1
|
Oppenheim O, Giese W, Park H, Baumann E, Ivanov A, Beule D, Eichmann A, Gerhardt H. Divergent endothelial mechanisms drive arteriovenous malformations in Alk1 and SMAD4 loss-of-function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631070. [PMID: 39829872 PMCID: PMC11741317 DOI: 10.1101/2025.01.03.631070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hereditary hemorrhagic telangiectasia is an autosomal dominant disorder caused by mutations in the bone morphogenetic protein signaling pathway, leading to arteriovenous malformations. While previously thought to share molecular and cellular dysregulation, this study reveals highly distinct mechanisms depending on whether mutations occur in Alk1 or SMAD4. Loss of SMAD4 enhances endothelial cell responses to flow, including flow-regulated transcription and cell migration against blood flow, causing excessive pruning of capillaries and the formation of single large shunts. Conversely, Alk1 deficiency disrupts endothelial flow responses, including cell polarization and directional migration, leading to a dense vascular network and the persistence of a malformation nidus. In vivo cell population tracking of mutant cells validates unique endothelial cell migration defects. Mosaic cell culture models further illustrate that mutant cells co-opt wild-type cells driving distinct Alk1 or SMAD4 mutant-like behavioral defects. These findings demonstrate that arteriovenous malformations develop through fundamentally different cellular mechanisms based on the specific genetic mutation emphasizing the need for tailored diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Olya Oppenheim
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité Universitätsmedizin Berlin, Germany
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Hyojin Park
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Baumann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité Universitätsmedizin Berlin, Germany
| | - Andranik Ivanov
- Charité Universitätsmedizin Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Charité Universitätsmedizin Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
- PARCC, INSERM, Université de Paris, Paris, France
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité Universitätsmedizin Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Deng H, Rukhlenko OS, Joshi D, Hu X, Junk P, Tuliakova A, Kholodenko BN, Schwartz MA. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. SCIENCE ADVANCES 2025; 11:eado9970. [PMID: 39752487 PMCID: PMC11698091 DOI: 10.1126/sciadv.ado9970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions. Particularly, inhibiting cell cycle-dependent kinase (CDK) 2 was predicted to initiate inward remodeling and promote atherogenesis. In vitro, PSS activated CDK2 and induced late G1 cell cycle arrest. In mice, EC deletion of CDK2 triggered inward artery remodeling, pulmonary and systemic hypertension, and accelerated atherosclerosis. These results validate use of cSTAR and identify key determinants of normal and pathological artery remodeling.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Xiaoyue Hu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Anna Tuliakova
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
4
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Diwan Z, Kang J, Tsztoo E, Siekmann AF. Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues. Angiogenesis 2024; 28:5. [PMID: 39656297 PMCID: PMC11632009 DOI: 10.1007/s10456-024-09955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/20/2024] [Indexed: 12/13/2024]
Abstract
Hemodynamic cues are thought to control blood vessel hierarchy through a shear stress set point, where flow increases lead to blood vessel diameter expansion, while decreases in blood flow cause blood vessel narrowing. Aberrations in blood vessel diameter control can cause congenital arteriovenous malformations (AVMs). We show in zebrafish embryos that while arteries behave according to the shear stress set point model, veins do not. This behavior is dependent on distinct arterial and venous endothelial cell (EC) shapes and sizes. We show that arterial ECs enlarge more strongly when experiencing higher flow, as compared to vein cells. Through the generation of chimeric embryos, we discover that this behavior of vein cells depends on the bone morphogenetic protein (BMP) pathway components Endoglin and Alk1. Endoglin (eng) or alk1 (acvrl1) mutant vein cells enlarge when in normal hemodynamic environments, while we do not observe a phenotype in either acvrl1 or eng mutant ECs in arteries. We further show that an increase in vein diameters initiates AVMs in eng mutants, secondarily leading to higher flow to arteries. These enlarge in response to higher flow through increasing arterial EC sizes, fueling the AVM. This study thus reveals a mechanism through which BMP signaling limits vein EC size increases in response to flow and provides a framework for our understanding of how a small number of mutant vein cells via flow-mediated secondary effects on wildtype arterial ECs can precipitate larger AVMs in disease conditions, such as hereditary hemorrhagic telangiectasia (HHT).
Collapse
Affiliation(s)
- Zeenat Diwan
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Jia Kang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Tsztoo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Arndt F Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Blazeski A, Floryan MA, Zhang Y, Fajardo Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. Biomaterials 2024; 311:122686. [PMID: 38971122 DOI: 10.1016/j.biomaterials.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell function and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The flow-dependent expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) that incorporate a KLF2-based endothelial cell flow sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that application of flow to MVNs for 48 h resulted in increased expression of the KLF2 reporter, larger vessel diameters, and decreased vascular branching and resistance. Notably, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. MVNs with KLF2-based flow sensors represent a novel, powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuzhi Zhang
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Oscar R Fajardo Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Romani P, Benedetti G, Cusan M, Arboit M, Cirillo C, Wu X, Rouni G, Kostourou V, Aragona M, Giampietro C, Grumati P, Martello G, Dupont S. Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces. Nat Cell Biol 2024; 26:2046-2060. [PMID: 39433949 PMCID: PMC11628398 DOI: 10.1038/s41556-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giada Benedetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Cusan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mattia Arboit
- Department of Biology, University of Padova, Padova, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Xi Wu
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Georgia Rouni
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Medicine (ReNEW), University of Copenhagen, Copenhagen, Denmark
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Janardhan HP, Wachter BT, Trivedi CM. Lymphatic System Development and Function. Curr Cardiol Rep 2024; 26:1209-1219. [PMID: 39172295 DOI: 10.1007/s11886-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW This review delves into recent advancements in understanding generalized and organ-specific lymphatic development. It emphasizes the distinct characteristics and critical anomalies that can impair lymphatic function. By exploring developmental mechanisms, the review seeks to illuminate the profound impact of lymphatic malformations on overall health and disease progression. RECENT FINDINGS The introduction of genome sequencing, single-cell transcriptomic analysis, and advanced imaging technologies has significantly enhanced our ability to identify and characterize developmental defects within the lymphatic system. As a result, a wide range of lymphatic anomalies have been uncovered, spanning from congenital abnormalities present at birth to conditions that can become life-threatening in adulthood. Additionally, recent research highlights the heterogeneity of lymphatics, revealing organ-specific developmental pathways, unique molecular markers, and specialized physiological functions specific to each organ. A deeper understanding of the unique characteristics of lymphatic cell populations in an organ-specific context is essential for guiding future research into lymphatic disease processes. An integrated approach to translational research could revolutionize personalized medicine, where treatments are precisely tailored to individual lymphatic profiles, enhancing effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Brianna T Wachter
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
10
|
Vallecillo-García P, Kühnlein MN, Orgeur M, Hansmeier NR, Kotsaris G, Meisen ZG, Timmermann B, Giesecke-Thiel C, Hägerling R, Stricker S. Mesenchymal Osr1+ cells regulate embryonic lymphatic vessel formation. Development 2024; 151:dev202747. [PMID: 39221968 PMCID: PMC11441984 DOI: 10.1242/dev.202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.
Collapse
Affiliation(s)
- Pedro Vallecillo-García
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353Berlin, Germany
| | - Mira Nicola Kühnlein
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Mickael Orgeur
- Unit for Integrated Mycobacterial Pathogenomics,Institut Pasteur, Université Paris Cité, CNRS UMR 6047, 75015 Paris, France
| | - Nils Rouven Hansmeier
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Zarah Gertrud Meisen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - René Hägerling
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Charitéplatz 1, 10117 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| |
Collapse
|
11
|
Manning D, Rivera EJ, Santana LF. The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol 2024; 156:107393. [PMID: 38857638 DOI: 10.1016/j.vph.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Capillaries are the smallest blood vessels (<10 μm in diameter) in the body and their walls are lined by endothelial cells. These microvessels play a crucial role in nutrient and gas exchange between blood and tissues. Capillary endothelial cells also produce vasoactive molecules and initiate the electrical signals that underlie functional hyperemia and neurovascular coupling. Accordingly, capillary function and density are critical for all cell types to match blood flow to cellular activity. This begins with the process of angiogenesis, when new capillary blood vessels emerge from pre-existing vessels, and ends with rarefaction, the loss of these microvascular structures. This review explores the mechanisms behind these processes, emphasizing their roles in various microvascular diseases and their impact on surrounding cells in health and disease. We discuss recent work on the mechanisms controlling endothelial cell proliferation, migration, and tube formation that underlie angiogenesis under physiological and pathological conditions. The mechanisms underlying functional and anatomical rarefaction and the role of pericytes in this process are also discussed. Based on this work, a model is proposed in which the balance of angiogenic and rarefaction signaling pathways in a particular tissue match microvascular density to the metabolic demands of the surrounding cells. This negative feedback loop becomes disrupted during microvascular rarefaction: angiogenic mechanisms are blunted, reactive oxygen species accumulate, capillary function declines and eventually, capillaries disappear. This, we propose, forms the foundation of the reciprocal relationship between vascular density, blood flow, and metabolic needs and functionality of nearby cells.
Collapse
Affiliation(s)
- Declan Manning
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America.
| | - Ernesto J Rivera
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| |
Collapse
|
12
|
Martier A, Chen Z, Schaps H, Mondrinos MJ, Fang JS. Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms. Front Physiol 2024; 15:1425618. [PMID: 39135710 PMCID: PMC11317428 DOI: 10.3389/fphys.2024.1425618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.
Collapse
Affiliation(s)
- A. Martier
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Z. Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - H. Schaps
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - M. J. Mondrinos
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - J. S. Fang
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
13
|
Nicolas N, de Tilly A, Roux E. Blood shear stress during the cardiac cycle and endothelial cell orientation and polarity in the carotid artery of male and female mice. Front Physiol 2024; 15:1386151. [PMID: 39072218 PMCID: PMC11272658 DOI: 10.3389/fphys.2024.1386151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction: Blood flow produces fluid shear stress (SS), a frictional force parallel to the blood flow, on the endothelial cell (EC) layer of the lumen of the vessels. ECs themselves are sensitive to this frictional force in terms of directionality and intensity. The aim of this study was to determine the physiological shear stress value during the cardiac cycle and EC polarity and orientation from blood flow in healthy male and female mouse carotid artery. Methods: Experimentation is done on anesthetized male and female 8-week-old C5BL/6J mice. In vivo measurements of maximum blood velocity and vessel diameter in diastole and systole were performed on the right common carotid artery by Doppler ultrasound imaging. Blood viscosity (total and plasmatic) and hematocrit were determined on blood samples. For SS calculation, we developed a new method assuming heterogenous blood flow, i.e., a red cell central plug flow surrounded by a peripheral plasma sheath flow, and computing SS from vessel diameter and hemodynamical measurements (maximal blood velocity, hematocrit and plasmatic viscosity). Results: Results were compared with the classical method assuming a homogenous blood flow with constant apparent total blood viscosity. EC polarity and orientation were determined ex vivo on the carotid endothelium by confocal imaging after labeling of the EC nucleus and Golgi apparatus. Diastolic and systolic SS were 6 ± 2.5 Pa and 30 ± 6.5 Pa, respectively. Total blood and plasmatic viscosity was 4 ± 0.5 cP and 1.27 cP, respectively. ECs were polarized and significantly oriented against blood flow. No sex difference was identified.
Collapse
Affiliation(s)
- Nabil Nicolas
- Biologie des Maladies Cardiovasculaires, INSERM, U1034, University of Bordeaux, Pessac, France
| | | | - Etienne Roux
- Biologie des Maladies Cardiovasculaires, INSERM, U1034, University of Bordeaux, Pessac, France
| |
Collapse
|
14
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
15
|
Deng H, Zhang J, Wang Y, Joshi D, Pi X, De Val S, Schwartz MA. A KLF2-BMPER-Smad1/5 checkpoint regulates high fluid shear stress-mediated artery remodeling. NATURE CARDIOVASCULAR RESEARCH 2024; 3:785-798. [PMID: 39196179 DOI: 10.1038/s44161-024-00496-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024]
Abstract
Vascular remodeling to match arterial diameter to tissue requirements commonly fails in ischemic disease. Endothelial cells sense fluid shear stress (FSS) from blood flow to maintain FSS within a narrow range in healthy vessels. Thus, high FSS induces vessel outward remodeling, but mechanisms are poorly understood. We previously reported that Smad1/5 is maximally activated at physiological FSS. Smad1/5 limits Akt activation, suggesting that inhibiting Smad1/5 may facilitate outward remodeling. Here we report that high FSS suppresses Smad1/5 by elevating KLF2, which induces the bone morphogenetic protein (BMP) pathway inhibitor, BMP-binding endothelial regulator (BMPER), thereby de-inhibiting Akt. In mice, surgically induced high FSS elevated BMPER expression, inactivated Smad1/5 and induced vessel outward remodeling. Endothelial BMPER deletion impaired blood flow recovery and vascular remodeling. Blocking endothelial cell Smad1/5 activation with BMP9/10 blocking antibodies improved vascular remodeling in mouse models of type 1 and type 2 diabetes. Suppression of Smad1/5 is thus a potential therapeutic approach for ischemic disease.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yewei Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Xinchun Pi
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA.
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale School of Medicine, and Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA.
| |
Collapse
|
16
|
Mandrycky C, Ishida T, Rayner SG, Heck AM, Hadland B, Zheng Y. Under pressure: integrated endothelial cell response to hydrostatic and shear stresses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596749. [PMID: 38854073 PMCID: PMC11160699 DOI: 10.1101/2024.05.30.596749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Blood flow within the vasculature is a critical determinant of endothelial cell (EC) identity and functionality, yet the intricate interplay of various hemodynamic forces and their collective impact on endothelial and vascular responses are not fully understood. Specifically, the role of hydrostatic pressure in the EC flow response is understudied, despite its known significance in vascular development and disease. To address this gap, we developed in vitro models to investigate how pressure influences EC responses to flow. Our study demonstrates that elevated pressure conditions significantly modify shear-induced flow alignment and increase endothelial cell density. Bulk and single-cell RNA sequencing analyses revealed that, while shear stress remains the primary driver of flow-induced transcriptional changes, pressure modulates shear-induced signaling in a dose-dependent manner. These pressure-responsive transcriptional signatures identified in human ECs were conserved during the onset of circulation in early mouse embryonic vascular development, where pressure was notably associated with transcriptional programs essential to arterial and hemogenic EC fates. Our findings suggest that pressure plays a synergistic role with shear stress on ECs and emphasizes the need for an integrative approach to endothelial cell mechanotransduction, one that encompasses the effects induced by pressure alongside other hemodynamic forces.
Collapse
|
17
|
Hong SG, Ashby JW, Kennelly JP, Wu M, Steel M, Chattopadhyay E, Foreman R, Tontonoz P, Tarling EJ, Turowski P, Gallagher-Jones M, Mack JJ. Mechanosensitive membrane domains regulate calcium entry in arterial endothelial cells to protect against inflammation. J Clin Invest 2024; 134:e175057. [PMID: 38771648 PMCID: PMC11213468 DOI: 10.1172/jci175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, and this supports an antiinflammatory phenotype. High laminar shear stress also induces flow-aligned cell elongation and front-rear polarity, but whether these are required for the antiinflammatory phenotype is unclear. Here, we showed that caveolin-1-rich microdomains polarize to the downstream end of ECs that are exposed to continuous high laminar flow. These microdomains were characterized by high membrane rigidity, filamentous actin (F-actin), and raft-associated lipids. Transient receptor potential vanilloid (TRPV4) ion channels were ubiquitously expressed on the plasma membrane but mediated localized Ca2+ entry only at these microdomains where they physically interacted with clustered caveolin-1. These focal Ca2+ bursts activated endothelial nitric oxide synthase within the confines of these domains. Importantly, we found that signaling at these domains required both cell body elongation and sustained flow. Finally, TRPV4 signaling at these domains was necessary and sufficient to suppress inflammatory gene expression and exogenous activation of TRPV4 channels ameliorated the inflammatory response to stimuli both in vitro and in vivo. Our work revealed a polarized mechanosensitive signaling hub in arterial ECs that dampened inflammatory gene expression and promoted cell resilience.
Collapse
Affiliation(s)
- Soon-Gook Hong
- Department of Medicine, Division of Cardiology
- Molecular Biology Institute
| | | | - John P. Kennelly
- Molecular Biology Institute
- Department of Pathology and Laboratory Medicine, and
| | - Meigan Wu
- Department of Medicine, Division of Cardiology
- Molecular Biology Institute
| | | | | | - Rob Foreman
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California, USA
| | - Peter Tontonoz
- Molecular Biology Institute
- Department of Pathology and Laboratory Medicine, and
| | | | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Marcus Gallagher-Jones
- Correlated Imaging, Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Julia J. Mack
- Department of Medicine, Division of Cardiology
- Molecular Biology Institute
| |
Collapse
|
18
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
Chandurkar MK, Mittal N, Royer-Weeden SP, Lehmann SD, Michels EB, Haarman SE, Severance SA, Rho Y, Han SJ. Transient low shear-stress preconditioning influences long-term endothelial traction and alignment under high shear flow. Am J Physiol Heart Circ Physiol 2024; 326:H1180-H1192. [PMID: 38457352 PMCID: PMC11649189 DOI: 10.1152/ajpheart.00067.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Endothelial cells (ECs) within the vascular system encounter fluid shear stress (FSS). High, laminar FSS promotes vasodilation and anti-inflammatory responses, whereas low or disturbed FSS induces dysfunction and inflammation. However, the adaptation of endothelial cells (ECs) to dynamically changing FSS patterns remains underexplored. Here, by combining traction force microscopy with a custom flow chamber, we examined human umbilical vein endothelial cells adapting their traction during transitions from short-term low shear to long-term high shear stress. We discovered that the initial low FSS elevates the traction by only half of the amount in response to direct high FSS even after flow changes to high FSS. However, in the long term under high FSS, the flow started with low FSS triggers a substantial second rise in traction for over 10 h. In contrast, the flow started directly with high FSS results in a quick traction surge followed by a huge reduction below the baseline traction in <30 min. Importantly, we find that the orientation of traction vectors is steered by initial shear exposure. Using Granger causality analysis, we show that the traction that aligns in the flow direction under direct high FSS functionally causes cell alignment toward the flow direction. However, EC traction that orients perpendicular to the flow that starts with temporary low FSS functionally causes cell orientation perpendicular to the flow. Taken together, our findings elucidate the significant influence of initial short-term low FSS on lasting changes in endothelial traction that induces EC alignment.NEW & NOTEWORTHY In our study, we uncover that preconditioning with low shear stress yields enduring impacts on endothelial cell traction and orientation, persisting even after transitioning to high-shear conditions. Using Granger causality analysis, we demonstrate a functional link between the direction of cell traction and subsequent cellular alignment across varying shear environments.
Collapse
Affiliation(s)
- Mohanish K Chandurkar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Shaina P Royer-Weeden
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Steven D Lehmann
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Etienne B Michels
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Samuel E Haarman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Scott A Severance
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Yeonwoo Rho
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States
| | - Sangyoon J Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, Michigan, United States
| |
Collapse
|
20
|
Qi Y, Chang SS, Wang Y, Chen C, Baek KI, Hsiai T, Roper M. Hemodynamic regulation allows stable growth of microvascular networks. Proc Natl Acad Sci U S A 2024; 121:e2310993121. [PMID: 38386707 PMCID: PMC10907248 DOI: 10.1073/pnas.2310993121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation purely based on average shear stress have not been able to produce complex loopy networks that resemble real microvascular systems. For narrow vessels where red blood cells travel in a single file, the shear stress on vessel endothelium peaks sharply when a red blood cell passes through. We show that stable shear-stress-based adaptation is possible if vessel shear stress set points are cued to the stress peaks. Model networks that respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk microcirculation, including its adaptive trajectory when hematocrit changes or parts of the network are amputated. Our work reveals the potential for mechanotransduction alone to generate stable hydraulically tuned microvascular networks.
Collapse
Affiliation(s)
- Yujia Qi
- Department of Mechanical Engineering, University of California, Los Angeles, CA90095
| | - Shyr-Shea Chang
- Department of Mathematics, University of California, Los Angeles, CA90095
| | - Yixuan Wang
- Department of Mathematics, University of California, Los Angeles, CA90095
| | - Cynthia Chen
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Marcus Roper
- Department of Mathematics, University of California, Los Angeles, CA90095
- Department of Computational Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
21
|
Cheng YW, Anzell AR, Morosky SA, Schwartze TA, Hinck CS, Hinck AP, Roman BL, Davidson LA. Shear Stress and Sub-Femtomolar Levels of Ligand Synergize to Activate ALK1 Signaling in Endothelial Cells. Cells 2024; 13:285. [PMID: 38334677 PMCID: PMC10854672 DOI: 10.3390/cells13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Endothelial cells (ECs) respond to concurrent stimulation by biochemical factors and wall shear stress (SS) exerted by blood flow. Disruptions in flow-induced responses can result in remodeling issues and cardiovascular diseases, but the detailed mechanisms linking flow-mechanical cues and biochemical signaling remain unclear. Activin receptor-like kinase 1 (ALK1) integrates SS and ALK1-ligand cues in ECs; ALK1 mutations cause hereditary hemorrhagic telangiectasia (HHT), marked by arteriovenous malformation (AVM) development. However, the mechanistic underpinnings of ALK1 signaling modulation by fluid flow and the link to AVMs remain uncertain. We recorded EC responses under varying SS magnitudes and ALK1 ligand concentrations by assaying pSMAD1/5/9 nuclear localization using a custom multi-SS microfluidic device and a custom image analysis pipeline. We extended the previously reported synergy between SS and BMP9 to include BMP10 and BMP9/10. Moreover, we demonstrated that this synergy is effective even at extremely low SS magnitudes (0.4 dyn/cm2) and ALK1 ligand range (femtogram/mL). The synergistic response to ALK1 ligands and SS requires the kinase activity of ALK1. Moreover, ALK1's basal activity and response to minimal ligand levels depend on endocytosis, distinct from cell-cell junctions, cytoskeleton-mediated mechanosensing, or cholesterol-enriched microdomains. However, an in-depth analysis of ALK1 receptor trafficking's molecular mechanisms requires further investigation.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Anthony R. Anzell
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefanie A. Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tristin A. Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cynthia S. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lance A. Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Chandurkar MK, Mittal N, Royer-Weeden SP, Lehmann SD, Rho Y, Han SJ. Low Shear in Short-Term Impacts Endothelial Cell Traction and Alignment in Long-Term. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558732. [PMID: 37790318 PMCID: PMC10542130 DOI: 10.1101/2023.09.20.558732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction-a measure of cellular tension that plays a crucial role in how endothelial cells respond to mechanical stimuli. By integrating traction force microscopy (TFM) with a custom-built flow chamber, we analyzed how human umbilical vein endothelial cells (HUVECs) adjust their traction in response to shifts from low to high shear stress. We discovered that initial exposure to low FSS prompts a marked increase in traction force, which continues to rise over 10 hours before slowly decreasing. In contrast, immediate exposure to high FSS causes a quick spike in traction followed by a swift reduction, revealing distinct patterns of traction behavior under different shear conditions. Importantly, the direction of traction forces and the resulting cellular alignment under these conditions indicate that the initial shear experience dictates long-term endothelial behavior. Our findings shed light on the critical influence of short-lived low-shear stress experiences in shaping endothelial function, indicating that early exposure to low FSS results in enduring changes in endothelial contractility and alignment, with significant consequences for vascular health and the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Mohanish K. Chandurkar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Shaina P. Royer-Weeden
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Steven D. Lehmann
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Yeonwoo Rho
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
23
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Salazar-Martín AG, Kalluri AS, Villanueva MA, Hughes TK, Wadsworth MH, Dao TT, Balcells M, Nezami FR, Shalek AK, Edelman ER. Single-Cell RNA Sequencing Reveals That Adaptation of Human Aortic Endothelial Cells to Antiproliferative Therapies Is Modulated by Flow-Induced Shear Stress. Arterioscler Thromb Vasc Biol 2023; 43:2265-2281. [PMID: 37732484 PMCID: PMC10659257 DOI: 10.1161/atvbaha.123.319283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are capable of quickly responding in a coordinated manner to a wide array of stresses to maintain vascular homeostasis. Loss of EC cellular adaptation may be a potential marker for cardiovascular disease and a predictor of poor response to endovascular pharmacological interventions such as drug-eluting stents. Here, we report single-cell transcriptional profiling of ECs exposed to multiple stimulus classes to evaluate EC adaptation. METHODS Human aortic ECs were costimulated with both pathophysiological flows mimicking shear stress levels found in the human aorta (laminar and turbulent, ranging from 2.5 to 30 dynes/cm2) and clinically relevant antiproliferative drugs, namely paclitaxel and rapamycin. EC state in response to these stimuli was defined using single-cell RNA sequencing. RESULTS We identified differentially expressed genes and inferred the TF (transcription factor) landscape modulated by flow shear stress using single-cell RNA sequencing. These flow-sensitive markers differentiated previously identified spatially distinct subpopulations of ECs in the murine aorta. Moreover, distinct transcriptional modules defined flow- and drug-responsive EC adaptation singly and in combination. Flow shear stress was the dominant driver of EC state, altering their response to pharmacological therapies. CONCLUSIONS We showed that flow shear stress modulates the cellular capacity of ECs to respond to paclitaxel and rapamycin administration, suggesting that while responding to different flow patterns, ECs experience an impairment in their transcriptional adaptation to other stimuli.
Collapse
Affiliation(s)
- Antonio G. Salazar-Martín
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
| | - Aditya S. Kalluri
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
| | - Martin A. Villanueva
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Departments of Biology (M.A.V.), Massachusetts Institute of Technology, Cambridge
| | - Travis K. Hughes
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Marc H. Wadsworth
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Tyler T. Dao
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Biological Engineering (T.T.D.), Massachusetts Institute of Technology, Cambridge
| | - Mercedes Balcells
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
| | - Farhad R. Nezami
- Division of Cardiac Surgery (F.R.N.), Brigham and Women’s Hospital, Boston, MA
| | - Alex K. Shalek
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Chemistry (A.K.S.), Massachusetts Institute of Technology, Cambridge
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Division of Cardiovascular Medicine, Department of Medicine (E.R.E.), Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
25
|
Blazeski A, Floryan MA, Fajardo-Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565021. [PMID: 37961543 PMCID: PMC10635035 DOI: 10.1101/2023.10.31.565021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell phenotype and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems, but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) with a KLF2-based endothelial cell sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that culture of MVNs exposed to flow for 48 hours that resulted in increased expression of the KLF2-GFP-reporter display larger vessel diameters and decreased vascular branching and resistance. Additionally, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. The MVNs with KLF2-based flow sensors represent a powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A. Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oscar R. Fajardo-Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
26
|
Deng H, Rukhlendo OS, Joshi D, Hu X, Junk P, Tuliakova A, Kholodenko BN, Schwartz MA. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563764. [PMID: 37961694 PMCID: PMC10634797 DOI: 10.1101/2023.10.24.563764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Fluid shear stress (FSS) from blood flow is sensed by vascular endothelial cells (ECs) to determine vessel stability, remodeling and susceptibility to atherosclerosis and other inflammatory diseases but the regulatory networks that govern these behaviors are only partially understood. We used cSTAR, a powerful new computational method, to define EC transcriptomic states under low shear stress (LSS) that triggers vessel inward remodeling, physiological shear stress (PSS) that stabilizes vessels, high shear stress (HSS) that triggers outward remodeling, and oscillatory shear stress (OSS) that confers disease susceptibility, all in comparison to cells under static conditions (STAT). We combined these results with the LINCS database where EC transcriptomic responses to drug treatments to define a preliminary regulatory network in which the cyclin-dependent kinases CDK1/2 play a central role in promoting vessel stability. Experimental analysis showed that PSS induced a strong late G1 cell cycle arrest in which CDK2 was activated. EC deletion of CDK2 in mice resulted in inward artery remodeling and both pulmonary and systemic hypertension. These results validate use of cSTAR to determine EC state and in vivo vessel behavior, reveal unexpected features of EC phenotype under different FSS conditions, and identify CDK2 as a key element within the EC regulatory network that governs artery remodeling.
Collapse
|
27
|
Vimalraj S, Hariprabu KNG, Rahaman M, Govindasami P, Perumal K, Sekaran S, Ganapathy D. Vascular endothelial growth factor-C and its receptor-3 signaling in tumorigenesis. 3 Biotech 2023; 13:326. [PMID: 37663750 PMCID: PMC10474002 DOI: 10.1007/s13205-023-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
The cancer-promoting ligand vascular endothelial growth factor-C (VEGF-C) activates VEGF receptor-3 (VEGFR-3). The VEGF-C/VEGFR-3 axis is expressed by a range of human tumor cells in addition to lymphatic endothelial cells. Activating the VEGF-C/VEGFR-3 signaling enhances metastasis by promoting lymphangiogenesis and angiogenesis inside and around tumors. Stimulation of VEGF-C/VEGFR-3 signaling promotes tumor metastasis in tumors, such as ovarian, renal, pancreatic, prostate, lung, skin, gastric, colorectal, cervical, leukemia, mesothelioma, Kaposi sarcoma, and endometrial carcinoma. We discuss and update the role of VEGF-C/VEGFR-3 signaling in tumor development and the research is still needed to completely comprehend this multifunctional receptor.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Periyasami Govindasami
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210 USA
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| |
Collapse
|
28
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
29
|
Banerjee K, Lin Y, Gahn J, Cordero J, Gupta P, Mohamed I, Graupera M, Dobreva G, Schwartz MA, Ola R. SMAD4 maintains the fluid shear stress set point to protect against arterial-venous malformations. J Clin Invest 2023; 133:e168352. [PMID: 37490341 PMCID: PMC10503796 DOI: 10.1172/jci168352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Vascular networks form, remodel, and mature under the influence of both fluid shear stress (FSS) and soluble factors. Physiological FSS promotes and maintains vascular stability via synergy with bone morphogenic proteins 9 and 10 (BMP9 and BMP10). Conversely, mutation of the BMP receptors activin-like kinase 1 (ALK1), endoglin (ENG), or the downstream effector, SMAD family member 4 (SMAD4) leads to hereditary hemorrhagic telangiectasia (HHT), characterized by fragile and leaky arterial-venous malformations (AVMs). How endothelial cells (ECs) integrate FSS and BMP signals in vascular development and homeostasis and how mutations give rise to vascular malformations is not well understood. Here, we aimed to elucidate the mechanism of synergy between FSS and SMAD signaling in vascular stability and how disruption of this synergy leads to AVMs. We found that loss of Smad4 increased the sensitivity of ECs to flow by lowering the FSS set point, with resulting AVMs exhibiting features of excessive flow-mediated morphological responses. Mechanistically, loss of SMAD4 disinhibits flow-mediated KLF4-TIE2-PI3K/Akt signaling, leading to cell cycle progression-mediated loss of arterial identity due to KLF4-mediated repression of cyclin dependent Kinase (CDK) inhibitors CDKN2A and CDKN2B. Thus, AVMs caused by Smad4 deletion are characterized by chronic high flow remodeling with excessive EC proliferation and loss of arterial identity as triggering events.
Collapse
Affiliation(s)
| | - Yanzhu Lin
- Experimental Pharmacology Mannheim (EPM) and
| | | | - Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
| | | | | | - Mariona Graupera
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Roxana Ola
- Experimental Pharmacology Mannheim (EPM) and
| |
Collapse
|
30
|
Rojas-González DM, Babendreyer A, Ludwig A, Mela P. Analysis of flow-induced transcriptional response and cell alignment of different sources of endothelial cells used in vascular tissue engineering. Sci Rep 2023; 13:14384. [PMID: 37658092 PMCID: PMC10474151 DOI: 10.1038/s41598-023-41247-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Endothelialization of tissue-engineered vascular grafts has proven crucial for implant functionality and thus clinical outcome, however, the choice of endothelial cells (ECs) is often driven by availability rather than by the type of vessel to be replaced. In this work we studied the response to flow of different human ECs with the aim of examining whether their response in vitro is dictated by their original in vivo conditions. Arterial, venous, and microvascular ECs were cultured under shear stress (SS) of 0, 0.3, 3, 1, 10, and 30 dyne/cm2 for 24 h. Regulation of flow-induced marker KLF2 was similar across the different ECs. Upregulation of anti-thrombotic markers, TM and TPA, was mainly seen at higher SS. Cell elongation and alignment was observed for the different ECs at 10 and 30 dyne/cm2 while at lower SS cells maintained a random orientation. Downregulation of pro-inflammatory factors SELE, IL8, and VCAM1 and up-regulation of anti-oxidant markers NQO1 and HO1 was present even at SS for which cell alignment was not observed. Our results evidenced similarities in the response to flow among the different ECs, suggesting that the maintenance of the resting state in vitro is not dictated by the SS typical of the tissue of origin and that absence of flow-induced cell orientation does not necessarily correlate with a pro-inflammatory state of the ECs. These results support the use of ECs from easily accessible sources for in vitro vascular tissue engineering independently from the target vessel.
Collapse
Affiliation(s)
- Diana M Rojas-González
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany.
| |
Collapse
|
31
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
32
|
Reuter MS, Sokolowski DJ, Javier Diaz-Mejia J, Keunen J, de Vrijer B, Chan C, Wang L, Ryan G, Chiasson DA, Ketela T, Scherer SW, Wilson MD, Jaeggi E, Chaturvedi RR. Decreased left heart flow in fetal lambs causes left heart hypoplasia and pro-fibrotic tissue remodeling. Commun Biol 2023; 6:770. [PMID: 37481629 PMCID: PMC10363152 DOI: 10.1038/s42003-023-05132-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Low blood flow through the fetal left heart is often conjectured as an etiology for hypoplastic left heart syndrome (HLHS). To investigate if a decrease in left heart flow results in growth failure, we generate left ventricular inflow obstruction (LVIO) in mid-gestation fetal lambs by implanting coils in their left atrium using an ultrasound-guided percutaneous technique. Significant LVIO recapitulates important clinical features of HLHS: decreased antegrade aortic valve flow, compensatory retrograde perfusion of the brain and ascending aorta (AAo) from the arterial duct, severe left heart hypoplasia, a non-apex forming LV, and a thickened endocardial layer. The hypoplastic AAo have miRNA-gene pairs annotating to cell proliferation that are inversely differentially expressed by bulk RNA-seq. Single-nucleus RNA-seq of the hypoplastic LV myocardium shows an increase in fibroblasts with a reciprocal decrease in cardiomyocyte nuclei proportions. Fibroblasts, cardiomyocytes and endothelial cells from hypoplastic myocardium have increased expression of extracellular matrix component or fibrosis genes with dysregulated fibroblast growth factor signaling. Hence, a severe sustained ( ~ 1/3 gestation) reduction in fetal left heart flow is sufficient to cause left heart hypoplasia. This is accompanied by changes in cellular composition and gene expression consistent with a pro-fibrotic environment and aberrant induction of mesenchymal programs.
Collapse
Affiliation(s)
- Miriam S Reuter
- CGEn, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - J Javier Diaz-Mejia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Johannes Keunen
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Barbra de Vrijer
- Department of Obstetrics & Gynaecology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- London Health Sciences Centre, Victoria Hospital, London, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liangxi Wang
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Greg Ryan
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David A Chiasson
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Edgar Jaeggi
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada.
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Freise L, Behncke RY, Allerkamp HH, Sandermann TH, Chu NH, Funk EM, Hondrich LJ, Riedel A, Witzel C, Hansmeier NR, Danyel M, Gellhaus A, Dechend R, Hägerling R. Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy. Biomolecules 2023; 13:1009. [PMID: 37371590 DOI: 10.3390/biom13061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The placenta is the first embryonic organ, representing the connection between the embryo and the mother, and is therefore necessary for the embryo's growth and survival. To meet the ever-growing need for nutrient and gas exchange, the maternal spiral arteries undergo extensive remodeling, thus increasing the uteroplacental blood flow by 16-fold. However, the insufficient remodeling of the spiral arteries can lead to severe pregnancy-associated disorders, including but not limited to pre-eclampsia. Insufficient endovascular trophoblast invasion plays a key role in the manifestation of pre-eclampsia; however, the underlying processes are complex and still unknown. Classical histopathology is based on two-dimensional section microscopy, which lacks a volumetric representation of the vascular remodeling process. To further characterize the uteroplacental vascularization, a detailed, non-destructive, and subcellular visualization is beneficial. In this study, we use light sheet microscopy for optical sectioning, thus establishing a method to obtain a three-dimensional visualization of the vascular system in the placenta. By introducing a volumetric visualization method of the placenta, we could establish a powerful tool to deeply investigate the heterogeneity of the spiral arteries during the remodeling process, evaluate the state-of-the-art treatment options, effects on vascularization, and, ultimately, reveal new insights into the underlying pathology of pre-eclampsia.
Collapse
Affiliation(s)
- Lennart Freise
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rose Yinghan Behncke
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hanna Helene Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Tim Henrik Sandermann
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ngoc Hai Chu
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Eva Maria Funk
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lukas Jonathan Hondrich
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alina Riedel
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Christian Witzel
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nils Rouven Hansmeier
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group 'Development and Disease', Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Magdalena Danyel
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), Lindenbergerweg 80, 13125 Berlin, Germany
- HELIOS Klinikum, 13125 Berlin, Germany
| | - René Hägerling
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group 'Development and Disease', Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
34
|
Chen PY, Qin L, Simons M. TGFβ signaling pathways in human health and disease. Front Mol Biosci 2023; 10:1113061. [PMID: 37325472 PMCID: PMC10267471 DOI: 10.3389/fmolb.2023.1113061] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is named for the function it was originally discovered to perform-transformation of normal cells into aggressively growing malignant cells. It became apparent after more than 30 years of research, however, that TGFβ is a multifaceted molecule with a myriad of different activities. TGFβs are widely expressed with almost every cell in the human body producing one or another TGFβ family member and expressing its receptors. Importantly, specific effects of this growth factor family differ in different cell types and under different physiologic and pathologic conditions. One of the more important and critical TGFβ activities is the regulation of cell fate, especially in the vasculature, that will be the focus of this review.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
35
|
Hong SG, Ashby JW, Kennelly JP, Wu M, Chattopadhyay E, Foreman R, Tontonoz P, Turowski P, Gallagher-Jones M, Mack JJ. Polarized Mechanosensitive Signaling Domains Protect Arterial Endothelial Cells Against Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542500. [PMID: 37292837 PMCID: PMC10246006 DOI: 10.1101/2023.05.26.542500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, which supports an anti-inflammatory phenotype that protects them from atherosclerosis. High laminar shear stress also supports flow-aligned cell elongation and front-rear polarity, but whether this is required for athero-protective signaling is unclear. Here, we show that Caveolin-1-rich microdomains become polarized at the downstream end of ECs exposed to continuous high laminar flow. These microdomains are characterized by higher membrane rigidity, filamentous actin (F-actin) and lipid accumulation. Transient receptor potential vanilloid-type 4 (Trpv4) ion channels, while ubiquitously expressed, mediate localized Ca 2+ entry at these microdomains where they physically interact with clustered Caveolin-1. The resultant focal bursts in Ca 2+ activate the anti-inflammatory factor endothelial nitric oxide synthase (eNOS) within the confines of these domains. Importantly, we find that signaling at these domains requires both cell body elongation and sustained flow. Finally, Trpv4 signaling at these domains is necessary and sufficient to suppress inflammatory gene expression. Our work reveals a novel polarized mechanosensitive signaling hub that induces an anti-inflammatory response in arterial ECs exposed to high laminar shear stress.
Collapse
|
36
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
37
|
Cabral KA, Srivastava V, Graham AJ, Coyle MC, Stashko C, Weaver V, Gartner ZJ. Programming the Self-Organization of Endothelial Cells into Perfusable Microvasculature. Tissue Eng Part A 2023; 29:80-92. [PMID: 36181350 PMCID: PMC10266707 DOI: 10.1089/ten.tea.2022.0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
The construction of three-dimensional (3D) microvascular networks with defined structures remains challenging. Emerging bioprinting strategies provide a means of patterning endothelial cells (ECs) into the geometry of 3D microvascular networks, but the microenvironmental cues necessary to promote their self-organization into cohesive and perfusable microvessels are not well known. To this end, we reconstituted microvessel formation in vitro by patterning thin lines of closely packed ECs fully embedded within a 3D extracellular matrix (ECM) and observed how different microenvironmental parameters influenced EC behaviors and their self-organization into microvessels. We found that the inclusion of fibrillar matrices, such as collagen I, into the ECM positively influenced cell condensation into extended geometries such as cords. We also identified the presence of a high-molecular-weight protein(s) in fetal bovine serum that negatively influenced EC condensation. This component destabilized cord structure by promoting cell protrusions and destabilizing cell-cell adhesions. Endothelial cords cultured in the presence of fibrillar collagen and in the absence of this protein activity were able to polarize, lumenize, incorporate mural cells, and support fluid flow. These optimized conditions allowed for the construction of branched and perfusable microvascular networks directly from patterned cells in as little as 3 days. These findings reveal important design principles for future microvascular engineering efforts based on bioprinting and micropatterning techniques. Impact statement Bioprinting is a potential strategy to achieve microvascularization in engineered tissues. However, the controlled self-organization of patterned endothelial cells into perfusable microvasculature remains challenging. We used DNA Programmed Assembly of Cells to create cell-dense, capillary-sized cords of endothelial cells with complete control over their structure. We optimized the matrix and media conditions to promote self-organization and maturation of these endothelial cords into stable and perfusable microvascular networks.
Collapse
Affiliation(s)
- Katelyn A. Cabral
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California, USA
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Austin J. Graham
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, California, USA
| | - Maxwell C. Coyle
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Connor Stashko
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California, USA
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, California, USA
- Center for Cellular Construction, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
m6A Modification Mediates Endothelial Cell Responses to Oxidative Stress in Vascular Aging Induced by Low Fluid Shear Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8134027. [PMID: 36743697 PMCID: PMC9897929 DOI: 10.1155/2023/8134027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/24/2022] [Indexed: 01/30/2023]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent, abundant, and internal transcriptional modification and plays essential roles in diverse cellular and physiological processes. Low fluid shear stress (FSS) is a key pathological factor for many cardiovascular diseases, which directly forces on the endothelial cells of vessel walls. So far, the alterations and functions of m6A modifications in vascular endothelial cells at the low FSS are still unknown. Herein, we performed the transcriptome-wide m6A modification profiling of HUVECs at different FSS. We found that the m6A modifications were altered earlier and more sensitive than mRNA expressions in response to FSS. The low FSS increased the m6A modifications at CDS region but decreased the m6A modifications at 3' UTR region and regulated both the mRNA expressions and m6A modifications of the m6A regulators, such as the RBM15 and EIF3A. Functional annotations enriched by the hypermethylated and hypomethylated genes at low FSS revealed that the m6A modifications were clustered in the aging-related signaling pathways of mTOR, PI3K-AKT, insulin, and ERRB and in the oxidative stress-related transcriptional factors, such as HIF1A, NFAT5, and NFE2L2. Our study provided a pilot view of m6A modifications in vascular endothelial cells at low FSS and revealed that the m6A modifications driven by low FSS mediated the cellular responses to oxidative stress and cell aging, which suggested that the m6A modifications could be the potential targets for inhibiting vascular aging at pathological low FSS.
Collapse
|
39
|
Donnan MD, Deb DK, Onay T, Scott RP, Ni E, Zhou Y, Quaggin SE. Formation of the glomerular microvasculature is regulated by VEGFR-3. Am J Physiol Renal Physiol 2023; 324:F91-F105. [PMID: 36395385 PMCID: PMC9836230 DOI: 10.1152/ajprenal.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Tuncer Onay
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Rizaldy P Scott
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Eric Ni
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Yalu Zhou
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
40
|
Valensi P, Barber-Chamoux N, Rezki A, Lambert C, Pereira B, Dualé C, Delmas D, Duclos M. Effects of single and multiple sessions of lower body diastole-synchronized compressions using a pulsating pneumatic suit on endothelium function and metabolic parameters in patients with type 2 diabetes: two controlled cross-over studies. Cardiovasc Diabetol 2022; 21:286. [PMID: 36550568 PMCID: PMC9784294 DOI: 10.1186/s12933-022-01710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endothelium function is often impaired in patients with type 2 diabetes. We hypothesized that by improving endothelial function using diastole-synchronized compressions/decompressions (DSCD) to the lower body may improve the metabolic profile. The objective of this research was to evaluate the effects of single and multiple DSCD sessions on microcirculation, endothelium function and metabolic parameters of patients with type 2 diabetes. METHODS Two monocentric, controlled, randomized cross-over studies (Study 1 and Study 2) were performed. In Study 1, 16 patients received one 20 min DSCD and one simulated (control) session at 2 week intervals; continuous glucose monitoring and cutaneous blood flow were recorded continuously before, during and after DSCD or Control session; other vascular assessments were performed before and after DSCD and control sessions. In Study 2, 38 patients received 60 min DSCD sessions three times/week for three months followed by a 4-6 week washout and 3 month control period (without simulated sessions); vascular, metabolic, body composition, physical activity and quality of life assessments were performed before and after 3 months. RESULTS Both studies showed significant, multiplex effects of DSCD sessions. In Study 1, cutaneous blood flow and endothelium function increased, and plasma and interstitial glucose levels after a standard breakfast decreased after DSCD sessions. In Study 2, cutaneous endothelium function improved, LDL-cholesterol and non-HDL cholesterol decreased, extra-cell water decreased and SF-36 Vitality score increased after 3 months of DSCD sessions. CONCLUSIONS Our findings support the beneficial effect of DSCD on the endothelium and show concomitant beneficial metabolic and vitality effects. Future clinical trials need to test whether DSCD use translates into a preventive measure against microvascular diabetic complications and its progression. Trial registration ClinicalTrials.gov identifiers: NCT02293135 and NCT02359461.
Collapse
Affiliation(s)
- Paul Valensi
- grid.414153.60000 0000 8897 490XPresent Address: Endocrinology, Diabetology and Nutrition Unit, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord University, CRNH-IdF, CINFO, Bondy, France
| | - Nicolas Barber-Chamoux
- grid.411163.00000 0004 0639 4151Department of Cardiology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Amel Rezki
- grid.414153.60000 0000 8897 490XPresent Address: Endocrinology, Diabetology and Nutrition Unit, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord University, CRNH-IdF, CINFO, Bondy, France
| | - Céline Lambert
- grid.411163.00000 0004 0639 4151Biostatistics Unit, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- grid.411163.00000 0004 0639 4151Biostatistics Unit, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Christian Dualé
- grid.411163.00000 0004 0639 4151Clinical Investigation Center (INSERM CIC1405), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Martine Duclos
- grid.494717.80000000115480420Department of Sports Medicine and Functional Explorations, CHU Clermont-Ferrand, INRAE, UNH, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
41
|
Endothelial mechanosensing: A forgotten target to treat vascular remodeling in hypertension? Biochem Pharmacol 2022; 206:115290. [DOI: 10.1016/j.bcp.2022.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
42
|
Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA. Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina. Dev Cell 2022; 57:2321-2333.e9. [PMID: 36220082 PMCID: PMC9552591 DOI: 10.1016/j.devcel.2022.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022]
Abstract
Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.
Collapse
Affiliation(s)
- Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Dominguez-Cejudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ylenia Giarratano
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - David Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabela C Fortunato
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ian Mauldin
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Université de Paris, PARCC, INSERM, 75006 Paris, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal.
| |
Collapse
|
43
|
Human endothelial cells form an endothelium in freestanding collagen hollow filaments fabricated by direct extrusion printing. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100067. [PMID: 36824376 PMCID: PMC9934428 DOI: 10.1016/j.bbiosy.2022.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Fiber-shaped materials have great potential for tissue engineering applications as they provide structural support and spatial patterns within a three-dimensional construct. Here we demonstrate the fabrication of mechanically stable, meter-long collagen hollow filaments by a direct extrusion printing process. The fibres are permeable for oxygen and proteins and allow cultivation of primary human endothelial cells (ECs) at the inner surface under perfused conditions. The cells show typical characteristics of a well-organized EC lining including VE-cadherin expression, cellular response to flow and ECM production. The results demonstrate that the collagen tubes are capable of creating robust soft tissue filaments. The mechanical properties and the biofunctionality of these collagen hollow filaments facilitate the engineering of prevascularised tissue engineering constructs.
Collapse
|
44
|
King O, Cruz-Moreira D, Sayed A, Kermani F, Kit-Anan W, Sunyovszki I, Wang BX, Downing B, Fourre J, Hachim D, Randi AM, Stevens MM, Rasponi M, Terracciano CM. Functional microvascularization of human myocardium in vitro. CELL REPORTS METHODS 2022; 2:100280. [PMID: 36160044 PMCID: PMC9499876 DOI: 10.1016/j.crmeth.2022.100280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature. Live imaging of red blood cells within myocardial microvasculature reveals pulsatile flow generated by beating hiPSC-CMs. This study therefore demonstrates a functionally vascularized in vitro model of human myocardium with widespread potential applications in basic and translational research.
Collapse
Affiliation(s)
- Oisín King
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniela Cruz-Moreira
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | - Alaa Sayed
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Fatemeh Kermani
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ilona Sunyovszki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian X. Wang
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | - Barrett Downing
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jerome Fourre
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Hachim
- Department of Materials, Imperial College London, London, UK
| | - Anna M. Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Marco Rasponi
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | | |
Collapse
|
45
|
Fang JS, Burt JM. Connexin37 Regulates Cell Cycle in the Vasculature. J Vasc Res 2022; 60:73-86. [PMID: 36067749 DOI: 10.1159/000525619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Control of vascular cell growth responses is critical for development and maintenance of a healthy vasculature. Connexins - the proteins comprising gap junction channels - are key regulators of cell growth in diseases such as cancer, but their involvement in controlling cell growth in the vasculature is less well appreciated. Connexin37 (Cx37) is one of four connexin isotypes expressed in the vessel wall. Its primary role in blood vessels relies on its unique ability to transduce flow-sensitive signals into changes in cell cycle status of endothelial (and perhaps, mural) cells. Here, we review available evidence for Cx37's role in the regulation of vascular growth, vessel organization, and vascular tone in healthy and diseased vasculature. We propose a novel mechanism whereby Cx37 accomplishes this with a phosphorylation-dependent transition between closed (growth-suppressive) and multiple open (growth-permissive) channel conformations that result from interactions of the C-terminus with cell-cycle regulators to limit or support cell cycle progression. Lastly, we discuss Cx37 and its downstream signaling as a novel potential target in the treatment of cardiovascular disease, and we address outstanding research questions that still challenge the development of such therapies.
Collapse
Affiliation(s)
- Jennifer S Fang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
46
|
Abstract
Mechanical variables such as stiffness, stress, strain, and fluid shear stress are central to tissue functions, thus, must be maintained within the proper range. Mechanics are especially important in the cardiovascular system and lung, the functions of which are essentially mechanical. Mechanical homeostasis is characterized by negative feedback in which deviations from the optimal value or set point activates mechanisms to return the system to the correct range. In chronic diseases, homeostatic mechanisms are generally overcome or replaced with positive feedback loops that promote disease progression. Recent work has shown that microRNAs (miRNAs) are essential to mechanical homeostasis in a number of biological systems and that perturbations to miRNA biogenesis play key roles in cardiovascular and pulmonary diseases. In this review, we integrate current knowledge of miRNAs in mechanical homeostasis and how these mechanisms are altered in disease.
Collapse
Affiliation(s)
- Jeremy A Herrera
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Departments of Internal Medicine (Cardiology), Cell Biology, and Biomedical Engineering, Yale School of Medicine, New Haven 06511, Connecticut, USA
| |
Collapse
|
47
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
48
|
Lampejo AO, Hu NW, Lucas D, Lomel BM, Nguyen CM, Dominguez CC, Ren B, Huang Y, Murfee WL. A Challenge for Engineering Biomimetic Microvascular Models: How do we Incorporate the Physiology? Front Bioeng Biotechnol 2022; 10:912073. [PMID: 35795159 PMCID: PMC9252339 DOI: 10.3389/fbioe.2022.912073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The gap between in vitro and in vivo assays has inspired biomimetic model development. Tissue engineered models that attempt to mimic the complexity of microvascular networks have emerged as tools for investigating cell-cell and cell-environment interactions that may be not easily viewed in vivo. A key challenge in model development, however, is determining how to recreate the multi-cell/system functional complexity of a real network environment that integrates endothelial cells, smooth muscle cells, vascular pericytes, lymphatics, nerves, fluid flow, extracellular matrix, and inflammatory cells. The objective of this mini-review is to overview the recent evolution of popular biomimetic modeling approaches for investigating microvascular dynamics. A specific focus will highlight the engineering design requirements needed to match physiological function and the potential for top-down tissue culture methods that maintain complexity. Overall, examples of physiological validation, basic science discoveries, and therapeutic evaluation studies will emphasize the value of tissue culture models and biomimetic model development approaches that fill the gap between in vitro and in vivo assays and guide how vascular biologists and physiologists might think about the microcirculation.
Collapse
Affiliation(s)
- Arinola O. Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Daniela Lucas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Banks M. Lomel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Christian M. Nguyen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Carmen C. Dominguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Walter L. Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- *Correspondence: Walter L. Murfee,
| |
Collapse
|
49
|
Maung Ye SS, Kim JK, Carretero NT, Phng LK. High-Throughput Imaging of Blood Flow Reveals Developmental Changes in Distribution Patterns of Hemodynamic Quantities in Developing Zebrafish. Front Physiol 2022; 13:881929. [PMID: 35795647 PMCID: PMC9251365 DOI: 10.3389/fphys.2022.881929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces from blood flow and pressure (hemodynamic forces) contribute to the formation and shaping of the blood vascular network during embryonic development. Previous studies have demonstrated that hemodynamic forces regulate signaling and gene expression in endothelial cells that line the inner surface of vascular tubes, thereby modifying their cellular state and behavior. Given its important role in vascular development, we still know very little about the quantitative aspects of hemodynamics that endothelial cells experience due to the difficulty in measuring forces in vivo. In this study, we sought to determine the magnitude of wall shear stress (WSS) exerted on ECs by blood flow in different vessel types and how it evolves during development. Utilizing the zebrafish as a vertebrate model system, we have established a semi-automated high-throughput fluorescent imaging system to capture the flow of red blood cells in an entire zebrafish between 2- and 6-day post-fertilization (dpf). This system is capable of imaging up to 50 zebrafish at a time. A semi-automated analysis method was developed to calculate WSS in zebrafish trunk vessels. This was achieved by measuring red blood cell flow using particle tracking velocimetry analysis, generating a custom-made script to measure lumen diameter, and measuring local tube hematocrit levels to calculate the effective blood viscosity at each developmental stage. With this methodology, we were able to determine WSS magnitude in different vessels at different stages of embryonic and larvae growth and identified developmental changes in WSS, with absolute levels of peak WSS in all vessel types falling to levels below 0.3 Pa at 6 dpf. Additionally, we discovered that zebrafish display an anterior-to-posterior trend in WSS at each developmental stage.
Collapse
Affiliation(s)
- Swe Soe Maung Ye
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Jung Kyung Kim
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- School of Mechanical Engineering, Kookmin University, Seoul, South Korea
| | - Nuria Taberner Carretero
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- *Correspondence: Li-Kun Phng,
| |
Collapse
|
50
|
Roberts LM, Perez MJ, Balogh KN, Mingledorff G, Cross JV, Munson JM. Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123008. [PMID: 35740673 PMCID: PMC9221529 DOI: 10.3390/cancers14123008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022] Open
Abstract
At the site of the tumor, myeloid derived suppressor cells (MDSCs) infiltrate and interact with elements of the tumor microenvironment in complex ways. Within the invading tumor, MDSCs are exposed to interstitial fluid flow (IFF) that exists within the chronic inflammatory tumor microenvironment at the tumor-lymphatic interface. As drivers of cell migration and invasion, the link between interstitial fluid flow, lymphatics, and MDSCs have not been clearly established. Here, we hypothesized that interstitial fluid flow and cells within the breast tumor microenvironment modulate migration of MDSCs. We developed a novel 3D model to mimic the breast tumor microenvironment and incorporated MDSCs harvested from 4T1-tumor bearing mice. Using live imaging, we found that sorted GR1+ splenocytes had reduced chemotactic index compared to the unsorted population, but their speed and displacement were similar. Using our adapted tissue culture insert assay, we show that interstitial fluid flow promotes MDSC invasion, regardless of absence or presence of tumor cells. Coordinating with lymphatic endothelial cells, interstitial fluid flow further enhanced invasion of MDSCs in the presence of 4T1 cells. We also show that VEGFR3 inhibition reduced both MDSC and 4T1 flow response. Together, these findings indicate a key role of interstitial fluid flow in MDSC migration as well as describe a tool to explore the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- LaDeidra Monét Roberts
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Kristen N. Balogh
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Garnett Mingledorff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
- Correspondence:
| |
Collapse
|