1
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
2
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
DiBiase CN, Cheng X, Lee G, Moore RC, McCoy AG, Chilvers MI, Sun L, Wang D, Lin F, Zhao M. DNA methylation analysis reveals local changes in resistant and susceptible soybean lines in response to Phytophthora sansomeana. G3 (BETHESDA, MD.) 2024; 14:jkae191. [PMID: 39141590 PMCID: PMC11457093 DOI: 10.1093/g3journal/jkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phytophthora sansomeana is an emerging oomycete pathogen causing root rot in many agricultural species including soybean. However, as of now, only one potential resistance gene has been identified in soybean, and our understanding of how genetic and epigenetic regulation in soybean contributes to responses against this pathogen remains largely unknown. In this study, we performed whole genome bisulfite sequencing (WGBS) on two soybean lines, Colfax (resistant) and Williams 82 (susceptible), in response to P. sansomeana at two time points: 4 and 16 hours post-inoculation to compare their methylation changes. Our findings revealed that there were no significant changes in genome-wide CG, CHG (H = A, T, or C), and CHH methylation. However, we observed local methylation changes, specially an increase in CHH methylation around genes and transposable elements (TEs) after inoculation, which occurred earlier in the susceptible line and later in the resistant line. After inoculation, we identified differentially methylated regions (DMRs) in both Colfax and Williams 82, with a predominant presence in TEs. Notably, our data also indicated that more TEs exhibited changes in their methylomes in the susceptible line compared to the resistant line. Furthermore, we discovered 837 DMRs within or flanking 772 differentially expressed genes (DEGs) in Colfax and 166 DMRs within or flanking 138 DEGs in Williams 82. These DEGs had diverse functions, with Colfax primarily showing involvement in metabolic process, defense response, plant and pathogen interaction, anion and nucleotide binding, and catalytic activity, while Williams 82 exhibited a significant association with photosynthesis. These findings suggest distinct molecular responses to P. sansomeana infection in the resistant and susceptible soybean lines.
Collapse
Affiliation(s)
| | - Xi Cheng
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Gwonjin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Richard C Moore
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Fisher Delta Research, Extension, and Education Center, Division of Plant Sciences and Technology, University of Missouri, Portageville, MO 63873, USA
| | - Meixia Zhao
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Peña-Ponton C, Diez-Rodriguez B, Perez-Bello P, Becker C, McIntyre LM, van der Putten WH, De Paoli E, Heer K, Opgenoorth L, Verhoeven KJF. High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive transposable element superfamilies in the clonal Lombardy poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5839-5856. [PMID: 38836523 PMCID: PMC11427840 DOI: 10.1093/jxb/erae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation is environment-sensitive and can mediate stress responses. In trees, changes in the environment might cumulatively shape the methylome landscape over time. However, because high-resolution methylome studies usually focus on single environmental cues, the stress-specificity and long-term stability of methylation responses remain unclear. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone widely distributed across Europe. Adult trees from different geographic locations were clonally propagated in a common garden experiment and exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Whole-genome bisulfite sequencing revealed stress-induced and naturally occurring DNA methylation variants. In CG/CHG contexts, the same genomic regions were often affected by multiple stresses, suggesting a generic methylome response. Moreover, these variants showed striking overlap with naturally occurring methylation variants between trees from different locations. Drought treatment triggered CHH hypermethylation of transposable elements, affecting entire superfamilies near drought-responsive genes. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and identified stress-specific hypermethylation of entire transposon superfamilies with possible functional consequences. Our results underscore the importance of studying multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.
Collapse
Affiliation(s)
- Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Barbara Diez-Rodriguez
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
- Natural Resources and Climate Area, CARTIF Technology Centre, 47151 Boecillo, Valladolid, Spain
| | - Paloma Perez-Bello
- IGA Technology Services Srl. Via Jacopo Linussio 51, 33100 Udine UD, Italy
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, The Netherlands
| | - Emanuele De Paoli
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Katrin Heer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
| | - Lars Opgenoorth
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2024:S1673-8527(24)00246-7. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237 China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237 China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Balao F, Medrano M, Bazaga P, Paun O, Alonso C. Long-term methylome changes after experimental seed demethylation and their interaction with recurrent water stress in Erodium cicutarium (Geraniaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39250311 DOI: 10.1111/plb.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
The frequencies and lengths of drought periods are increasing in subtropical and temperate regions worldwide. Epigenetic responses to water stress could be key for plant resilience to these largely unpredictable challenges. Experimental DNA demethylation, together with application of a stress factor is an appropriate strategy to reveal the contribution of epigenetics to plant responses to stress. We analysed leaf cytosine methylation changes in adult plants of the annual Mediterranean herb, Erodium cicutarium, in a greenhouse, after seed demethylation with 5-Azacytidine and/or recurrent water stress. We used bisulfite RADseq (BsRADseq) and a newly reported reference genome for E. cicutarium to characterize methylation changes in a 2 × 2 factorial design, controlling for plant relatedness. In the long term, 5-Azacytidine treatment alone caused both hypo- and hyper-methylation at individual cytosines, with substantial hypomethylation in CG contexts. In control conditions, drought resulted in a decrease in methylation in all but CHH contexts. In contrast, the genome of plants that experienced recurrent water stress and had been treated with 5-Azacytidine increased DNA methylation level by ca. 5%. Seed demethylation and recurrent drought produced a highly significant interaction in terms of global and context-specific cytosine methylation. Most methylation changes occurred around genic regions and within Transposable Elements. The annotation of these Differentially Methylated Regions associated with genes included several with a potential role in stress responses (e.g., PAL, CDKC, and ABCF), confirming an epigenetic contribution in response to stress at the molecular level.
Collapse
Affiliation(s)
- F Balao
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - M Medrano
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - P Bazaga
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - C Alonso
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
7
|
Alakärppä E, Salo HM, Suokas M, Jokipii-Lukkari S, Vuosku J, Häggman H. Targeted bisulfite sequencing of Scots pine adaptation-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112173. [PMID: 38944158 DOI: 10.1016/j.plantsci.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.
| | - Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Soile Jokipii-Lukkari
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
8
|
Xie H, Li X, Sun Y, Lin L, Xu K, Lu H, Cheng B, Xue S, Cheng D, Qiang S. DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana. Int J Mol Sci 2024; 25:7478. [PMID: 39000585 PMCID: PMC11242178 DOI: 10.3390/ijms25137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plant flowering time is affected by endogenous and exogenous factors, but its variation patterns among different populations of a species has not been fully established. In this study, 27 Arabidopsis thaliana accessions were used to investigate the relationship between autonomous pathway gene methylation, gene expression and flowering time variation. DNA methylation analysis, RT-qPCR and transgenic verification showed that variation in the flowering time among the Arabidopsis populations ranged from 19 to 55 days and was significantly correlated with methylation of the coding regions of six upstream genes in the autonomous pathway, FLOWERING LOCUS VE (FVE), FLOWERING LOCUS Y (FY), FLOWERING LOCUS D (FLD), PEPPER (PEP), HISTONE DEACETYLASE 5 (HAD5) and Pre-mRNA Processing Protein 39-1 (PRP39-1), as well as their relative expression levels. The expression of FVE and FVE(CS) was modified separately through degenerate codon substitution of cytosine and led to earlier flowering of transgenic plants by 8 days and 25 days, respectively. An accurate determination of methylated sites in FVE and FVE(CS) among those transgenic plants and the recipient Col-0 verified the close relationship between the number of methylation sites, expression and flowering time. Our findings suggest that the methylation variation of these six key upstream transcription factors was associated with the gene expression level of the autonomous pathway and flowering time in Arabidopsis. The FVE(CS) and FVE genes in transgenic plants tended to be hypermethylated, which could be a protective mechanism for plants. However, modification of gene sequences through degenerate codon substitution to reduce cytosine can avoid hypermethylated transferred genes in transgenic plants. It may be possible to partially regulate the flowering of plants by modified trans-epigenetic technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sheng Qiang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (X.L.); (Y.S.); (L.L.); (K.X.); (H.L.); (B.C.); (S.X.); (D.C.)
| |
Collapse
|
9
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
10
|
Cao S, Sawettalake N, Li P, Fan S, Shen L. DNA methylation variations underlie lettuce domestication and divergence. Genome Biol 2024; 25:158. [PMID: 38886807 PMCID: PMC11184767 DOI: 10.1186/s13059-024-03310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) is an economically important vegetable crop worldwide. Lettuce is believed to be domesticated from a single wild ancestor Lactuca serriola and subsequently diverged into two major morphologically distinct vegetable types: leafy lettuce and stem lettuce. However, the role of epigenetic variation in lettuce domestication and divergence remains largely unknown. RESULTS To understand the genetic and epigenetic basis underlying lettuce domestication and divergence, we generate single-base resolution DNA methylomes from 52 Lactuca accessions, including major lettuce cultivars and wild relatives. We find a significant increase of DNA methylation during lettuce domestication and uncover abundant epigenetic variations associated with lettuce domestication and divergence. Interestingly, DNA methylation variations specifically associated with leafy and stem lettuce are related to regulation and metabolic processes, respectively, while those associated with both types are enriched in stress responses. Moreover, we reveal that domestication-induced DNA methylation changes could influence expression levels of nearby and distal genes possibly through affecting chromatin accessibility and chromatin loop. CONCLUSION Our study provides population epigenomic insights into crop domestication and divergence and valuable resources for further domestication for diversity and epigenetic breeding to boost crop improvement.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nunchanoke Sawettalake
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Ping Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
11
|
López ME, Denoyes B, Bucher E. Epigenomic and transcriptomic persistence of heat stress memory in strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2024; 24:405. [PMID: 38750420 PMCID: PMC11096098 DOI: 10.1186/s12870-024-05093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, Geneva, 1205, Switzerland
| | - Béatrice Denoyes
- INRAE, Biologie du Fruit et Pathologie, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland.
| |
Collapse
|
12
|
Guo H, Guo T, Li H, Ma S, Zhang X, He C, Zong D. DNA Methylation Analysis of Growth Differences between Upright and Inverted Cuttings of Populus yunnanensis. Int J Mol Sci 2024; 25:5096. [PMID: 38791136 PMCID: PMC11121305 DOI: 10.3390/ijms25105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
DNA methylation is an important mechanism for epigenetic modifications that have been shown to be associated with responses to plant development. Previous studies found that inverted Populus yunnanensis cuttings were still viable and could develop into complete plants. However, the growth status of inverted cuttings was weaker than that of upright cuttings, and the sprouting time of inverted cuttings was later than that of upright cuttings. There is currently no research on DNA methylation patterns in inverted cuttings of Populus yunnanensis. In this study, we detected genome-wide methylation patterns of stem tips of Populus yunnanensis at the early growth stage and the rapid growth stage by Oxford Nanopore Technologies (ONT) methylation sequencing. We found that the methylation levels of CpG, CHG, CHH, and 6mA were 41.34%, 33.79%, 17.27%, and 12.90%, respectively, in the genome of inverted poplar cuttings, while the methylation levels of the four methylation types were higher in the genome of upright poplar cuttings than in inverted cuttings, 41.90%, 34.57%, 18.09%, and 14.11%, suggesting important roles for DNA methylation in poplar cells. In all comparison groups, CpG-type methylation genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were annotated to pathways associated with carbon metabolism, ribosome biogenesis in eukaryotes, glycolysis/gluconeogenesis, pyruvate metabolism, and mRNA detection pathways, suggesting that different biological processes are activated in upright and inverted cuttings. The results show that methylation genes are commonly present in the poplar genome, but only a few of them are involved in the regulation of expression in the growth and development of inverted cuttings. From this, we screened the DET2 gene for significant differences in methylation levels in upright or inverted cuttings. The DET2 gene is a key gene in the Brassinolide (BRs) synthesis pathway, and BRs have an important influence on the growth and development process of plants. These results provide important clues for studying DNA methylation patterns in P. yunnanensis.
Collapse
Affiliation(s)
- Haiyang Guo
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Tiansu Guo
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Chengzhong He
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.G.); (T.G.); (H.L.); (S.M.); (X.Z.); (C.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Doddavarapu B, Lata C, Shah JM. Epigenetic regulation influenced by soil microbiota and nutrients: Paving road to epigenome editing in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130580. [PMID: 38325761 DOI: 10.1016/j.bbagen.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Soil is a complex ecosystem that houses microbes and nutrients that are necessary for plant development. Edaphic properties of the soil and environmental conditions influence microbial growth and nutrient accessibility. Various environmental stimuli largely affect the soil microbes and ionic balance, in turn influencing plants. Soil microflora helps decompose organic matter and is involved in mineral uptake. The combination of soil microbes and mineral nutrients notably affects plant growth. Recent advancements have enabled a deeper understanding of plant genetic/molecular regulators. Deficiencies/sufficiencies of soil minerals and microbes also alter plant gene regulation. Gene regulation mediated by epigenetic mechanisms comprises conformational alterations in chromatin structure, DNA/histone modifications, or involvement of small RNAs. Epigenetic regulation is unique due to its potential to inherit without involving alteration of the DNA sequence. Thus, the compilation study of heritable epigenetic changes driven by nutrient imbalances and soil microbes would facilitate understanding this molecular phenomenon in plants. This information can aid in epigenome editing, which has recently emerged as a promising technology for plant non-transgenic/non-mutagenic modification. Potential epigenetic marks induced by biotic and abiotic stresses in plants could be explored as target sites for epigenome editing. This review discusses novel ways of epigenome editing to create epigenome edited plants with desirable and heritable phenotypes. As plants are sessile and in constant exposure to the soil microbiome and nutrients, epigenetic changes induced by these factors could provide more effective, stable and a sustainable molecular solution for crop improvement.
Collapse
Affiliation(s)
- Bhavya Doddavarapu
- Department of Plant Science, Central University of Kerala, Kerala, India
| | - Charu Lata
- Inclusive Health & Traditional Knowledge Studies Division, CSIR- National Institute of Science Communication and Policy Research, New Delhi, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Kerala, India.
| |
Collapse
|
14
|
Li Z, Li Y, Geng L, Wang J, Ouyang Y, Li J. Genome-wide methylation, transcriptome and characteristic metabolites reveal the balance between diosgenin and brassinosteroids in Dioscorea zingiberensis. HORTICULTURE RESEARCH 2024; 11:uhae056. [PMID: 38659444 PMCID: PMC11040209 DOI: 10.1093/hr/uhae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
Diosgenin (DG) is a bioactive metabolite isolated from Dioscorea species, renowned for its medicinal properties. Brassinosteroids (BRs) are a class of crucial plant steroidal hormones. Cholesterol and campesterol are important intermediates of DG and BR biosynthesis, respectively. DG and BRs are structurally similar components; however, the regulatory network and metabolic interplays have not been fully elucidated. In an effort to decode these complex networks, we conducted a comprehensive study integrating genome-wide methylation, transcriptome and characteristic metabolite data from Dioscorea zingiberensis. Leveraging these data, we were able to construct a comprehensive regulatory network linking DG and BRs. Mass spectrometry results enabled us to clarify the alterations in cholesterol, campesterol, diosgenin, and castasterone (one of the major active BRs). The DG content decreased by 27.72% at 6 h after brassinolide treatment, whereas the content increased by 85.34% at 6 h after brassinazole treatment. Moreover, we pinpointed DG/BR-related genes, such as CASs, CYP90s, and B3-ARFs, implicated in the metabolic pathways of DG and BRs. Moreover, CASs and CYP90s exhibit hypomethylation, which is closely related to their high transcription. These findings provide robust evidence for the homeostasis between DG and BRs. In conclusion, our research revealed the existence of a balance between DG and BRs in D. zingiberensis. Furthermore, our work not only provides new insights into the relationship between the two pathways but also offers a fresh perspective on the functions of secondary metabolites.
Collapse
Affiliation(s)
- Zihao Li
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Luyu Geng
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiachen Wang
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Kakoulidou I, Piecyk RS, Meyer RC, Kuhlmann M, Gutjahr C, Altmann T, Johannes F. Mapping parental DMRs predictive of local and distal methylome remodeling in epigenetic F1 hybrids. Life Sci Alliance 2024; 7:e202402599. [PMID: 38290756 PMCID: PMC10828516 DOI: 10.26508/lsa.202402599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
F1 hybrids derived from a cross between two inbred parental lines often display widespread changes in DNA methylation and gene expression patterns relative to their parents. An emerging challenge is to understand how parental epigenomic differences contribute to these events. Here, we generated a large mapping panel of F1 epigenetic hybrids, whose parents are isogenic but variable in their DNA methylation patterns. Using a combination of multi-omic profiling and epigenetic mapping strategies we show that differentially methylated regions in parental pericentromeres act as major reorganizers of hybrid methylomes and transcriptomes, even in the absence of genetic variation. These parental differentially methylated regions are associated with hybrid methylation remodeling events at thousands of target regions throughout the genome, both locally (in cis) and distally (in trans). Many of these distally-induced methylation changes lead to nonadditive expression of nearby genes and associate with phenotypic heterosis. Our study highlights the pleiotropic potential of parental pericentromeres in the functional remodeling of hybrid genomes and phenotypes.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- https://ror.org/02kkvpp62 Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Robert S Piecyk
- https://ror.org/02kkvpp62 Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Rhonda C Meyer
- https://ror.org/02skbsp27 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Markus Kuhlmann
- https://ror.org/02skbsp27 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Thomas Altmann
- https://ror.org/02skbsp27 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank Johannes
- https://ror.org/02kkvpp62 Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- https://ror.org/02kkvpp62 Institute of Advanced Studies, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Hu M, Yan R, Ni R, Wu H. Coastal degradation regulates the availability and diffusion kinetics of phosphorus at the sediment-water interface: Mechanisms and environmental implications. WATER RESEARCH 2024; 250:121086. [PMID: 38171179 DOI: 10.1016/j.watres.2023.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Coastal wetlands have experienced considerable loss and degradation globally. However, how coastal degradation regulates sediment phosphorus (P) transformation and its underlying mechanisms remain largely unknown in subtropical coastal ecosystems. This study conducted seasonal field measurements using high-resolution diffusive gradient in thin films (DGT) and dialysis (Peeper) techniques, as well as a DGT-induced fluxes in sediments (DIFS) model, to evaluate the mobilization and diffusion of P along a degradation gradient ranging from pristine wetlands to moderately and severely degraded sites. We observed that sediment P is diminished by coastal degradation, and severely degraded sites exhibit a decline in the concentration of available P, despite the presence of distinct seasonal patterns. High-resolution data based on DGT/Peeper analysis revealed that labile P and soluble reactive P (SRP) concentrations varied from 0.0006 mg L-1 to 0.084 mg L-1 (mean 0.0147 mg L-1) and from 0.0128 mg L-1 to 0.1677 mg L-1 (mean 0.0536 mg L-1), respectively. Coastal degradation had a substantial impact on increasing SRP and labile P concentrations, particularly at severely degraded sites. Although severely degraded wetlands appeared to be P sinks (negative P flux at these sites), we did also observe positive diffusive flux in October, indicating that coastal degradation may accelerate the diffusion and remobilization of sediment P into overlying water. The simulations of the DIFS model provided compelling proof of the high resupply capacity of sediment P at severely degraded sites, as supported by the increased R and k-1 values but decreased Tc values. Taken together, these results suggest coastal degradation reduces the sediment P pool, primarily attributed to the strong remobilization of P from the sediment to porewater and overlying water by enhancing the resupply capability and diffusion kinetics. This acceleration induces nutrient loss which adversely impacts the water quality of the surrounding ecosystem. To reduce the adverse effects of coastal degradation, it is essential to adopt a combination of conservation, restoration, and management efforts designed to mitigate the risk of internal P loading and release, and ultimately maintain a regional nutrient balance.
Collapse
Affiliation(s)
- Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Wetland Ecosystem Research Station of Minjiang Estuary, National Forestry and Grassland Administration, Fuzhou 350215, China.
| | - Ruibing Yan
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ranxu Ni
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hui Wu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
17
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
18
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
19
|
Liu XS, Li H, Feng SJ, Yang ZM. A transposable element-derived siRNAs involve DNA hypermethylation at the promoter of OsGSTZ4 for cadmium tolerance in rice. Gene 2024; 892:147900. [PMID: 37839767 DOI: 10.1016/j.gene.2023.147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Environmental contaminants such as cadmium (Cd) pose high risks to crop production and human health. The genetic basis for regulation of Cd stress-responsive genes for plant adaptation to adverse environments remains poorly understood. In this study, we characterized a rice Zeta family glutathione-S-transferase (OsGSTZ4) gene for Cd detoxification. Heterologous expression of OsGSTZ4 in a yeast (Saccharomyces cerevisiae) conferred cellular Cd tolerance. Transgenic rice overexpressing OsGSTZ4 improved plant growth, attenuated Cd-induced toxicity, and accumulated more Cd in roots. OsGSTZ4 transcription was rapidly induced 3 h after Cd exposure and then declined to the basal level. This was followed by (days after Cd treatment) by CHH hypermethylation (by 41.2 %) at a MITE (Miniature Inverted-repeat Transposable Element) transposable element (TE) inserted in the 5'-untranscribed region (UTR) (-1,722 ∼ -1,392 bp) of OsGSTZ4. Meanwhile, three 24-nt siRNAs derived from the TE (-1,722 ∼ -1,471 bp) were detected and was also rapidly enriched under Cd stress. To validate the possibility that Cd-induced change in OsGSTZ4 expression correlates with the siRNAs-involved CHH methylation through an RdDM (RNA-directed DNA methylation) pathway, genetic analyses were performed. We found that the CHH methylation at the promoter and transcript level of OsGSTZ4 were compromised in the osdrm2 (loss of function for CHH methylation) and osrdr2i (defective in RNA-dependent RNA polymerase 2) but did not change in other types of methyltransferases such as osmet1, ossdg714 or osros1. Promoter deletion analyses confirmed that the siRNA target sequences were essential for the proper expression of OsGSTZ4. Our studies reveal an unusual feedback mechanism by which the Cd-induced rapid OsGSTZ4 expression for Cd tolerance would interplay with the late CHH hypermethylation to silence the TE through the 24-nt siRNAs- and Osdrm2-mediated RdDM pathway, and help understand the diversity of gene regulation via an epigenetic mechanism for rice adaptation to the environmental stress.
Collapse
Affiliation(s)
- Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:163. [PMID: 38256717 PMCID: PMC10820249 DOI: 10.3390/plants13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to stress. Several studies have investigated the role of DNA methylation (DM), non-coding RNAs, and histone modifications in plant stress responses. However, there are various limitations or challenges in translating the research findings into practical applications. Hence, this review delves into the recent recovery, implications, and applications of epigenetic regulation in response to plant stress. To better understand plant epigenetic regulation under stress, we reviewed recent studies published in the last 5-10 years that made significant contributions, and we analyzed the novel techniques and technologies that have advanced the field, such as next-generation sequencing and genome-wide profiling of epigenetic modifications. We emphasized the breakthrough findings that have uncovered specific genes or pathways and the potential implications of understanding plant epigenetic regulation in response to stress for agriculture, crop improvement, and environmental sustainability. Finally, we concluded that plant epigenetic regulation in response to stress holds immense significance in agriculture, and understanding its mechanisms in stress tolerance can revolutionize crop breeding and genetic engineering strategies, leading to the evolution of stress-tolerant crops and ensuring sustainable food production in the face of climate change and other environmental challenges. Future research in this field will continue to unveil the intricacies of epigenetic regulation and its potential applications in crop improvement.
Collapse
Affiliation(s)
- Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Yani Xiong
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Abiodun Yusuff Moshood
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Mexico;
| | - Hao Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| |
Collapse
|
21
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
22
|
Horemans N, Kariuki J, Saenen E, Mysara M, Beemster GTS, Sprangers K, Pavlović I, Novak O, Van Hees M, Nauts R, Duarte GT, Cuypers A. Are Arabidopsis thaliana plants able to recover from exposure to gamma radiation? A molecular perspective. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107304. [PMID: 37871537 DOI: 10.1016/j.jenvrad.2023.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants.
Collapse
Affiliation(s)
- Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium.
| | - Jackline Kariuki
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - May Van Hees
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | | | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
23
|
Liu T, Xu LG, Duan CG. The trans-kingdom communication of noncoding RNAs in plant-environment interactions. THE PLANT GENOME 2023; 16:e20289. [PMID: 36444889 DOI: 10.1002/tpg2.20289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
As conserved regulatory agents, noncoding RNAs (ncRNAs) have an important impact on many aspects of plant life, including growth, development, and environmental response. Noncoding RNAs can travel through not only plasmodesma and phloem but also intercellular barriers to regulate distinct processes. Increasing evidence shows that the intercellular trans-kingdom transmission of ncRNAs is able to modulate many important interactions between plants and other organisms, such as plant response to pathogen attack, the symbiosis between legume plants and rhizobia and the interactions with parasitic plants. In these interactions, plant ncRNAs are believed to be sorted into extracellular vesicles (EVs) or other nonvesicular vehicles to pass through cell barriers and trigger trans-kingdom RNA interference (RNAi) in recipient cells from different species. There is evidence that the features of extracellular RNAs and associated RNA-binding proteins (RBPs) play a role in defining the RNAs to retain in cell or secrete outside cells. Despite the few reports about RNA secretion pathway in plants, the export of extracellular ncRNAs is orchestrated by a series of pathways in plants. The identification and functional analysis of mobile small RNAs (sRNAs) are attracting increasing attention in recent years. In this review, we discuss recent advances in our understanding of the function, sorting, transport, and regulation of plant extracellular ncRNAs.
Collapse
Affiliation(s)
- Ting Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Univ. of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu-Gen Xu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Univ. of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Univ. of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Kumar S, Seem K, Kumar S, Singh A, Krishnan SG, Mohapatra T. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. PLANTA 2023; 259:4. [PMID: 37993704 DOI: 10.1007/s00425-023-04272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Roots play an important role in adaptive plasticity of rice under dry/direct-sown conditions. However, hypomethylation of genes in leaves (resulting in up-regulated expression) complements the adaptive plasticity of Nagina-22 under DSR conditions. Rice is generally cultivated by transplanting which requires plenty of water for irrigation. Such a practice makes rice cultivation a challenging task under global climate change and reducing water availability. However, dry-seeded/direct-sown rice (DSR) has emerged as a resource-saving alternative to transplanted rice (TPR). Though some of the well-adapted local cultivars are used for DSR, only limited success has been achieved in developing DSR varieties mainly because of a limited knowledge of adaptability of rice under fluctuating environmental conditions. Based on better morpho-physiological and agronomic performance of Nagina-22 (N-22) under DSR conditions, N-22 and IR-64 were grown by transplanting and direct-sowing and used for whole genome methylome analysis to unravel the epigenetic basis of adaptive plasticity of rice. Comparative methylome and transcriptome analyses indicated a large number (4078) of genes regulated through DNA methylation/demethylation in N-22 under DSR conditions. Gene × environment interactions play important roles in adaptive plasticity of rice under direct-sown conditions. While genes for pectinesterase, LRK10, C2H2 zinc-finger protein, splicing factor, transposable elements, and some of the unannotated proteins were hypermethylated, the genes for regulation of transcription, protein phosphorylation, etc. were hypomethylated in CG context in the root of N-22, which played important roles in providing adaptive plasticity to N-22 under DSR conditions. Hypomethylation leading to up-regulation of gene expression in the leaf complements the adaptive plasticity of N-22 under DSR conditions. Moreover, differential post-translational modification of proteins and chromatin assembly/disassembly through DNA methylation in CHG context modulate adaptive plasticity of N-22. These findings would help developing DSR cultivars for increased water-productivity and ecological efficiency.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
25
|
Meijer A, Atighi MR, Demeestere K, De Meyer T, Vandepoele K, Kyndt T. Dicer-like 3a mediates intergenerational resistance against root-knot nematodes in rice via hormone responses. PLANT PHYSIOLOGY 2023; 193:2071-2085. [PMID: 37052181 DOI: 10.1093/plphys/kiad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
In a continuously changing and challenging environment, passing down the memory of encountered stress factors to offspring could provide an evolutionary advantage. In this study, we demonstrate the existence of "intergenerational acquired resistance" in the progeny of rice (Oryza sativa) plants attacked by the belowground parasitic nematode Meloidogyne graminicola. Transcriptome analyses revealed that genes involved in defense pathways are generally downregulated in progeny of nematode-infected plants under uninfected conditions but show a stronger induction upon nematode infection. This phenomenon was termed "spring loading" and depends on initial downregulation by the 24-nucleotide (nt) siRNA biogenesis gene dicer-like 3a (dcl3a) involved in the RNA-directed DNA methylation pathway. Knockdown of dcl3a led to increased nematode susceptibility and abolished intergenerational acquired resistance, as well as jasmonic acid/ethylene spring loading in the offspring of infected plants. The importance of ethylene signaling in intergenerational resistance was confirmed by experiments on a knockdown line of ethylene insensitive 2 (ein2b), which lacks intergenerational acquired resistance. Taken together, these data indicate a role for DCL3a in regulating plant defense pathways during both within-generation and intergenerational resistance against nematodes in rice.
Collapse
Affiliation(s)
- Anikó Meijer
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| | - Mohammad Reza Atighi
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336 Tehran, Iran
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research group EnVOC, Ghent University, Ghent 9000, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent 9000, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent 9052, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
26
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy;
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| |
Collapse
|
27
|
Cao S, Chen K, Lu K, Chen S, Zhang X, Shen C, Zhu S, Niu Y, Fan L, Chen ZJ, Xu J, Song Q. Asymmetric variation in DNA methylation during domestication and de-domestication of rice. THE PLANT CELL 2023; 35:3429-3443. [PMID: 37279583 PMCID: PMC10473196 DOI: 10.1093/plcell/koad160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Hundreds of plant species have been domesticated to feed human civilization, while some crops have undergone de-domestication into agricultural weeds, threatening global food security. To understand the genetic and epigenetic basis of crop domestication and de-domestication, we generated DNA methylomes from 95 accessions of wild rice (Oryza rufipogon L.), cultivated rice (Oryza sativa L.) and weedy rice (O. sativa f. spontanea). We detected a significant decrease in DNA methylation over the course of rice domestication but observed an unexpected increase in DNA methylation through de-domestication. Notably, DNA methylation changes occurred in distinct genomic regions for these 2 opposite stages. Variation in DNA methylation altered the expression of nearby and distal genes through affecting chromatin accessibility, histone modifications, transcription factor binding, and the formation of chromatin loops, which may contribute to morphological changes during domestication and de-domestication of rice. These insights into population epigenomics underlying rice domestication and de-domestication provide resources and tools for epigenetic breeding and sustainable agriculture.
Collapse
Affiliation(s)
- Shuai Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Kening Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shiting Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiyu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Congcong Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Shuangbin Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yanan Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jianlong Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
28
|
Cuyas L, David P, de Craieye D, Ng S, Arkoun M, Plassard C, Faharidine M, Hourcade D, Degan F, Pluchon S, Nussaume L. Identification and interest of molecular markers to monitor plant Pi status. BMC PLANT BIOLOGY 2023; 23:401. [PMID: 37612632 PMCID: PMC10463364 DOI: 10.1186/s12870-023-04411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.
Collapse
Affiliation(s)
- Laura Cuyas
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Damien de Craieye
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Sophia Ng
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
- Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Victoria, 3086, Australia
| | - Mustapha Arkoun
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Claude Plassard
- INRAE, CIRAD, IRD, Univ Montpellier, Eco&Sols, Institut Agro, 34060, Montpellier, France
| | | | - Delphine Hourcade
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Francesca Degan
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Sylvain Pluchon
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France.
| |
Collapse
|
29
|
Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA 2023; 14:9. [PMID: 37596675 PMCID: PMC10439571 DOI: 10.1186/s13100-023-00297-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Interspersed repetitions called transposable elements (TEs), commonly referred to as mobile elements, make up a significant portion of the genomes of higher animals. TEs contribute in controlling the expression of genes locally and even far away at the transcriptional and post-transcriptional levels, which is one of their significant functional effects on gene function and genome evolution. There are different mechanisms through which TEs control the expression of genes. First, TEs offer cis-regulatory regions in the genome with their inherent regulatory features for their own expression, making them potential factors for controlling the expression of the host genes. Promoter and enhancer elements contain cis-regulatory sites generated from TE, which function as binding sites for a variety of trans-acting factors. Second, a significant portion of miRNAs and long non-coding RNAs (lncRNAs) have been shown to have TEs that encode for regulatory RNAs, revealing the TE origin of these RNAs. Furthermore, it was shown that TE sequences are essential for these RNAs' regulatory actions, which include binding to the target mRNA. By being a member of cis-regulatory and regulatory RNA sequences, TEs therefore play essential regulatory roles. Additionally, it has been suggested that TE-derived regulatory RNAs and cis-regulatory regions both contribute to the evolutionary novelty of gene regulation. Additionally, these regulatory systems arising from TE frequently have tissue-specific functions. The objective of this review is to discuss TE-mediated gene regulation, with a particular emphasis on the processes, contributions of various TE types, differential roles of various tissue types, based mostly on recent studies on humans.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia.
| |
Collapse
|
30
|
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T, Zeng D, Zhao Y. Integrated Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Cold Tolerance in Litopenaeus vannamei. Int J Mol Sci 2023; 24:11573. [PMID: 37511332 PMCID: PMC10380378 DOI: 10.3390/ijms241411573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.
Collapse
Affiliation(s)
- Weilin Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Tiancong Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| |
Collapse
|
31
|
Zhu H, Han G, Wang J, Xu J, Hong Y, Huang L, Zheng S, Yang J, Chen W. CG hypermethylation of the bHLH39 promoter regulates its expression and Fe deficiency responses in tomato roots. HORTICULTURE RESEARCH 2023; 10:uhad104. [PMID: 37577397 PMCID: PMC10419876 DOI: 10.1093/hr/uhad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Iron (Fe) is an essential micronutrient for all organisms, including plants, whose limited bioavailability restricts plant growth, yield, and nutritional quality. While the transcriptional regulation of plant responses to Fe deficiency have been extensively studied, the contribution of epigenetic modulations, such as DNA methylation, remains poorly understood. Here, we report that treatment with a DNA methylase inhibitor repressed Fe deficiency-induced responses in tomato (Solanum lycopersicum) roots, suggesting the importance of DNA methylation in regulating Fe deficiency responses. Dynamic changes in the DNA methylome in tomato roots responding to short-term (12 hours) and long-term (72 hours) Fe deficiency identified many differentially methylated regions (DMRs) and DMR-associated genes. Most DMRs occurred at CHH sites under short-term Fe deficiency, whereas they were predominant at CG sites following long-term Fe deficiency. Furthermore, no correlation was detected between the changes in DNA methylation levels and the changes in transcript levels of the affected genes under either short-term or long-term treatments. Notably, one exception was CG hypermethylation at the bHLH39 promoter, which was positively correlated with its transcriptional induction. In agreement, we detected lower CG methylation at the bHLH39 promoter and lower bHLH39 expression in MET1-RNA interference lines compared with wild-type seedlings. Virus-induced gene silencing of bHLH39 and luciferase reporter assays revealed that bHLH39 is positively involved in the modulation of Fe homeostasis. Altogether, we propose that dynamic epigenetic DNA methylation in the CG context at the bHLH39 promoter is involved in its transcriptional regulation, thus contributing to the Fe deficiency response of tomato.
Collapse
Affiliation(s)
- Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guanghao Han
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
32
|
Bogan SN, Strader ME, Hofmann GE. Associations between DNA methylation and gene regulation depend on chromatin accessibility during transgenerational plasticity. BMC Biol 2023; 21:149. [PMID: 37365578 DOI: 10.1186/s12915-023-01645-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchin Strongylocentrotus purpuratus exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. RESULTS Differential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4-13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. CONCLUSIONS DNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity in S. purpuratus and potentially other metazoans, but its effects are dependent on chromatin accessibility and underlying genic features.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
| | - Marie E Strader
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
- Department of Biology, Texas A&M University, College Station, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
| |
Collapse
|
33
|
Mao F, Xie H, Shi Y, Jiang S, Wang S, Wu Y. The Global Changes of N6-methyldeoxyadenosine in Response to Low Temperature in Arabidopsis thaliana and Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2373. [PMID: 37375998 DOI: 10.3390/plants12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
N6-methyldeoxyadenosine (6mA) is a recently discovered DNA modification involved in regulating plant adaptation to abiotic stresses. However, the mechanisms and changes of 6mA under cold stress in plants are not yet fully understood. Here, we conducted a genome-wide analysis of 6mA and observed that 6mA peaks were predominantly present within the gene body regions under both normal and cold conditions. In addition, the global level of 6mA increased both in Arabidopsis and rice after the cold treatment. The genes that exhibited an up-methylation showed enrichment in various biological processes, whereas there was no significant enrichment observed among the down-methylated genes. The association analysis revealed a positive correlation between the 6mA level and the gene expression level. Joint analysis of the 6mA methylome and transcriptome of Arabidopsis and rice unraveled that fluctuations in 6mA levels caused by cold exposure were not correlated to changes in transcript levels. Furthermore, we discovered that orthologous genes modified by 6mA showed high expression levels; however, only a minor amount of differentially 6mA-methylated orthologous genes were shared between Arabidopsis and rice under low-temperature conditions. In conclusion, our study provides information on the role of 6mA in response to cold stress and reveals its potential for regulating the expression of stress-related genes.
Collapse
Affiliation(s)
- Fei Mao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hairong Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Shi
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shasha Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Liu B, Yang D, Wang D, Liang C, Wang J, Lisch D, Zhao M. Heritable changes of epialleles in maize can be triggered in the absence of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537008. [PMID: 37131670 PMCID: PMC10153178 DOI: 10.1101/2023.04.15.537008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, very little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (mediator of paramutation1) with that of their parents, wild type siblings, and backcrossed progeny in maize. Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of the CHH DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in F1 plants did require Mop1, initiation of the changes in the epigenetic state of TCM DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is not dependent on RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH 45056
| | - Dafang Wang
- Biology Department, Hofstra University, Hempstead, NY 11549
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
35
|
Wan J, Zhou Y, Beardall J, Raven JA, Lin J, Huang J, Lu Y, Liang S, Ye M, Xiao M, Zhao JY, Dai X, Xia J, Jin P. DNA methylation and gene transcription act cooperatively in driving the adaptation of a marine diatom to global change. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad150. [PMID: 37100754 DOI: 10.1093/jxb/erad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/19/2023]
Abstract
Genetic changes together with epigenetic modifications such as DNA methylation have been demonstrated to regulate many biological processes and thereby govern the response of organisms to environmental changes. However, how DNA methylation might act cooperatively with gene transcription and thereby mediate the long-term adaptive responses of marine microalgae to global change is virtually unknown. Here we performed a transcriptomic analysis, and a whole-genome bisulfite sequencing, along with phenotypic analysis of a model marine diatom Phaeodactylum tricornutum adapted for two years to high CO2 and/or warming conditions. Our results show that the methylated islands (peaks of methylation) mCHH were positively correlated with expression of genes in the sub-region of the gene body when the populations were grown under high CO2 or its combination with warming for ~2 years. We further identified the differentially expressed genes (DEGs) and hence the metabolic pathways in which they function, at the transcriptomics level in differentially methylated regions (DMRs). Although DEGs in DMRs contributed only 18-24% of the total DEGs, we found that those DEGs acted cooperatively with DNA methylation and then regulated key processes such as central carbon metabolism, amino acid metabolism, ribosome biogenesis, terpenoid backbone biosynthesis, and degradation of misfolded proteins. Taken together, by integrating transcriptomic, epigenetic and phenotypic analysis, our study provides evidence for DNA methylation acting cooperatively with gene transcription to contribute to the adaptation of microalgae to global changes.
Collapse
Affiliation(s)
- Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jing Yuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
36
|
Prathap V, Kumar S, Tyagi A. Comparative proteome analysis of phosphorus-responsive genotypes reveals the proteins differentially expressed under phosphorous starvation stress in rice. Int J Biol Macromol 2023; 234:123760. [PMID: 36812961 DOI: 10.1016/j.ijbiomac.2023.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Phosphorus (P)-deficiency is one of the major nutrient constraints for global rice production. P-deficiency tolerance in rice involves complex regulatory mechanisms. To gain insights into the proteins involved in phosphorus acquisition and use efficiency in rice, proteome analysis of a high-yielding rice cultivar Pusa-44 and its near-isogenic line (NIL)-23 harboring a major phosphorous uptake (Pup1) QTL, grown under control and P-starvation stress, was performed. Comparative proteome profiling of shoot and root tissues from the plants grown hydroponically with P (16 ppm, +P) or without P (0 ppm, -P) resulted in the identification of 681 and 567 differentially expressed proteins (DEPs) in shoot of Pusa-44 and NIL-23, respectively. Similarly, 66 and 93 DEPs were identified in root of Pusa-44 and NIL-23, respectively. These P-starvation responsive DEPs were annotated to be involved in metabolic processes like photosynthesis, starch-, sucrose-, energy-metabolism, transcription factors (mainly ARF, ZFP, HD-ZIP, MYB), and phytohormone signaling. Comparative analysis of the expression patterns observed by proteome analysis with that reported at the transcriptome level indicated the Pup1 QTL-mediated post-transcriptional regulation plays an important role under -P stress. Thus, the present study describes the molecular aspect of the regulatory functions of Pup1 QTL under P-starvation stress in rice, which might help develop an efficient rice cultivar with enhanced P acquisition and assimilation for better performance in P-deficient soil.
Collapse
Affiliation(s)
- V Prathap
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
37
|
Kenchanmane Raju SK, Ledford M, Niederhuth CE. DNA methylation signatures of duplicate gene evolution in angiosperms. PLANT PHYSIOLOGY 2023:kiad220. [PMID: 37061825 PMCID: PMC10400039 DOI: 10.1093/plphys/kiad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomics approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole genome duplicates were typically enriched for CG-only gene-body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was characteristic of more recent single-gene duplicates. Core angiosperm gene families differentiated into those which preferentially retain paralogs and 'duplication-resistant' families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Ibañez VN, van Antro M, Peña-Ponton C, Milanovic-Ivanovic S, Wagemaker CAM, Gawehns F, Verhoeven KJF. Environmental and genealogical effects on DNA methylation in a widespread apomictic dandelion lineage. J Evol Biol 2023; 36:663-674. [PMID: 36810811 DOI: 10.1111/jeb.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
DNA methylation in plant genomes occurs in different sequences and genomic contexts that have very different properties. DNA methylation that occurs in CG (mCG) sequence context shows transgenerational stability and high epimutation rate, and can thus provide genealogical information at short time scales. However, due to meta-stability and because mCG variants may arise due to other factors than epimutation, such as environmental stress exposure, it is not clear how well mCG captures genealogical information at micro-evolutionary time scales. Here, we analysed DNA methylation variation between accessions from a geographically widespread, apomictic common dandelion (Taraxacum officinale) lineage when grown experimentally under different light conditions. Using a reduced-representation bisulphite sequencing approach, we show that the light treatment induced differentially methylated cytosines (DMCs) in all sequence contexts, with a bias towards transposable elements. Accession differences were associated mainly with DMCs in CG context. Hierarchical clustering of samples based on total mCG profiles revealed a perfect clustering of samples by accession identity, irrespective of light conditions. Using microsatellite information as a benchmark of genetic divergence within the clonal lineage, we show that genetic divergence between accessions correlates strongly with overall mCG profiles. However, our results suggest that environmental effects that do occur in CG context may produce a heritable signal that partly dilutes the genealogical signal. Our study shows that methylation information in plants can be used to reconstruct micro-evolutionary genealogy, providing a useful tool in systems that lack genetic variation such as clonal and vegetatively propagated plants.
Collapse
Affiliation(s)
- Verónica Noé Ibañez
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Diderot, Gif sur Yvette, France.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Morgane van Antro
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Slavica Milanovic-Ivanovic
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | | | - Fleur Gawehns
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
39
|
Li Y, Guo D. Transcriptome and DNA Methylome Analysis of Two Contrasting Rice Genotypes under Salt Stress during Germination. Int J Mol Sci 2023; 24:ijms24043978. [PMID: 36835386 PMCID: PMC9965394 DOI: 10.3390/ijms24043978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023] Open
Abstract
With climate change and labor shortages, direct-seeding rice cultivation is becoming popular worldwide, especially in Asia. Salinity stress negatively affects rice seed germination in the direct-seeding process, and the cultivation of suitable direct-seeding rice varieties under salinity stress is necessary. However, little is known about the underlying mechanism of salt responses during seed germination under salt stress. To investigate the salt tolerance mechanism at the seed germination stage, two contrasting rice genotypes differing in salt tolerance, namely, FL478 (salt-tolerant) and IR29 (salt-sensitive), were used in this study. We observed, that compared to IR29, FL478 appeared to be more tolerant to salt stress with a higher germination rate. GD1 (germination defective 1), which was involved in seed germination by regulating alpha-amylase, was upregulated significantly in the salt-sensitive IR29 strain under salt stress during germination. Transcriptomic data showed that salt-responsive genes tended to be up/downregulated in IR29 but not in FL478. Furthermore, we investigated the epigenetic changes in FL478 and IR29 during germination under saline treatment using whole genome bisulfite DNA sequencing (BS-seq) technology. BS-seq data showed that the global CHH methylation level increased dramatically under salinity stress in both strains, and the hyper CHH differentially methylated regions (DMRs) were predominantly located within the transposable elements regions. Compared with FL478, differentially expressed genes with DMRs in IR29 were mainly related to gene ontology terms such as response to water deprivation, response to salt stress, seed germination, and response to hydrogen peroxide pathways. These results may provide valuable insights into the genetic and epigenetic basis of salt tolerance at the seed germination stage, which is important for direct-seeding rice breeding.
Collapse
|
40
|
Cao Q, Huang L, Li J, Qu P, Tao P, Crabbe MJC, Zhang T, Qiao Q. Integrated transcriptome and methylome analyses reveal the molecular regulation of drought stress in wild strawberry (Fragaria nilgerrensis). BMC PLANT BIOLOGY 2022; 22:613. [PMID: 36575384 PMCID: PMC9795625 DOI: 10.1186/s12870-022-04006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fragaria nilgerrensis, which is a diploid wild strawberry with excellent drought-resistance, would provide useful candidate genes for improving drought resistance of cultivated strawberry. So far, its molecular regulatory networks involved in drought stress are unclear. We therefore investigated the drought response regulatory networks of F. nilgerrensis based on the integrated analysis of DNA methylation, transcriptome and physiological traits during four time points under drought stress. RESULTS: The most differentially expressed genes and the physiological changes were found at 8 days (T8) compared with 0 day (T0, control). Methylome analysis revealed slight dynamic changes in genome-wide mC levels under drought conditions, while the most hypomethylated and hypermethylated regions were identified at T4 and T8. Association analysis of the methylome and transcriptome revealed that unexpressed genes exhibited expected hypermethylation levels in mCHG and mCHH contexts, and highly expressed genes exhibited corresponding hypomethylation levels in the gene body, but mCG contexts showed the opposite trend. Then, 835 differentially methylated and expressed genes were identified and grouped into four clustering patterns to characterize their functions. The genes with either negative or positive correlation between methylation and gene expression were mainly associated with kinases, Reactive Oxygen Species (ROS) synthesis, scavenging, and the abscisic acid (ABA) signal pathway. Consistently, weighted gene co-expression network analysis (WGCNA) revealed Hub genes including NCED, CYP707A2, PP2Cs and others that play important roles in the ABA signaling pathway. CONCLUSION F. nilgerrensis drought is dominated by ABA-dependent pathways, possibly accompanied by ABA-independent crosstalk. DNA methylation may affect gene expression, but their correlation was more subtle and multiple types of association exist. Maintaining the balance between ROS regeneration and scavenging is an important factor in drought resistance in F. nilgerrensis. These results deepen our understanding of drought resistance and its application in breeding in strawberry plants.
Collapse
Affiliation(s)
- Qiang Cao
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Lin Huang
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Jiamin Li
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Peng Qu
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Pang Tao
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX26UD, UK
- Institute of Biomedical and Environmental Science and Technology, School of Life Sciences, University of Bedfordshire, Park Square, LU1 3JU, Luton, UK
- School of Life Science, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, 650500, Kunming, China.
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
41
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
42
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
43
|
Sun L, Xue C, Guo C, Jia C, Yuan H, Pan X, Tai P. Maintenance of grafting reducing cadmium accumulation in soybean (Glycinemax) is mediated by DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157488. [PMID: 35870595 DOI: 10.1016/j.scitotenv.2022.157488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution in farmland soil increases the probability of wastage of land resources and compromised food safety. Grafting can change the absorption rates of elements in crops; however, there are few studies on grafting in bulk grain and cash crops. In this study, Glycine max was used as a scion and Luffa aegyptiaca as a rootstock for grafting experiments. The changes in total sulfur and Cd content in the leaves and grains of grafted species were determined for three consecutive generations, and the gene expression and DNA methylation status of the leaves were analyzed. The results show that grafting significantly reduced the total sulfur and Cd content in soybean leaves and grains; the Cd content in soybean leaves and grains decreased by >50 %. The plant's primary sulfur metabolism pathway was not significantly affected. Glucosinolates and DNA methylation may play important roles in reducing total sulfur and Cd accumulation. Notably, low sulfur and low Cd traits can be maintained over two generations. Our study establishes that grafting can reduce the total sulfur and Cd content in soybean, and these traits can be inherited. In summary, grafting technology can be used to prevent soybean from accumulating Cd in farmland soil. This provides a theoretical basis for grafting to cultivate crops with low Cd accumulation.
Collapse
Affiliation(s)
- Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Honghong Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiangwen Pan
- Key Laboratory of Molecular Breeding and Design, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
44
|
Ojeda-Rivera JO, Alejo-Jacuinde G, Nájera-González HR, López-Arredondo D. Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4125-4150. [PMID: 35524816 PMCID: PMC9729153 DOI: 10.1007/s00122-022-04095-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Improving phosphorus (P) crop nutrition has emerged as a key factor toward achieving a more resilient and sustainable agriculture. P is an essential nutrient for plant development and reproduction, and phosphate (Pi)-based fertilizers represent one of the pillars that sustain food production systems. To meet the global food demand, the challenge for modern agriculture is to increase food production and improve food quality in a sustainable way by significantly optimizing Pi fertilizer use efficiency. The development of genetically improved crops with higher Pi uptake and Pi-use efficiency and higher adaptability to environments with low-Pi availability will play a crucial role toward this end. In this review, we summarize the current understanding of Pi nutrition and the regulation of Pi-starvation responses in plants, and provide new perspectives on how to harness the ample repertoire of genetic mechanisms behind these adaptive responses for crop improvement. We discuss on the potential of implementing more integrative, versatile, and effective strategies by incorporating systems biology approaches and tools such as genome editing and synthetic biology. These strategies will be invaluable for producing high-yielding crops that require reduced Pi fertilizer inputs and to develop a more sustainable global agriculture.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
45
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
46
|
Hämälä T, Ning W, Kuittinen H, Aryamanesh N, Savolainen O. Environmental response in gene expression and DNA methylation reveals factors influencing the adaptive potential of Arabidopsis lyrata. eLife 2022; 11:e83115. [PMID: 36306157 PMCID: PMC9616567 DOI: 10.7554/elife.83115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding what factors influence plastic and genetic variation is valuable for predicting how organisms respond to changes in the selective environment. Here, using gene expression and DNA methylation as molecular phenotypes, we study environmentally induced variation among Arabidopsis lyrata plants grown at lowland and alpine field sites. Our results show that gene expression is highly plastic, as many more genes are differentially expressed between the field sites than between populations. These environmentally responsive genes evolve under strong selective constraint - the strength of purifying selection on the coding sequence is high, while the rate of adaptive evolution is low. We find, however, that positive selection on cis-regulatory variants has likely contributed to the maintenance of genetically variable environmental responses, but such variants segregate only between distantly related populations. In contrast to gene expression, DNA methylation at genic regions is largely insensitive to the environment, and plastic methylation changes are not associated with differential gene expression. Besides genes, we detect environmental effects at transposable elements (TEs): TEs at the high-altitude field site have higher expression and methylation levels, suggestive of a broad-scale TE activation. Compared to the lowland population, plants native to the alpine environment harbor an excess of recent TE insertions, and we observe that specific TE families are enriched within environmentally responsive genes. Our findings provide insight into selective forces shaping plastic and genetic variation. We also highlight how plastic responses at TEs can rapidly create novel heritable variation in stressful conditions.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Weixuan Ning
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Nader Aryamanesh
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of OuluOuluFinland
| |
Collapse
|
47
|
Velay F, Méteignier LV, Laloi C. You shall not pass! A Chromatin barrier story in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:888102. [PMID: 36212303 PMCID: PMC9540200 DOI: 10.3389/fpls.2022.888102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
As in other eukaryotes, the plant genome is functionally organized in two mutually exclusive chromatin fractions, a gene-rich and transcriptionally active euchromatin, and a gene-poor, repeat-rich, and transcriptionally silent heterochromatin. In Drosophila and humans, the molecular mechanisms by which euchromatin is preserved from heterochromatin spreading have been extensively studied, leading to the identification of insulator DNA elements and associated chromatin factors (insulator proteins), which form boundaries between chromatin domains with antagonistic features. In contrast, the identity of factors assuring such a barrier function remains largely elusive in plants. Nevertheless, several genomic elements and associated protein factors have recently been shown to regulate the spreading of chromatin marks across their natural boundaries in plants. In this minireview, we focus on recent findings that describe the spreading of chromatin and propose avenues to improve the understanding of how plant chromatin architecture and transitions between different chromatin domains are defined.
Collapse
Affiliation(s)
- Florent Velay
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| | - Louis-Valentin Méteignier
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Christophe Laloi
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| |
Collapse
|
48
|
Mombach DM, da Fontoura Gomes TMF, Loreto ELS. Stress does not induce a general transcription of transposable elements in Drosophila. Mol Biol Rep 2022; 49:9033-9040. [PMID: 35980533 DOI: 10.1007/s11033-022-07839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Transposable elements, also known as "jumping genes," have the ability to hop within the host genome. Nonetheless, this capacity is kept in check by the host cell defense systems to avoid unbridled TE mobilization. Different types of stressors can activate TEs in Drosophila, suggesting that TEs may play an adaptive role in the stress response, especially in generating genetic variability for adaptive evolution. TE activation by stressors may also lead to the notion, usually found in the literature, that any form of stress could activate all or the majority of TEs. In this review, we define what stress is. We then present and discuss RNA sequencing results from several studies demonstrating that stress does not trigger TE transcription broadly in Drosophila. An explanation for the LTR order of TEs being the most overexpressed is also proposed.
Collapse
Affiliation(s)
- Daniela Moreira Mombach
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
49
|
López ME, Roquis D, Becker C, Denoyes B, Bucher E. DNA methylation dynamics during stress response in woodland strawberry ( Fragaria vesca). HORTICULTURE RESEARCH 2022; 9:uhac174. [PMID: 36204205 PMCID: PMC9533225 DOI: 10.1093/hr/uhac174] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 05/29/2023]
Abstract
Environmental stresses can result in a wide range of physiological and molecular responses in plants. These responses can also impact epigenetic information in genomes, especially at the level of DNA methylation (5-methylcytosine). DNA methylation is the hallmark heritable epigenetic modification and plays a key role in silencing transposable elements (TEs). Although DNA methylation is an essential epigenetic mechanism, fundamental aspects of its contribution to stress responses and adaptation remain obscure. We investigated epigenome dynamics of wild strawberry (Fragaria vesca) in response to variable ecologically relevant environmental conditions at the DNA methylation level. F. vesca methylome responded with great plasticity to ecologically relevant abiotic and hormonal stresses. Thermal stress resulted in substantial genome-wide loss of DNA methylation. Notably, all tested stress conditions resulted in marked hot spots of differential DNA methylation near centromeric or pericentromeric regions, particularly in the non-symmetrical DNA methylation context. Additionally, we identified differentially methylated regions (DMRs) within promoter regions of transcription factor (TF) superfamilies involved in plant stress-response and assessed the effects of these changes on gene expression. These findings improve our understanding on stress-response at the epigenome level by highlighting the correlation between DNA methylation, TEs and gene expression regulation in plants subjected to a broad range of environmental stresses.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - David Roquis
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Claude Becker
- LMU BioCenter, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
50
|
A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 2022; 219:1261-1271. [DOI: 10.1016/j.ijbiomac.2022.08.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
|