation. Separase is a member of the CD clan of cysteine proteases, which also includes the pro-apoptotic enzymes known as caspases. We report a role for the C. elegans separase SEP-1, primarily known for its essential activity in cell division and cortical granule exocytosis, in developmentally programmed cell death when the predominant pro-apoptotic caspase CED-3 is compromised. Loss of SEP-1 results in extra surviving cells in a weak ced-3(-) mutant, and suppresses the embryonic lethality of a mutant defective for the apoptotic suppressor ced-9/Bcl-2 implicating SEP-1 in execution of apoptosis. We also report apparent non-apoptotic roles for CED-3 in promoting germ cell proliferation, meiotic chromosome disjunction, egg shell formation, and the normal rate of embryonic development. Moreover, loss of the soma-specific (CSP-3) and germline-specific (CSP-2) caspase inhibitors result in CED-3-dependent suppression of embryonic lethality and meiotic chromosome non-disjunction respectively, when separase function is compromised. Thus, while caspases and separases have evolved different substrate specificities associated with their specialized functions in apoptosis and cell division respectively, they appear to have retained the residual ability to participate in both processes, supporting the view that co-option of components in cell division may have led to the innovation of programmed cell suicide early in metazoan evolution.
Collapse
|
14
|
Chen PH, Chen YT, Chu TY, Ma TH, Wu MH, Lin HH, Chang YS, Tan BCM, Lo SJ. Nucleolar control by a non-apoptotic p53-caspases-deubiquitinylase axis promotes resistance to bacterial infection. FASEB J 2020; 34:1107-1121. [PMID: 31914708 DOI: 10.1096/fj.201901959r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/11/2022]
Abstract
The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.
Collapse
Affiliation(s)
- Po-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Ying Chu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Tian-Hsiang Ma
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hsuan Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Lawson H, Vuong E, Miller RM, Kiontke K, Fitch DHA, Portman DS. The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. eLife 2019; 8:e43660. [PMID: 31264582 PMCID: PMC6606027 DOI: 10.7554/elife.43660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual maturation must occur on a controlled developmental schedule. In mammals, Makorin3 (MKRN3) and the miRNA regulators LIN28A/B are key regulators of this process, but how they act is unclear. In C. elegans, sexual maturation of the nervous system includes the functional remodeling of postmitotic neurons and the onset of adult-specific behaviors. Here, we find that the lin-28-let-7 axis (the 'heterochronic pathway') determines the timing of these events. Upstream of lin-28, the Makorin lep-2 and the lncRNA lep-5 regulate maturation cell-autonomously, indicating that distributed clocks, not a central timer, coordinate sexual differentiation of the C. elegans nervous system. Overexpression of human MKRN3 delays aspects of C. elegans sexual maturation, suggesting the conservation of Makorin function. These studies reveal roles for a Makorin and a lncRNA in timing of sexual differentiation; moreover, they demonstrate deep conservation of the lin-28-let-7 system in controlling the functional maturation of the nervous system.
Collapse
Affiliation(s)
- Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Edward Vuong
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
| | - Renee M Miller
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterUnited States
| | - Karin Kiontke
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - David HA Fitch
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
- Department of NeuroscienceUniversity of RochesterRochesterUnited States
- DelMonte Institute for NeuroscienceUniversity of RochesterRochesterUnited States
| |
Collapse
|
16
|
The Long Non-Coding RNA lep-5 Promotes the Juvenile-to-Adult Transition by Destabilizing LIN-28. Dev Cell 2019; 49:542-555.e9. [PMID: 30956008 DOI: 10.1016/j.devcel.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.
Collapse
|
17
|
Luan S, Luo J, Liu H, Li Z. Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2. RNA Biol 2019; 16:160-165. [PMID: 30638126 DOI: 10.1080/15476286.2018.1564466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DIS3L2, in which mutations have been linked to Perlman syndrome, is an RNA-binding protein with 3'-5' exoribonuclease activity. It contains two CSD domains and one S1 domain, all of which are RNA-binding domains, and one RNB domain that is responsible for the exoribonuclease activity. The 3' polyuridine of RNA substrates can serve as a degradation signal for DIS3L2. Because DIS3L2 is predominantly localized in the cytoplasm, it can recognize, bind, and mediate the degradation of cytoplasmic uridylated RNA, including pre-microRNA, mature microRNA, mRNA, and some other non-coding RNAs. Therefore, DIS3L2 plays an important role in cytoplasmic RNA surveillance and decay. DIS3L2 is involved in multiple biological and physiological processes such as cell division, proliferation, differentiation, and apoptosis. Nonetheless, the function of DIS3L2, especially its association with cancer, remains largely unknown. We summarize here the RNA substrates degraded by DIS3L2 with its exonucleolytic activity, together with the corresponding biological functions it is implicated in. Furthermore, we discuss whether DIS3L2 can function independently of its 3'-5' exoribonuclease activity, as well as its potential tumor-suppressive or oncogenic roles during cancer progression.
Collapse
Affiliation(s)
- Siyu Luan
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Junyun Luo
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Hui Liu
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Zhaoyong Li
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| |
Collapse
|
18
|
Su TT. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol 2018; 8:rsob.180157. [PMID: 30487302 PMCID: PMC6282069 DOI: 10.1098/rsob.180157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The ability to regenerate is a fundamental requirement for tissue homeostasis. Regeneration draws on three sources of cells. First and best-studied are dedicated stem/progenitor cells. Second, existing cells may proliferate to compensate for the lost cells of the same type. Third, a different cell type may change fate to compensate for the lost cells. This review focuses on regeneration of the third type and will discuss the contributions by post-transcriptional mechanisms including the emerging evidence for cell-autonomous and non-lethal roles of cell death pathways.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA .,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
19
|
Verghese S, Su TT. Ionizing radiation induces stem cell-like properties in a caspase-dependent manner in Drosophila. PLoS Genet 2018; 14:e1007659. [PMID: 30462636 PMCID: PMC6248896 DOI: 10.1371/journal.pgen.1007659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Cancer treatments including ionizing radiation (IR) can induce cancer stem cell-like properties in non-stem cancer cells, an outcome that can interfere with therapeutic success. Yet, we understand little about what consequences of IR induces stem cell like properties and why some cancer cells show this response but not others. In previous studies, we identified a pool of epithelial cells in Drosophila larval wing discs that display IR-induced stem cell-like properties. These cells are resistant to killing by IR and, after radiation damage, change fate and translocate to regenerate parts of the disc that suffered more cell death. Here, we report the identification of two new pools of cells with IR-induced regenerative capability. We addressed how IR exposure results in the induction of stem cell-like behavior, and found a requirement for IR-induced caspase activity and for Zfh2, a transcription factor and an effector in the JAK/STAT pathway. Unexpectedly, the requirement for caspase activity was cell-autonomous within cell populations that display regenerative behavior. We propose a model in which the requirement for caspase activity and Zfh2 can be explained by apoptotic and non-apoptotic functions of caspases in the induction of stem cell-like behavior. Ionizing Radiation (IR), alone or in combination with other therapies, is used to treat an estimated half of all cancer patients. Yet, we understand little about why some tumors cells respond to treatment while others grow back (regenerate). We identified specific pools of cells within a Drosophila organ that are capable of regeneration after damage by IR. We also identified what it is about IR damage that allows these cells to regenerate. These results help us understand how tissues regenerate after IR damage and will aid in designing better therapies that involve radiation.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
20
|
Best AM, Abu Kwaik Y. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 2018; 21:e12971. [PMID: 30370624 DOI: 10.1111/cmi.12971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
Collapse
Affiliation(s)
- Ashley M Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
21
|
Mishra N, Wei H, Conradt B. Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics 2018; 210:983-998. [PMID: 30194072 PMCID: PMC6218217 DOI: 10.1534/genetics.118.301500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023] Open
Abstract
Caspases have functions other than in apoptosis. Here, we report that Caenorhabditis elegans CED-3 caspase regulates asymmetric cell division. Many of the 131 cells that are "programmed" to die during C. elegans development are the smaller daughter of a neuroblast that divides asymmetrically by size and fate. We have previously shown that CED-3 caspase is activated in such neuroblasts, and that before neuroblast division, a gradient of CED-3 caspase activity is formed in a ced-1 MEGF10 ( m ultiple EGF -like domains 10 )-dependent manner. This results in the nonrandom segregation of active CED-3 caspase or "apoptotic potential" into the smaller daughter. We now show that CED-3 caspase is necessary for the ability of neuroblasts to divide asymmetrically by size. In addition, we provide evidence that a pig-1 MELK (maternal embryonic leucine zipper kinase)-dependent reciprocal gradient of "mitotic potential" is formed in the QL.p neuroblast, and that CED-3 caspase antagonizes this mitotic potential. Based on these findings, we propose that CED-3 caspase plays a critical role in the asymmetric division by size and fate of neuroblasts, and that this contributes to the reproducibility and robustness with which the smaller daughter cell is produced and adopts the apoptotic fate. Finally, the function of CED-3 caspase in this context is dependent on its activation through the conserved egl-1 BH3-only, ced-9 Bcl-2, and ced-4 Apaf-1 pathway. In mammals, caspases affect various aspects of stem cell lineages. We speculate that the new nonapoptotic function of C. elegans CED-3 caspase in asymmetric neuroblast division is relevant to the function(s) of mammalian caspases in stem cells.
Collapse
Affiliation(s)
- Nikhil Mishra
- Faculty of Biology, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Hai Wei
- Faculty of Biology, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
22
|
Baena-Lopez LA, Arthurton L, Xu DC, Galasso A. Non-apoptotic Caspase regulation of stem cell properties. Semin Cell Dev Biol 2018; 82:118-126. [PMID: 29102718 PMCID: PMC6191935 DOI: 10.1016/j.semcdb.2017.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
The evolutionarily conserved family of proteins called caspases are the main factors mediating the orchestrated programme of cell suicide known as apoptosis. Since this protein family was associated with this essential biological function, the majority of scientific efforts were focused towards understanding their molecular activation and function during cell death. However, an emerging body of evidence has highlighted a repertoire of non-lethal roles within a large variety of cell types, including stem cells. Here we intend to provide a comprehensive overview of the key role of caspases as regulators of stem cell properties. Finally, we briefly discuss the possible pathological consequences of caspase malfunction in stem cells, and the therapeutic potential of caspase regulation applied to this context.
Collapse
Affiliation(s)
| | - Lewis Arthurton
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Derek Cui Xu
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Alessia Galasso
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| |
Collapse
|
23
|
Tang HM, Tang HL. Anastasis: recovery from the brink of cell death. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180442. [PMID: 30839720 PMCID: PMC6170572 DOI: 10.1098/rsos.180442] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
Anastasis is a natural cell recovery phenomenon that rescues cells from the brink of death. Programmed cell death such as apoptosis has been traditionally assumed to be an intrinsically irreversible cascade that commits cells to a rapid and massive demolition. Interestingly, recent studies have demonstrated recovery of dying cells even at the late stages generally considered immutable. Here, we examine the evidence for anastasis in cultured cells and in animals, review findings illuminating the potential mechanisms of action, discuss the challenges of studying anastasis and explore new strategies to uncover the function and regulation of anastasis, the identification of which has wide-ranging physiological, pathological and therapeutic implications.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
The Heterochronic Gene lin-14 Controls Axonal Degeneration in C. elegans Neurons. Cell Rep 2018; 20:2955-2965. [PMID: 28930688 DOI: 10.1016/j.celrep.2017.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
The disproportionate length of an axon makes its structural and functional maintenance a major task for a neuron. The heterochronic gene lin-14 has previously been implicated in regulating the timing of key developmental events in the nematode C. elegans. Here, we report that LIN-14 is critical for maintaining neuronal integrity. Animals lacking lin-14 display axonal degeneration and guidance errors in both sensory and motor neurons. We demonstrate that LIN-14 functions both cell autonomously within the neuron and non-cell autonomously in the surrounding tissue, and we show that interaction between the axon and its surrounding tissue is essential for the preservation of axonal structure. Furthermore, we demonstrate that lin-14 expression is only required during a short period early in development in order to promote axonal maintenance throughout the animal's life. Our results identify a crucial role for LIN-14 in preventing axonal degeneration and in maintaining correct interaction between an axon and its surrounding tissue.
Collapse
|
25
|
Tang HM, Fung MC, Tang HL. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J Vis Exp 2018. [PMID: 29443051 DOI: 10.3791/54107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine; School of Life Sciences, Chinese University of Hong Kong;
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong;
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine;
| |
Collapse
|
26
|
Weaver BP, Han M. Tag team: Roles of miRNAs and Proteolytic Regulators in Ensuring Robust Gene Expression Dynamics. Trends Genet 2017; 34:21-29. [PMID: 29037438 DOI: 10.1016/j.tig.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Lack of prominent developmental defects arising from loss of many individual miRNAs is consistent with the observations of collaborative networks between miRNAs and roles for miRNAs in regulating stress responses. However, these characteristics may only partially explain the seemingly nonessential nature of many miRNAs. Non-miRNA gene expression regulatory mechanisms also collaborate with miRNA-induced silencing complex (miRISC) to support robust gene expression dynamics. Genetic enhancer screens have revealed roles of miRNAs and other gene repressive mechanisms in development or other cellular processes that were masked by genetic redundancy. Besides discussing the breadth of the non-miRNA genes, we use LIN-28 as an example to illustrate how distinct regulatory systems, including miRNAs and multiple protein stability mechanisms, work at different levels to target expression of a given gene and provide tissue-specific and stage-specific regulation of gene expression.
Collapse
Affiliation(s)
- Benjamin P Weaver
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Min Han
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
27
|
Conradt B. Partners in Crime. Dev Cell 2017. [PMID: 28633011 DOI: 10.1016/j.devcel.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caspases have apoptotic and non-apoptotic functions, both of which depend on their abilities to cleave proteins at specific sites. What distinguishes apoptotic from non-apoptotic substrates has so far been unclear. In this issue of Developmental Cell, Weaver et al. (2017) now provide an answer to this crucial question.
Collapse
Affiliation(s)
- Barbara Conradt
- Center for Integrated Protein Science Munich (CIPSM), Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
28
|
Zabinsky RA, Weum BM, Cui M, Han M. RNA Binding Protein Vigilin Collaborates with miRNAs To Regulate Gene Expression for Caenorhabditis elegans Larval Development. G3 (BETHESDA, MD.) 2017; 7:2511-2518. [PMID: 28576776 PMCID: PMC5555458 DOI: 10.1534/g3.117.043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
Extensive studies have suggested that most miRNA functions are executed through complex miRNA-target interaction networks, and such networks function semiredundantly with other regulatory systems to shape gene expression dynamics for proper physiological functions. We found that knocking down vgln-1, which encodes a conserved RNA-binding protein associated with diverse functions, causes severe larval arrest at the early L1 stage in animals with compromised miRISC functions (an ain-2/GW182 mutant). Through an enhancer screen, we identified five specific miRNAs, and miRNA families, that act semiredundantly with VGLN-1 to regulate larval development. By RIP-Seq analysis, we identified mRNAs that are directly bound by VGLN-1, and highly enriched for miRNA binding sites, leading to a hypothesis that VGLN-1 may share common targets with miRNAs to regulate gene expression dynamics for development.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Brett M Weum
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Mingxue Cui
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Min Han
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
29
|
Brantley SJ, Cotten SW, Lamson DR, Smith GR, Liu R, Williams KP. Discovery of small molecule inhibitors for the C. elegans caspase CED-3 by high-throughput screening. Biochem Biophys Res Commun 2017; 491:773-779. [PMID: 28733033 DOI: 10.1016/j.bbrc.2017.07.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 11/24/2022]
Abstract
C. elegans has been widely used as a model organism for programmed cell death and apoptosis. Although the CED-3 caspase is the primary effector of cell death in C. elegans, no selective inhibitors have been identified. Utilizing high-throughput screening with recombinant C. elegans CED-3 protein, we have discovered and confirmed 21 novel small molecule inhibitors. Six compounds had IC50 values < 10 μM. From these, four distinct chemotypes were identified. The inhibitor scaffolds described here could lead to the development of selective molecular probes to facilitate our understanding of programmed cell death in this model organism.
Collapse
Affiliation(s)
- Scott J Brantley
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven W Cotten
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, Durham, NC 27707, USA
| | - Ginger R Smith
- Biomanufacturing Research Institute and Technology Enterprise, Durham, NC 27707, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, Durham, NC 27707, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
30
|
Weaver BP, Weaver YM, Mitani S, Han M. Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development. Dev Cell 2017; 41:665-673.e6. [PMID: 28602583 DOI: 10.1016/j.devcel.2017.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/21/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
Abstract
Recent findings suggest that components of the classical cell death machinery also have important non-cell-death (non-apoptotic) functions in flies, nematodes, and mammals. However, the mechanisms for non-canonical caspase substrate recognition and proteolysis, and the direct roles for caspases in gene expression regulation, remain largely unclear. Here we report that CED-3 caspase and the Arg/N-end rule pathway cooperate to inactivate the LIN-28 pluripotency factor in seam cells, a stem-like cell type in Caenorhabditis elegans, thereby ensuring proper temporal cell fate patterning. Importantly, the caspase and the E3 ligase execute this function in a non-additive manner. We show that CED-3 caspase and the E3 ubiquitin ligase UBR-1 form a complex that couples their in vivo activities, allowing for recognition and rapid degradation of LIN-28 and thus facilitating a switch in developmental programs. The interdependence of these proteolytic activities provides a paradigm for non-apoptotic caspase-mediated protein inactivation.
Collapse
Affiliation(s)
- Benjamin P Weaver
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Yi M Weaver
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Min Han
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
31
|
Subasic D, Stoeger T, Eisenring S, Matia-González AM, Imig J, Zheng X, Xiong L, Gisler P, Eberhard R, Holtackers R, Gerber AP, Pelkmans L, Hengartner MO. Post-transcriptional control of executioner caspases by RNA-binding proteins. Genes Dev 2017; 30:2213-2225. [PMID: 27798844 PMCID: PMC5088569 DOI: 10.1101/gad.285726.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/03/2022]
Abstract
In this study, Subasic et al. investigated the post-transcriptional control of caspases. The authors describe four conserved RNA-binding proteins (RBPs) that sequentially repress the CED-3 caspase in distinct regions of the C. elegans germline and identify seven RBPs that regulate human caspase-3 expression and/or activation, suggesting that translational inhibition of executioner caspases by RBPs might be a general strategy used widely across the animal kingdom to control apoptosis. Caspases are key components of apoptotic pathways. Regulation of caspases occurs at several levels, including transcription, proteolytic processing, inhibition of enzymatic function, and protein degradation. In contrast, little is known about the extent of post-transcriptional control of caspases. Here, we describe four conserved RNA-binding proteins (RBPs)—PUF-8, MEX-3, GLD-1, and CGH-1—that sequentially repress the CED-3 caspase in distinct regions of the Caenorhabditis elegans germline. We demonstrate that GLD-1 represses ced-3 mRNA translation via two binding sites in its 3′ untranslated region (UTR), thereby ensuring a dual control of unwanted cell death: at the level of p53/CEP-1 and at the executioner caspase level. Moreover, we identified seven RBPs that regulate human caspase-3 expression and/or activation, including human PUF-8, GLD-1, and CGH-1 homologs PUM1, QKI, and DDX6. Given the presence of unusually long executioner caspase 3′ UTRs in many metazoans, translational control of executioner caspases by RBPs might be a strategy used widely across the animal kingdom to control apoptosis.
Collapse
Affiliation(s)
- Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Stoeger
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Systems Biology PhD Program, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland
| | - Seline Eisenring
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ana M Matia-González
- Faculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Stag Hill Campus, GU2 7XH Guildford, United Kingdom
| | - Jochen Imig
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Xue Zheng
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Lei Xiong
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Pascal Gisler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ralf Eberhard
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - René Holtackers
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - André P Gerber
- Faculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Stag Hill Campus, GU2 7XH Guildford, United Kingdom
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Caspase-dependent non-apoptotic processes in development. Cell Death Differ 2017; 24:1422-1430. [PMID: 28524858 PMCID: PMC5520453 DOI: 10.1038/cdd.2017.36] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Caspases are at the core of executing apoptosis by orchestrating cellular destruction with proteolytic cascades. Caspase-mediated proteolysis also controls diverse nonlethal cellular activities such as proliferation, differentiation, cell fate decision, and cytoskeletal reorganization. During the last decade or so, genetic studies of Drosophila have contributed to our understanding of the in vivo mechanism of the non-apoptotic cellular responses in developmental contexts. Furthermore, recent studies using C. elegans suggest that apoptotic signaling may play unexpected roles, which influence ageing and normal development at the organism level. In this review, we describe how the caspase activity is elaborately controlled during vital cellular processes at the level of subcellular localization, the duration and timing to avoid full apoptotic consequences, and also discuss the novel roles of non-apoptotic caspase signaling in adult homeostasis and physiology.
Collapse
|
33
|
Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ 2017; 24:1359-1368. [PMID: 28338655 PMCID: PMC5520454 DOI: 10.1038/cdd.2017.37] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
The phenotypic and biochemical similarities between caspase-mediated apoptosis and cellular differentiation are striking. They include such diverse phenomenon as mitochondrial membrane perturbations, cytoskeletal rearrangements and DNA fragmentation. The parallels between the two disparate processes suggest some common ancestry and highlight the paradoxical nature of the death-centric view of caspases. That is, what is the driving selective pressure that sustains death-inducing proteins throughout eukaryotic evolution? Plausibly, caspase function may be rooted in a primordial non-death function, such as cell differentiation, and was co-opted for its role in programmed cell death. This review will delve into the links between caspase-mediated apoptosis and cell differentiation and examine the distinguishing features of these events. More critically, we chronicle the evolutionary origins of caspases and propose that caspases may have held an ancient role in mediating the fidelity of cell division/differentiation through its effects on proteostasis and protein quality control.
Collapse
|
34
|
Tang HL, Tang HM, Fung MC, Hardwick JM. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila. J Vis Exp 2016. [PMID: 27929458 DOI: 10.3791/53992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals.
Collapse
Affiliation(s)
- Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health
| | - Ho Man Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health;
| |
Collapse
|
35
|
Zhu Z, Zhang D, Lee H, Jin Y. Caenorhabditis elegans: An important tool for dissecting microRNA functions. ACTA ACUST UNITED AC 2016; 1:34-36. [PMID: 28529981 DOI: 10.15761/bgg.1000106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans (C. elegans), a member of the phylum Nematoda, carries the evolutionarily conserved genes comparing to mammals. Due to its short lifespan and completely sequenced genome, C. elegans becomes a potentially powerful model for mechanistic studies in human diseases. In this mini review, we will outline the current understandings on C. elegans as a model organism for microRNA (miRNA)-related research in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Ziwen Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| |
Collapse
|
36
|
Herrera RA, Kiontke K, Fitch DHA. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans. Development 2016; 143:799-809. [PMID: 26811380 DOI: 10.1242/dev.132738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/16/2016] [Indexed: 12/27/2022]
Abstract
The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying defective sexual behaviors. In both sexes, lep-2 mutants fail to cease molting or produce an adult cuticle. We find that LEP-2 post-translationally regulates LIN-28 by promoting LIN-28 protein degradation. lep-2 encodes the sole C. elegans ortholog of the Makorin (Mkrn) family of proteins. Like lin-28 and other heterochronic pathway members, vertebrate Mkrns are involved in developmental switches, including the timing of pubertal onset in humans. Based on shared roles, conservation and the interaction between lep-2 and lin-28 shown here, we propose that Mkrns, together with other heterochronic genes, constitute an evolutionarily ancient conserved module regulating switches in development.
Collapse
Affiliation(s)
| | - Karin Kiontke
- Department of Biology, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, New York University, New York, NY 10003, USA Faculty of Arts and Sciences, New York University-Shanghai, Shanghai 200122, China
| |
Collapse
|
37
|
Gao Y, Li S, Xu D, Wang J, Sun Y. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission. JOURNAL OF RADIATION RESEARCH 2015; 56:872-82. [PMID: 26286471 PMCID: PMC4628221 DOI: 10.1093/jrr/rrv050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 05/07/2023]
Abstract
Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Shuai Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Junjun Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| |
Collapse
|
38
|
Twists and turns—How we stepped into and had fun in the “boring” lipid field. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1073-83. [DOI: 10.1007/s11427-015-4949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
|
39
|
Viegas SC, Silva IJ, Apura P, Matos RG, Arraiano CM. Surprises in the 3'-end: 'U' can decide too! FEBS J 2015; 282:3489-99. [PMID: 26183531 DOI: 10.1111/febs.13377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/22/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022]
Abstract
RNA molecules are subjected to post-transcriptional modifications that might determine their maturation, activity, localization and stability. These alterations can occur within the RNA molecule or at its 5'- or 3'- extremities, and are essential for gene regulation and proper function of the RNA. One major type of modification is the 3'-end addition of nontemplated nucleotides. Polyadenylation is the most well studied type of 3'-RNA modification, both in eukaryotes and prokaryotes. The importance of 3'-oligouridylation has recently gained attention through the discovery of several types of uridylated-RNAs, by the existence of enzymes that specifically add poly(U) tails and others that preferentially degrade these tails. Namely, Dis3L2 is a 3'-5' exoribonuclease from the RNase II/RNB family that has been shown to act preferentially on oligo(U)-tailed transcripts. Our understanding of this process is still at the beginning, but it is already known to interfere in the regulation of diverse RNA species in most eukaryotes. Now that we are aware of the prevalence of RNA uridylation and the techniques available to globally evaluate the 3'-terminome, we can expect to make rapid progress in determining the extent of terminal oligouridylation in different RNA populations and unravel its impact on RNA decay mechanisms. Here, we sum up what is known about 3'-RNA modification in the different cellular compartments of eukaryotic cells, the conserved enzymes that perform this 3'-end modification and the effectors that are selectively activated by this process.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês J Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Patricia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecilia M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
40
|
In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep 2015; 5:9015. [PMID: 25757939 PMCID: PMC4355673 DOI: 10.1038/srep09015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
The discovery that mammalian cells can survive late-stage apoptosis challenges the general assumption that active caspases are markers of impending death. However, tools have not been available to track healthy cells that have experienced caspase activity at any time in the past. Therefore, to determine if cells in whole animals can undergo reversal of apoptosis, known as anastasis, we developed a dual color CaspaseTracker system for Drosophila to identify cells with ongoing or past caspase activity. Transient exposure of healthy females to environmental stresses such as cold shock or starvation activated the CaspaseTracker coincident with caspase activity and apoptotic morphologies in multiple cell types of developing egg chambers. Importantly, when stressed flies were returned to normal conditions, morphologically healthy egg chambers and new progeny flies were labeled by the biosensor, suggesting functional recovery from apoptotic caspase activation. In striking contrast to developing egg chambers, which lack basal caspase biosensor activation under normal conditions, many adult tissues of normal healthy flies exhibit robust caspase biosensor activity in a portion of cells, including neurons. The widespread persistence of CaspaseTracker-positivity implies that healthy cells utilize active caspases for non-apoptotic physiological functions during and after normal development.
Collapse
|
41
|
Aguirre-Chen C, Hammell CM. Cell death machinery makes life more robust. eLife 2014; 3:e05816. [PMID: 25549297 PMCID: PMC4279077 DOI: 10.7554/elife.05816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CED-3, a protein that is essential for programmed cell death, also has an unexpected role in the regulation of non-apoptotic genes during normal development.
Collapse
|