1
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Risato G, Brañas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M, Visentin S, Rizzo S, Thiene G, Basso C, Pilichou K, Tiso N, Celeghin R. In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models. Cells 2024; 13:1264. [PMID: 39120296 PMCID: PMC11311808 DOI: 10.3390/cells13151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
- Department of Biology, University of Padua, I-35131 Padua, Italy;
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | | | - Marco Cason
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Maria Bueno Marinas
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Serena Pinci
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Monica De Gaspari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Natascia Tiso
- Department of Biology, University of Padua, I-35131 Padua, Italy;
| | - Rudy Celeghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| |
Collapse
|
3
|
Hashimoto K, Ohira M, Kodama A, Kimoto M, Inoue M, Toné S, Usui Y, Hanashima A, Goto T, Ogura Y, Ujihara Y, Mohri S. Loss of connectin novex-3 leads to heart dysfunction associated with impaired cardiomyocyte proliferation and abnormal nuclear mechanics. Sci Rep 2024; 14:13727. [PMID: 38877142 PMCID: PMC11178842 DOI: 10.1038/s41598-024-64608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Momoko Ohira
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Mariko Inoue
- Central Research Institute, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shigenobu Toné
- Laboratory of Molecular Developmental Biology, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama, 350-0394, Japan
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Takato Goto
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yuhei Ogura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
4
|
Ghahremani S, Kanwal A, Pettinato A, Ladha F, Legere N, Thakar K, Zhu Y, Tjong H, Wilderman A, Stump WT, Greenberg L, Greenberg MJ, Cotney J, Wei CL, Hinson JT. CRISPR Activation Reverses Haploinsufficiency and Functional Deficits Caused by TTN Truncation Variants. Circulation 2024; 149:1285-1297. [PMID: 38235591 PMCID: PMC11031707 DOI: 10.1161/circulationaha.123.063972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND TTN truncation variants (TTNtvs) are the most common genetic lesion identified in individuals with dilated cardiomyopathy, a disease with high morbidity and mortality rates. TTNtvs reduce normal TTN (titin) protein levels, produce truncated proteins, and impair sarcomere content and function. Therapeutics targeting TTNtvs have been elusive because of the immense size of TTN, the rarity of specific TTNtvs, and incomplete knowledge of TTNtv pathogenicity. METHODS We adapted CRISPR activation using dCas9-VPR to functionally interrogate TTNtv pathogenicity and develop a therapeutic in human cardiomyocytes and 3-dimensional cardiac microtissues engineered from induced pluripotent stem cell models harboring a dilated cardiomyopathy-associated TTNtv. We performed guide RNA screening with custom TTN reporter assays, agarose gel electrophoresis to quantify TTN protein levels and isoforms, and RNA sequencing to identify molecular consequences of TTN activation. Cardiomyocyte epigenetic assays were also used to nominate DNA regulatory elements to enable cardiomyocyte-specific TTN activation. RESULTS CRISPR activation of TTN using single guide RNAs targeting either the TTN promoter or regulatory elements in spatial proximity to the TTN promoter through 3-dimensional chromatin interactions rescued TTN protein deficits disturbed by TTNtvs. Increasing TTN protein levels normalized sarcomere content and contractile function despite increasing truncated TTN protein. In addition to TTN transcripts, CRISPR activation also increased levels of myofibril assembly-related and sarcomere-related transcripts. CONCLUSIONS TTN CRISPR activation rescued TTNtv-related functional deficits despite increasing truncated TTN levels, which provides evidence to support haploinsufficiency as a relevant genetic mechanism underlying heterozygous TTNtvs. CRISPR activation could be developed as a therapeutic to treat a large proportion of TTNtvs.
Collapse
Affiliation(s)
| | - Aditya Kanwal
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Anthony Pettinato
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Feria Ladha
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Yanfen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Harianto Tjong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Andrea Wilderman
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin Cotney
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - J. Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
5
|
Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W. Titin: roles in cardiac function and diseases. Front Physiol 2024; 15:1385821. [PMID: 38660537 PMCID: PMC11040099 DOI: 10.3389/fphys.2024.1385821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.
Collapse
Affiliation(s)
- Dawson Stroik
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Farhan Raza
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Wei Guo
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Weston TGR, Rees M, Gautel M, Fraternali F. Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. WIREs Mech Dis 2024; 16:e1638. [PMID: 38155593 DOI: 10.1002/wsbm.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Timir G R Weston
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
8
|
Martinez-Martin I, Crousilles A, Ochoa JP, Velazquez-Carreras D, Mortensen SA, Herrero-Galan E, Delgado J, Dominguez F, Garcia-Pavia P, de Sancho D, Wilmanns M, Alegre-Cebollada J. Titin domains with reduced core hydrophobicity cause dilated cardiomyopathy. Cell Rep 2023; 42:113490. [PMID: 38052212 DOI: 10.1016/j.celrep.2023.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The underlying genetic defect in most cases of dilated cardiomyopathy (DCM), a common inherited heart disease, remains unknown. Intriguingly, many patients carry single missense variants of uncertain pathogenicity targeting the giant protein titin, a fundamental sarcomere component. To explore the deleterious potential of these variants, we first solved the wild-type and mutant crystal structures of I21, the titin domain targeted by pathogenic variant p.C3575S. Although both structures are remarkably similar, the reduced hydrophobicity of deeply buried position 3575 strongly destabilizes the mutant domain, a scenario supported by molecular dynamics simulations and by biochemical assays that show no disulfide involving C3575. Prompted by these observations, we have found that thousands of similar hydrophobicity-reducing variants associate specifically with DCM. Hence, our results imply that titin domain destabilization causes DCM, a conceptual framework that not only informs pathogenicity assessment of gene variants but also points to therapeutic strategies counterbalancing protein destabilization.
Collapse
Affiliation(s)
- Ines Martinez-Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Audrey Crousilles
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain; Health in Code, 15008 A Coruña, Spain
| | | | - Simon A Mortensen
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Elias Herrero-Galan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Javier Delgado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, 20018 Donostia-San Sebastian, Euskadi, Spain; Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | | |
Collapse
|
9
|
Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol Open 2023; 12:bio059905. [PMID: 37746814 PMCID: PMC10354717 DOI: 10.1242/bio.059905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 09/26/2023] Open
Abstract
Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.
Collapse
Affiliation(s)
- Jamison Leid
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Gray
- Departments of Nutritional Sciences, Dell Pediatrics Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Peter Rakita
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohan Tripathy
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A. J. Fitzpatrick
- Departments of Neuroscience and Cell Biology, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Kaufman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Banga S, Cardoso R, Castellani C, Srivastava S, Watkins J, Lima J. Cardiac MRI as an Imaging Tool in Titin Variant-Related Dilated Cardiomyopathy. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 52:86-93. [PMID: 36934006 DOI: 10.1016/j.carrev.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Dilated Cardiomyopathy is a common myocardial disease characterized by dilation and loss of function of one or both ventricles. A variety of etiologies have been implicated including genetic variation. Advancement in genetic sequencing, and diagnostic imaging allows for detection of genetic mutations in sarcomere protein titin (TTN) and high resolution assessment of cardiac function. This review article discusses the role of cardiac MRI in diagnosing dilated cardiomyopathy in patients with TTN variant related cardiomyopathy.
Collapse
Affiliation(s)
- Sandeep Banga
- Division of Cardiology, Michigan State University, Sparrow Hospital, Lansing, MI, USA.
| | | | - Carson Castellani
- Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shaurya Srivastava
- Division of Internal Medicine, Michigan State University, Lansing, MI, USA
| | - Jennifer Watkins
- Division of Cardiology, Michigan State University, Sparrow Hospital, Lansing, MI, USA
| | - Joao Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Li D, Wang C. Advances in symptomatic therapy for left ventricular non-compaction in children. Front Pediatr 2023; 11:1147362. [PMID: 37215603 PMCID: PMC10192632 DOI: 10.3389/fped.2023.1147362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Left ventricular non-compaction is a complex cardiomyopathy and the third largest childhood cardiomyopathy, for which limited knowledge is available. Both pathogenesis and prognosis are still under investigation. Currently, no effective treatment strategy exists to reduce its incidence or severity, and symptomatic treatment is the only clinical treatment strategy. Treatment strategies are constantly explored in clinical practice, and some progress has been made in coping with the corresponding symptoms because the prognosis of children with left ventricular non-compaction is usually poor if there are complications. In this review, we summarized and discussed the coping methods for different left ventricular non-compaction symptoms.
Collapse
Affiliation(s)
| | - Ce Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
13
|
Kim YG, Ha C, Shin S, Park JH, Jang JH, Kim JW. Enrichment of titin-truncating variants in exon 327 in dilated cardiomyopathy and its relevance to reduced nonsense-mediated mRNA decay efficiency. Front Genet 2023; 13:1087359. [PMID: 36685919 PMCID: PMC9845391 DOI: 10.3389/fgene.2022.1087359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Titin truncating variants (TTNtvs) are the most common genetic cause of dilated cardiomyopathy (DCM). Among four regions of titin, A-band enrichment of DCM-causing TTNtvs is widely accepted but the underlying mechanism is still unknown. Meanwhile, few reports have identified exon 327 as a highly mutated A-band exon but the degree of exon 327 enrichment has not been quantitatively investigated. To find the real hotspot of DCM-causing TTNtvs, we aimed to reassess the degree of TTNtv enrichment in known titin regions and in exon 327, separately. In addition, we tried to explain exon 327 clustering in terms of nonsense-mediated mRNA decay (NMD) efficiency and a dominant negative mechanism recently proposed. Research papers focusing on TTNtvs found in patients with DCM were collected. A total of 612 patients with TTNtv-realated DCM were obtained from 10 studies. In the four regions of TTN and exon 327, the degree of TTNtvs enrichment was calculated in a way that the effect of distribution of highly expressed exons was normalized. As a result, exon 327 was the only region that showed significant enrichment for DCM-related TTNtv (p < .001). On the other hand, other A-band exons had almost the same number of TTNtv of random distribution. A review of RNAseq data revealed that the median allelic imbalance deviation of exon 327 TTNtvs was .04, indicating almost zero NMD. From these findings, we propose that the widely accepted A-band enrichment of DCM-related TTNtv is mostly attributable to exon 327 enrichment. In addition, based on the recently demonstrated dominant negative mechanism, the extremely low NMD efficiency seems to contribute to exon 327 enrichment.
Collapse
Affiliation(s)
- Young-gon Kim
- Samsung Medical Center, Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Changhee Ha
- Samsung Medical Center, Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sunghwan Shin
- Samsung Medical Center, Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-ho Park
- Clinical Genomics Center, Samsung Medical Center, Seoul, South Korea
| | - Ja-Hyun Jang
- Samsung Medical Center, Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Won Kim
- Samsung Medical Center, Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea,Clinical Genomics Center, Samsung Medical Center, Seoul, South Korea,*Correspondence: Jong-Won Kim,
| |
Collapse
|
14
|
Optical transparency and label-free vessel imaging of zebrafish larvae in shortwave infrared range as a tool for prolonged studying of cardiovascular system development. Sci Rep 2022; 12:20884. [PMID: 36463350 PMCID: PMC9719527 DOI: 10.1038/s41598-022-25386-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Optical techniques are utilized for the non-invasive analysis of the zebrafish cardiovascular system at early developmental stages. Being based mainly on conventional optical microscopy components and image sensors, the wavelength range of the collected and analyzed light is not out of the scope of 400-900 nm. In this paper, we compared the non-invasive optical approaches utilizing visible and near infrared range (VISNIR) 400-1000 and the shortwave infrared range (SWIR) 900-1700 nm. The transmittance spectra of zebrafish tissues were measured in these wavelength ranges, then vessel maps, heart rates, and blood flow velocities were calculated from data in VISNIR and SWIR. An increased pigment pattern transparency was registered in SWIR, while the heart and vessel detection quality in this range is not inferior to VISNIR. Obtained results indicate an increased efficiency of SWIR imaging for monitoring heart function and hemodynamic analysis of zebrafish embryos and larvae and suggest a prolonged registration period in this range compared to other optical techniques that are limited by pigment pattern development.
Collapse
|
15
|
Krylov V, Machikhin A, Sizov D, Guryleva A, Sizova A, Zhdanova S, Tchougounov V, Burlakov A. Influence of hypomagnetic field on the heartbeat in zebrafish embryos. Front Physiol 2022; 13:1040083. [PMID: 36338501 PMCID: PMC9634549 DOI: 10.3389/fphys.2022.1040083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
The magnetic environment may influence the functioning of the cardiovascular system. It was reported that low-frequency and static magnetic fields affect hemodynamics, heart rate, and heart rate variability in animals and humans. Moreover, recent data suggest that magnetic fields affect the circadian rhythms of physiological processes. The influence of the magnetic environment on heart functionating during early development has been studied insufficiently. We utilized transparent zebrafish embryos to evaluate the effect of the hypomagnetic field on the characteristics of cardiac function using a noninvasive optical approach based on photoplethysmographic microscopic imaging. The embryos were exposed to the geomagnetic and hypomagnetic fields from the second to the 116th hour post fertilization under a 16 h light/8 h dark cycle or constant illumination. The exposure of embryos to the hypomagnetic field in both lighting modes led to increased embryo mortality, the appearance of abnormal phenotypes, and a significant increase in the embryo’s heartbeat rate. The difference between maximal and minimal heartbeat intervals, maximal to minimal heartbeat intervals ratio, and the coefficient of variation of heartbeat rate were increased in the embryos exposed to the hypomagnetic field under constant illumination from 96 to 116 h post fertilization. The dynamics of heartbeat rate changes followed a circadian pattern in all studied groups except zebrafish exposed to the hypomagnetic field under constant illumination. The results demonstrate the importance of natural magnetic background for the early development of zebrafish. The possible mechanisms of observed effects are discussed.
Collapse
Affiliation(s)
- Viacheslav Krylov
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- *Correspondence: Viacheslav Krylov,
| | - Alexander Machikhin
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Daniil Sizov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Anastasia Guryleva
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Sizova
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Svetlana Zhdanova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Vladimir Tchougounov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexander Burlakov
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Marcello M, Cetrangolo V, Savarese M, Udd B. Use of animal models to understand titin physiology and pathology. J Cell Mol Med 2022; 26:5103-5112. [PMID: 36065969 PMCID: PMC9575118 DOI: 10.1111/jcmm.17533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, increasing attention has been paid to titin (TTN) and its mutations. Heterozygous TTN truncating variants (TTNtv) increase the risk of a cardiomyopathy. At the same time, TTNtv and few missense variants have been identified in patients with mainly recessive skeletal muscle diseases. The pathogenic mechanisms underlying titin‐related diseases are still partly unknown. Similarly, the titin mechanical and functional role in the muscle contraction are far from being exhaustively clarified. In the last few years, several animal models carrying variants in the titin gene have been developed and characterized to study the structural and mechanical properties of specific titin domains or to mimic patients' mutations. This review describes the main animal models so far characterized, including eight mice models and three fish models (Medaka and Zebrafish) and discusses the useful insights provided by a thorough characterization of the cell‐, tissue‐ and organism‐phenotypes in these models.
Collapse
Affiliation(s)
| | | | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
17
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Truncating TTN variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy (DCM), but the underlying mechanisms are incompletely understood and effective therapeutic strategies are lacking. Here we review recent data that shed new light on the functional consequences of TTNtv and how these effects may vary with mutation location. RECENT FINDINGS Whether TTNtv act by haploinsufficiency or dominant negative effects has been hotly debated. New evidence now implicates both mechanisms in TTNtv-related DCM, showing reduced titin content and persistent truncated titin that may be incorporated into protein aggregates. The extent to which aggregate formation and protein quality control defects differ with TTNtv location and contribute to contractile dysfunction is unresolved. TTNtv-associated DCM has a complex etiology that involves varying combinations of wild-type titin deficiency and dominant negative effects of truncated mutant titin. Therapeutic strategies to improve protein handling may be beneficial in some cases.
Collapse
|
19
|
Exploring the Potential of Symmetric Exon Deletion to Treat Non-Ischemic Dilated Cardiomyopathy by Removing Frameshift Mutations in TTN. Genes (Basel) 2022; 13:genes13061093. [PMID: 35741855 PMCID: PMC9222585 DOI: 10.3390/genes13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) is one of the most frequent pathologies requiring cardiac transplants. Even though the etiology of this disease is complex, frameshift mutations in the giant sarcomeric protein Titin could explain up to 25% of the familial and 18% of the sporadic cases of DCM. Many studies have shown the potential of genome editing using CRISPR/Cas9 to correct truncating mutations in sarcomeric proteins and have established the grounds for myoediting. However, these therapies are still in an immature state, with only few studies showing an efficient treatment of cardiac diseases. This publication hypothesizes that the Titin (TTN)-specific gene structure allows the application of myoediting approaches in a broad range of locations to reframe TTNtvvariants and to treat DCM patients. Additionally, to pave the way for the generation of efficient myoediting approaches for DCM, we screened and selected promising target locations in TTN. We conceptually explored the deletion of symmetric exons as a therapeutic approach to restore TTN’s reading frame in cases of frameshift mutations. We identified a set of 94 potential candidate exons of TTN that we consider particularly suitable for this therapeutic deletion. With this study, we aim to contribute to the development of new therapies to efficiently treat titinopathies and other diseases caused by mutations in genes encoding proteins with modular structures, e.g., Obscurin.
Collapse
|
20
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
21
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
El Kadiri Y, Ratbi I, Sefiani A, Lyahyai J. Clinical and molecular genetic analysis of early-onset myopathy with fatal cardiomyopathy: Novel biallelic M-line TTN mutation and review of the literature. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Romano R, Ghahremani S, Zimmerman T, Legere N, Thakar K, Ladha FA, Pettinato AM, Hinson JT. Reading Frame Repair of TTN Truncation Variants Restores Titin Quantity and Functions. Circulation 2022; 145:194-205. [PMID: 34905694 PMCID: PMC8766920 DOI: 10.1161/circulationaha.120.049997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Titin truncation variants (TTNtvs) are the most common inheritable risk factor for dilated cardiomyopathy (DCM), a disease with high morbidity and mortality. The pathogenicity of TTNtvs has been associated with structural localization as A-band variants overlapping myosin heavy chain-binding domains are more pathogenic than I-band variants by incompletely understood mechanisms. Demonstrating why A-band variants are highly pathogenic for DCM could reveal new insights into DCM pathogenesis, titin (TTN) functions, and therapeutic targets. METHODS We constructed human cardiomyocyte models harboring DCM-associated TTNtvs within A-band and I-band structural domains using induced pluripotent stem cell and CRISPR technologies. We characterized normal TTN isoforms and variant-specific truncation peptides by their expression levels and cardiomyocyte localization using TTN protein gel electrophoresis and immunofluorescence, respectively. Using CRISPR to ablate A-band variant-specific truncation peptides through introduction of a proximal I-band TTNtv, we studied genetic mechanisms in single cardiomyocyte and 3-dimensional, biomimetic cardiac microtissue functional assays. Last, we engineered a full-length TTN protein reporter assay and used next-generation sequencing assays to develop a CRISPR therapeutic for somatic cell genome editing TTNtvs. RESULTS An A-band TTNtv dose-dependently impaired cardiac microtissue twitch force, reduced full-length TTN levels, and produced abundant TTN truncation peptides. TTN truncation peptides integrated into nascent myofibril-like structures and impaired myofibrillogenesis. CRISPR ablation of TTN truncation peptides using a proximal I-band TTNtv partially restored cardiac microtissue twitch force deficits. Cardiomyocyte genome editing using SpCas9 and a TTNtv-specific guide RNA restored the TTN protein reading frame, which increased full-length TTN protein levels, reduced TTN truncation peptides, and increased sarcomere function in cardiac microtissue assays. CONCLUSIONS An A-band TTNtv diminished sarcomere function greater than an I-band TTNtv in proportion to estimated DCM pathogenicity. Although both TTNtvs resulted in full-length TTN haploinsufficiency, only the A-band TTNtv produced TTN truncation peptides that impaired myofibrillogenesis and sarcomere function. CRISPR-mediated reading frame repair of the A-band TTNtv restored functional deficits, and could be adapted as a one-and-done genome editing strategy to target ≈30% of DCM-associated TTNtvs.
Collapse
Affiliation(s)
- Robert Romano
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Talia Zimmerman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Feria A. Ladha
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - J. Travis Hinson
- University of Connecticut Health Center, Farmington, CT 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
24
|
Gauvrit S, Bossaer J, Lee J, Collins MM. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis 2022; 9:jcdd9010013. [PMID: 35050223 PMCID: PMC8779270 DOI: 10.3390/jcdd9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.
Collapse
|
25
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Fomin A, Gärtner A, Cyganek L, Tiburcy M, Tuleta I, Wellers L, Folsche L, Hobbach AJ, von Frieling-Salewsky M, Unger A, Hucke A, Koser F, Kassner A, Sielemann K, Streckfuß-Bömeke K, Hasenfuss G, Goedel A, Laugwitz KL, Moretti A, Gummert JF, Dos Remedios CG, Reinecke H, Knöll R, van Heesch S, Hubner N, Zimmermann WH, Milting H, Linke WA. Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations. Sci Transl Med 2021; 13:eabd3079. [PMID: 34731013 DOI: 10.1126/scitranslmed.abd3079] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andrey Fomin
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Stem Cell Unit, University Medical Center, 37075 Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany
| | - Malte Tiburcy
- German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany
| | - Izabela Tuleta
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, 48149 University Hospital Münster, Münster, Germany
| | - Luisa Wellers
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Lina Folsche
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, 48149 University Hospital Münster, Münster, Germany
| | | | - Andreas Unger
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Anna Hucke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Franziska Koser
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Astrid Kassner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Katharina Sielemann
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Katrin Streckfuß-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany
| | - Alexander Goedel
- First Medical Department, Cardiology, Technical University of Munich, 81675 Munich, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Munich, Germany.,Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Karl-Ludwig Laugwitz
- First Medical Department, Cardiology, Technical University of Munich, 81675 Munich, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Munich, Germany.,Munich Heart Alliance, 80802 Munich, Germany
| | - Alessandra Moretti
- First Medical Department, Cardiology, Technical University of Munich, 81675 Munich, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Munich, Germany.,Munich Heart Alliance, 80802 Munich, Germany
| | - Jan F Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany.,Department of Cardio-Thoracic Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | | | - Holger Reinecke
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, 48149 University Hospital Münster, Münster, Germany
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, S-17177 Stockholm, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Sebastiaan van Heesch
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Berlin, Germany.,Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, Netherlands
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Berlin, Germany.,Charité-Universitätsmedizin, 10117 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Wolfram H Zimmermann
- German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, 37073 Göttingen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Wolfgang A Linke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Institute of Physiology II, University of Münster, 48149 Münster, Germany
| |
Collapse
|
27
|
Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 2021; 118:2903-2918. [PMID: 34662387 PMCID: PMC9648829 DOI: 10.1093/cvr/cvab328] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.
Collapse
Affiliation(s)
- Christine M Loescher
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| |
Collapse
|
28
|
Powers JD, Malingen SA, Regnier M, Daniel TL. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annu Rev Biophys 2021; 50:373-400. [PMID: 33637009 DOI: 10.1146/annurev-biophys-110320-062613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sage A Malingen
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
29
|
Xiao L, Li C, Sun Y, Chen Y, Wei H, Hu D, Yu T, Li X, Jin L, Shi L, Marian AJ, Wang DW. Clinical Significance of Variants in the TTN Gene in a Large Cohort of Patients With Sporadic Dilated Cardiomyopathy. Front Cardiovasc Med 2021; 8:657689. [PMID: 33996946 PMCID: PMC8120103 DOI: 10.3389/fcvm.2021.657689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mutations in the TTN gene are the most common causes of dilated cardiomyopathy (DCM). The clinical significance of TTN gene variants remains inadequately understood. Methods: Whole-exome sequencing and phenotypic characterisation were performed, and patients were followed up for a median of 44 months. Results: We analyzed the association of the TTN variants with the clinical outcomes in a prospective study of 1,041 patients with sporadic DCM. TTN truncating variants (tTTN) were detected in 120 (11.5%) patients as compared with 2.4/10,000 East Asian populations in the Genome Aggregation Database (GnomAD; p < 0.0001). Pathogenic TTN missense variants were also enriched in DCM as compared with the GnomAD populations (27.6 vs. 5.9%, p < 0.0001). DCM patients with tTTN had a lower left ventricular ejection fraction (28.89 ± 8.72 vs. 31.81 ± 9.97, p = 0.002) and a lower frequency of the left bundle branch block (3.3 vs. 11.3%, p = 0.011) than those without or with mutations in other known causal genes (OCG). However, tTTN were not associated with the composite primary endpoint of cardiac death and heart transplantation during the follow-up period [adjusted hazard ratio (HR): 0.912; 95% confidence interval: 0.464–1.793; p = 0.790]. There was also no sex-dependent effect. Concomitant tTTN and pathogenic variants in OCG were present in only eight DCM patients and did not affect the outcome. Conclusion: The phenotype of DCM caused by tTTN, major causes of sporadic DCM, is not distinctly different from those caused by other causal genes for DCM.
Collapse
Affiliation(s)
- Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqing Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Li Jin
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Leming Shi
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ali J Marian
- Center for Cardiovascular Genetics, Houston, TX, United States
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Santiago CF, Huttner IG, Fatkin D. Mechanisms of TTNtv-Related Dilated Cardiomyopathy: Insights from Zebrafish Models. J Cardiovasc Dev Dis 2021; 8:jcdd8020010. [PMID: 33504111 PMCID: PMC7912658 DOI: 10.3390/jcdd8020010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the TTN gene, which encodes the giant sarcomeric protein titin (TTNtv), are the most common genetic cause of DCM, but exactly how TTNtv promote cardiomyocyte dysfunction is not known. Although rodent models have been widely used to investigate titin biology, they have had limited utility for TTNtv-related DCM. In recent years, zebrafish (Danio rerio) have emerged as a powerful alternative model system for studying titin function in the healthy and diseased heart. Optically transparent embryonic zebrafish models have demonstrated key roles of titin in sarcomere assembly and cardiac development. The increasing availability of sophisticated imaging tools for assessment of heart function in adult zebrafish has revolutionized the field and opened new opportunities for modelling human genetic disorders. Genetically modified zebrafish that carry a human A-band TTNtv have now been generated and shown to spontaneously develop DCM with age. This zebrafish model will be a valuable resource for elucidating the phenotype modifying effects of genetic and environmental factors, and for exploring new drug therapies.
Collapse
Affiliation(s)
- Celine F. Santiago
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Inken G. Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cardiology Department, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- Correspondence:
| |
Collapse
|
31
|
Does Cronos hypothesis contribute to the understanding the role of Titin in dilated cardiomyopathy? Int J Cardiol 2020; 321:129. [PMID: 32712113 DOI: 10.1016/j.ijcard.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
|
32
|
Gacita AM, Dellefave-Castillo L, Page PGT, Barefield DY, Wasserstrom JA, Puckelwartz MJ, Nobrega MA, McNally EM. Altered Enhancer and Promoter Usage Leads to Differential Gene Expression in the Normal and Failed Human Heart. Circ Heart Fail 2020; 13:e006926. [PMID: 32993371 PMCID: PMC7577963 DOI: 10.1161/circheartfailure.120.006926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The failing heart is characterized by changes in gene expression. However, the regulatory regions of the genome that drive these gene expression changes have not been well defined in human hearts. METHODS To define genome-wide enhancer and promoter use in heart failure, cap analysis of gene expression sequencing was applied to 3 healthy and 4 failed human hearts to identify promoter and enhancer regions used in left ventricles. Healthy hearts were derived from donors unused for transplantation and failed hearts were obtained as discarded tissue after transplantation. RESULTS Cap analysis of gene expression sequencing identified a combined potential for ≈23 000 promoters and ≈5000 enhancers active in human left ventricles. Of these, 17 000 promoters and 1800 enhancers had additional support for their regulatory function. Comparing promoter usage between healthy and failed hearts highlighted promoter shifts which altered aminoterminal protein sequences. Enhancer usage between healthy and failed hearts identified a majority of differentially used heart failure enhancers were intronic and primarily localized within the first intron, revealing this position as a common feature associated with tissue-specific gene expression changes in the heart. CONCLUSIONS This data set defines the dynamic genomic regulatory landscape underlying heart failure and serves as an important resource for understanding genetic contributions to cardiac dysfunction. Additionally, regulatory changes contributing to heart failure are attractive therapeutic targets for controlling ventricular remodeling and clinical progression.
Collapse
Affiliation(s)
- Anthony M Gacita
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - Patrick G T Page
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - David Y Barefield
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - J Andrew Wasserstrom
- Department of Medicine (Cardiology) (J.A.W.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - Megan J Puckelwartz
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | | | - Elizabeth M McNally
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
33
|
Akhtar MM, Lorenzini M, Cicerchia M, Ochoa JP, Hey TM, Sabater Molina M, Restrepo-Cordoba MA, Dal Ferro M, Stolfo D, Johnson R, Larrañaga-Moreira JM, Robles-Mezcua A, Rodriguez-Palomares JF, Casas G, Peña-Peña ML, Lopes LR, Gallego-Delgado M, Franaszczyk M, Laucey G, Rangel-Sousa D, Basurte M, Palomino-Doza J, Villacorta E, Bilinska Z, Limeres Freire J, Garcia Pinilla JM, Barriales-Villa R, Fatkin D, Sinagra G, Garcia-Pavia P, Gimeno JR, Mogensen J, Monserrat L, Elliott PM. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene. Circ Heart Fail 2020; 13:e006832. [PMID: 32964742 DOI: 10.1161/circheartfailure.119.006832] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Truncating variants in the TTN gene (TTNtv) are the commonest cause of heritable dilated cardiomyopathy. This study aimed to study the phenotypes and outcomes of TTNtv carriers. METHODS Five hundred thirty-seven individuals (61% men; 317 probands) with TTNtv were recruited in 14 centers (372 [69%] with baseline left ventricular systolic dysfunction [LVSD]). Baseline and longitudinal clinical data were obtained. The primary end point was a composite of malignant ventricular arrhythmia and end-stage heart failure. The secondary end point was left ventricular reverse remodeling (left ventricular ejection fraction increase by ≥10% or normalization to ≥50%). RESULTS Median follow-up was 49 (18-105) months. Men developed LVSD more frequently and earlier than women (45±14 versus 49±16 years, respectively; P=0.04). By final evaluation, 31%, 45%, and 56% had atrial fibrillation, frequent ventricular ectopy, and nonsustained ventricular tachycardia, respectively. Seventy-six (14.2%) individuals reached the primary end point (52 [68%] end-stage heart failure events, 24 [32%] malignant ventricular arrhythmia events). Malignant ventricular arrhythmia end points most commonly occurred in patients with severe LVSD. Male sex (hazard ratio, 1.89 [95% CI, 1.04-3.44]; P=0.04) and left ventricular ejection fraction (per 10% decrement from left ventricular ejection fraction, 50%; hazard ratio, 1.63 [95% CI, 1.30-2.04]; P<0.001) were independent predictors of the primary end point. Two hundred seven of 300 (69%) patients with LVSD had evidence of left ventricular reverse remodeling. In a subgroup of 29 of 74 (39%) patients with initial left ventricular reverse remodeling, there was a subsequent left ventricular ejection fraction decrement. TTNtv location was not associated with statistically significant differences in baseline clinical characteristics, left ventricular reverse remodeling, or outcomes on multivariable analysis (P=0.07). CONCLUSIONS TTNtv is characterized by frequent arrhythmia, but malignant ventricular arrhythmias are most commonly associated with severe LVSD. Male sex and LVSD are independent predictors of outcomes. Mutation location does not impact clinical phenotype or outcomes.
Collapse
Affiliation(s)
- Mohammed Majid Akhtar
- Department of Inherited Cardiovascular Diseases, Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.).,Institute of Cardiovascular Science, University College London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.)
| | - Massimiliano Lorenzini
- Department of Inherited Cardiovascular Diseases, Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.).,Institute of Cardiovascular Science, University College London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.)
| | - Marcos Cicerchia
- Health in Code S.L. Scientific Department, A Coruña, Spain (M.C., J.P.O., L.M.).,Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidade da Coruña, Spain (M.C., J.P.O., L.M.)
| | - Juan Pablo Ochoa
- Health in Code S.L. Scientific Department, A Coruña, Spain (M.C., J.P.O., L.M.).,Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidade da Coruña, Spain (M.C., J.P.O., L.M.)
| | - Thomas Morris Hey
- Department of Cardiology, Odense University Hospital, Denmark (T.M.H., J.M.).,Odense Patient Data Explorative Network, University of Southern Denmark (T.M.H., J.M.)
| | - Maria Sabater Molina
- Inherited Cardiac Disease Unit, Hospital Universitario Virgen Arrixaca, Murcia, Spain (M.S.M., J.R.G.)
| | - Maria Alejandra Restrepo-Cordoba
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (M.A.R.-C., P.G.-P.).,Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain (M.A.R.-C., P.G.-P.)
| | - Matteo Dal Ferro
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata of Trieste, Trieste Hospital, Italy (M.D.F., D.S., G.S.)
| | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata of Trieste, Trieste Hospital, Italy (M.D.F., D.S., G.S.)
| | - Renee Johnson
- Molecular Cardiology and Biophysics Division (R.J.), Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - José M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares/Cardiology Service, CIBERCV, Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidade da Coruña, Spain (J.M.L.-M., R.B.-V.)
| | - Ainhoa Robles-Mezcua
- Heart Failure and Familial Heart Diseases Unit, Cardiology Department, Hospital Universitario Virgen de la Victoria, CIBERCV, IBIMA, Malaga, Spain (A.R.-M., J.M.G.P.)
| | - Jose F Rodriguez-Palomares
- Department of Cardiology, Vall d' Hebron Institut de Recerca, Hospital Universitari Vall d' Hebron, Universitat Autònoma de Barcelona, Spain (J.F.R.-P., G.C., J.L.F.)
| | - Guillem Casas
- Department of Cardiology, Vall d' Hebron Institut de Recerca, Hospital Universitari Vall d' Hebron, Universitat Autònoma de Barcelona, Spain (J.F.R.-P., G.C., J.L.F.)
| | - Maria Luisa Peña-Peña
- Heart Failure and Heart Transplantation Unit, Virgen del Rocio University Hospital, Sevilla, Spain (M.L.P.-P., D.R.-S.)
| | - Luis Rocha Lopes
- Department of Inherited Cardiovascular Diseases, Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.).,Institute of Cardiovascular Science, University College London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.)
| | - Maria Gallego-Delgado
- Inherited Cardiovascular Disease Unit, Cardiology Department, Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, Spain (M.G.-D., E.V.)
| | - Maria Franaszczyk
- Department of Medical Biology (M.F.), Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Gemma Laucey
- Complejo Hospitalario de Navarra, Pamplona, Spain (G.L., M.B.)
| | - Diego Rangel-Sousa
- Heart Failure and Heart Transplantation Unit, Virgen del Rocio University Hospital, Sevilla, Spain (M.L.P.-P., D.R.-S.)
| | - Mayte Basurte
- Complejo Hospitalario de Navarra, Pamplona, Spain (G.L., M.B.)
| | - Julian Palomino-Doza
- Inherited Cardiac Disease Unit, Instituto de investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain (J.P.-D.).,Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, CIBERCV, Madrid, Spain (J.P.-D.)
| | - Eduardo Villacorta
- Inherited Cardiovascular Disease Unit, Cardiology Department, Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, Spain (M.G.-D., E.V.)
| | - Zofia Bilinska
- Unit for Screening Studies in Inherited Cardiovascular Diseases (Z.B.), Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Javier Limeres Freire
- Department of Cardiology, Vall d' Hebron Institut de Recerca, Hospital Universitari Vall d' Hebron, Universitat Autònoma de Barcelona, Spain (J.F.R.-P., G.C., J.L.F.)
| | - José M Garcia Pinilla
- Heart Failure and Familial Heart Diseases Unit, Cardiology Department, Hospital Universitario Virgen de la Victoria, CIBERCV, IBIMA, Malaga, Spain (A.R.-M., J.M.G.P.)
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares/Cardiology Service, CIBERCV, Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidade da Coruña, Spain (J.M.L.-M., R.B.-V.)
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division (D.F.), Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (D.F.).,Cardiology Department, St. Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata of Trieste, Trieste Hospital, Italy (M.D.F., D.S., G.S.)
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (M.A.R.-C., P.G.-P.).,Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain (M.A.R.-C., P.G.-P.)
| | - Juan R Gimeno
- Inherited Cardiac Disease Unit, Hospital Universitario Virgen Arrixaca, Murcia, Spain (M.S.M., J.R.G.)
| | - Jens Mogensen
- Department of Cardiology, Odense University Hospital, Denmark (T.M.H., J.M.).,Odense Patient Data Explorative Network, University of Southern Denmark (T.M.H., J.M.)
| | - Lorenzo Monserrat
- Health in Code S.L. Scientific Department, A Coruña, Spain (M.C., J.P.O., L.M.).,Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidade da Coruña, Spain (M.C., J.P.O., L.M.)
| | - Perry M Elliott
- Department of Inherited Cardiovascular Diseases, Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.).,Institute of Cardiovascular Science, University College London, United Kingdom (M.M.A., M.L., L.R.L., P.M.E.)
| |
Collapse
|
34
|
Swist S, Unger A, Li Y, Vöge A, von Frieling-Salewsky M, Skärlén Å, Cacciani N, Braun T, Larsson L, Linke WA. Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nat Commun 2020; 11:4479. [PMID: 32900999 PMCID: PMC7478974 DOI: 10.1038/s41467-020-18131-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The giant protein titin is thought to be required for sarcomeric integrity in mature myocytes, but direct evidence for this hypothesis is limited. Here, we describe a mouse model in which Z-disc-anchored TTN is depleted in adult skeletal muscles. Inactivation of TTN causes sarcomere disassembly and Z-disc deformations, force impairment, myocyte de-stiffening, upregulation of TTN-binding mechanosensitive proteins and activation of protein quality-control pathways, concomitant with preferential loss of thick-filament proteins. Interestingly, expression of the myosin-bound Cronos-isoform of TTN, generated from an alternative promoter not affected by the targeting strategy, does not prevent deterioration of sarcomere formation and maintenance. Finally, we demonstrate that loss of Z-disc-anchored TTN recapitulates muscle remodeling in critical illness ‘myosinopathy’ patients, characterized by TTN-depletion and loss of thick filaments. We conclude that full-length TTN is required to integrate Z-disc and A-band proteins into the mature sarcomere, a function that is lost when TTN expression is pathologically lowered. Titin is considered an integrator of muscle cell proteins but direct evidence is limited. Here, titin is inactivated in adult mouse muscles, which causes sarcomere disassembly, protein mis-expression and force impairment, recapitulating key alterations in critical illness myopathy patient muscles.
Collapse
Affiliation(s)
- Sandra Swist
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany.
| | - Andreas Unger
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Anja Vöge
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | | | - Åsa Skärlén
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231, Bad Nauheim, Germany
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany.
| |
Collapse
|
35
|
Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 2020; 9:jcm9092770. [PMID: 32859027 PMCID: PMC7564493 DOI: 10.3390/jcm9092770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin’s length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin’s mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin’s contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.
Collapse
|
36
|
Hall TE, Martel N, Ariotti N, Xiong Z, Lo HP, Ferguson C, Rae J, Lim YW, Parton RG. In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nat Commun 2020; 11:3711. [PMID: 32709891 PMCID: PMC7381618 DOI: 10.1038/s41467-020-17486-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
The skeletal muscle T-tubule is a specialized membrane domain essential for coordinated muscle contraction. However, in the absence of genetically tractable systems the mechanisms involved in T-tubule formation are unknown. Here, we use the optically transparent and genetically tractable zebrafish system to probe T-tubule development in vivo. By combining live imaging of transgenic markers with three-dimensional electron microscopy, we derive a four-dimensional quantitative model for T-tubule formation. To elucidate the mechanisms involved in T-tubule formation in vivo, we develop a quantitative screen for proteins that associate with and modulate early T-tubule formation, including an overexpression screen of the entire zebrafish Rab protein family. We propose an endocytic capture model involving firstly, formation of dynamic endocytic tubules at transient nucleation sites on the sarcolemma, secondly, stabilization by myofibrils/sarcoplasmic reticulum and finally, delivery of membrane from the recycling endosome and Golgi complex.
Collapse
Affiliation(s)
- Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
37
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
38
|
Rivas-Pardo JA, Li Y, Mártonfalvi Z, Tapia-Rojo R, Unger A, Fernández-Trasancos Á, Herrero-Galán E, Velázquez-Carreras D, Fernández JM, Linke WA, Alegre-Cebollada J. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat Commun 2020; 11:2060. [PMID: 32345978 PMCID: PMC7189229 DOI: 10.1038/s41467-020-15465-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jaime Andrés Rivas-Pardo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Center for Genomics and Bioinformatics, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Yong Li
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | | | | | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | | |
Collapse
|
39
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
40
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
41
|
Nguyen Q, Lim KRQ, Yokota T. Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies. Int J Mol Sci 2020; 21:E733. [PMID: 31979133 PMCID: PMC7036815 DOI: 10.3390/ijms21030733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathies are diseases of heart muscle, a significant percentage of which are genetic in origin. Cardiomyopathies can be classified as dilated, hypertrophic, restrictive, arrhythmogenic right ventricular or left ventricular non-compaction, although mixed morphologies are possible. A subset of neuromuscular disorders, notably Duchenne and Becker muscular dystrophies, are also characterized by cardiomyopathy aside from skeletal myopathy. The global burden of cardiomyopathies is certainly high, necessitating further research and novel therapies. Genome editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as increasingly important technologies in studying this group of cardiovascular disorders. In this review, we discuss the applications of genome editing in the understanding and treatment of cardiomyopathy. We also describe recent advances in genome editing that may help improve these applications, and some future prospects for genome editing in cardiomyopathy treatment.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
42
|
Poetsch MS, Guan K. iPSCs for modeling of sarcomeric cardiomyopathies. RECENT ADVANCES IN IPSC DISEASE MODELING, VOLUME 1 2020:237-273. [DOI: 10.1016/b978-0-12-822227-0.00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Resolving titin's lifecycle and the spatial organization of protein turnover in mouse cardiomyocytes. Proc Natl Acad Sci U S A 2019; 116:25126-25136. [PMID: 31757849 DOI: 10.1073/pnas.1904385116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiac protein homeostasis, sarcomere assembly, and integration of titin as the sarcomeric backbone are tightly regulated to facilitate adaptation and repair. Very little is known on how the >3-MDa titin protein is synthesized, moved, inserted into sarcomeres, detached, and degraded. Here, we generated a bifluorescently labeled knockin mouse to simultaneously visualize both ends of the molecule and follow titin's life cycle in vivo. We find titin mRNA, protein synthesis and degradation compartmentalized toward the Z-disk in adult, but not embryonic cardiomyocytes. Originating at the Z-disk, titin contributes to a soluble protein pool (>15% of total titin) before it is integrated into the sarcomere lattice. Titin integration, disintegration, and reintegration are stochastic and do not proceed sequentially from Z-disk to M-band, as suggested previously. Exchange between soluble and integrated titin depends on titin protein composition and differs between individual cardiomyocytes. Thus, titin dynamics facilitate embryonic vs. adult sarcomere remodeling with implications for cardiac development and disease.
Collapse
|
44
|
Zaunbrecher RJ, Abel AN, Beussman K, Leonard A, von Frieling-Salewsky M, Fields PA, Pabon L, Reinecke H, Yang X, Macadangdang J, Kim DH, Linke WA, Sniadecki NJ, Regnier M, Murry CE. Cronos Titin Is Expressed in Human Cardiomyocytes and Necessary for Normal Sarcomere Function. Circulation 2019; 140:1647-1660. [PMID: 31587567 PMCID: PMC6911360 DOI: 10.1161/circulationaha.119.039521] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The giant sarcomere protein titin is important in both heart health and disease. Mutations in the gene encoding for titin (TTN) are the leading known cause of familial dilated cardiomyopathy. The uneven distribution of these mutations within TTN motivated us to seek a more complete understanding of this gene and the isoforms it encodes in cardiomyocyte (CM) sarcomere formation and function. METHODS To investigate the function of titin in human CMs, we used CRISPR/Cas9 to generate homozygous truncations in the Z disk (TTN-Z-/-) and A-band (TTN-A-/-) regions of the TTN gene in human induced pluripotent stem cells. The resulting CMs were characterized with immunostaining, engineered heart tissue mechanical measurements, and single-cell force and calcium measurements. RESULTS After differentiation, we were surprised to find that despite the more upstream mutation, TTN-Z-/--CMs had sarcomeres and visibly contracted, whereas TTN-A-/--CMs did not. We hypothesized that sarcomere formation was caused by the expression of a recently discovered isoform of titin, Cronos, which initiates downstream of the truncation in TTN-Z-/--CMs. Using a custom Cronos antibody, we demonstrate that this isoform is expressed and integrated into myofibrils in human CMs. TTN-Z-/--CMs exclusively express Cronos titin, but these cells produce lower contractile force and have perturbed myofibril bundling compared with controls expressing both full-length and Cronos titin. Cronos titin is highly expressed in human fetal cardiac tissue, and when knocked out in human induced pluripotent stem cell derived CMs, these cells exhibit reduced contractile force and myofibrillar disarray despite the presence of full-length titin. CONCLUSIONS We demonstrate that Cronos titin is expressed in developing human CMs and is able to support partial sarcomere formation in the absence of full-length titin. Furthermore, Cronos titin is necessary for proper sarcomere function in human induced pluripotent stem cell derived CMs. Additional investigation is necessary to understand the molecular mechanisms of this novel isoform and how it contributes to human cardiac disease.
Collapse
Affiliation(s)
- Rebecca J. Zaunbrecher
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Ashley N. Abel
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Kevin Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | | | - Paul A. Fields
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, D-48149 Muenster, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Goettingen, Germany
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA
| |
Collapse
|
45
|
Pott A, Rottbauer W, Just S. Streamlining drug discovery assays for cardiovascular disease using zebrafish. Expert Opin Drug Discov 2019; 15:27-37. [PMID: 31570020 DOI: 10.1080/17460441.2020.1671351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, our armamentarium of cardiovascular drug therapy has expanded significantly. Using innovative functional genomics strategies such as genome editing by CRISPR/Cas9 as well as high-throughput assays to identify bioactive small chemical compounds has significantly facilitated elaboration of the underlying pathomechanism in various cardiovascular diseases. However, despite scientific progress approvals for cardiovascular drugs has stagnated significantly compared to other fields of drug discovery and therapy during the past years.Areas covered: In this review, the authors discuss the aspects and pitfalls during the early phase of cardiovascular drug discovery and describe the advantages of zebrafish as an in vivo organism to model human cardiovascular diseases (CVD) as well as an in vivo platform for high-throughput chemical compound screening. They also highlight the emerging, promising techniques of automated read-out systems during high-throughput screening (HTS) for the evaluation of important cardiac functional parameters in zebrafish with the potential to streamline CVD drug discovery.Expert opinion: The successful identification of novel drugs to treat CVD is a major challenge in modern biomedical and clinical research. In this context, the definition of the etiologic fundamentals of human cardiovascular diseases is the prerequisite for an efficient and straightforward drug discovery.
Collapse
Affiliation(s)
- Alexander Pott
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany.,Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
46
|
Huttner IG, Wang LW, Santiago CF, Horvat C, Johnson R, Cheng D, von Frieling-Salewsky M, Hillcoat K, Bemand TJ, Trivedi G, Braet F, Hesselson D, Alford K, Hayward CS, Seidman JG, Seidman CE, Feneley MP, Linke WA, Fatkin D. A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002135. [PMID: 30354343 DOI: 10.1161/circgen.118.002135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.
Collapse
Affiliation(s)
- Inken G Huttner
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.)
| | - Louis W Wang
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - Celine F Santiago
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.)
| | - Claire Horvat
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Renee Johnson
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Delfine Cheng
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia (D.C., F.B.)
| | | | - Karen Hillcoat
- Kevin Alford Cardiology, Port Macquarie, NSW Australia (K.H., K.A.)
| | - Timothy J Bemand
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Gunjan Trivedi
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.)
| | - Filip Braet
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia (D.C., F.B.).,Cellular Imaging Facility, Charles Perkins Centre (F.B.).,Australian Centre for Microscopy and Microanalysis (F.B.)
| | - Dan Hesselson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,University of Sydney, Camperdown, NSW, Australia. Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia (D.H.)
| | - Kevin Alford
- Kevin Alford Cardiology, Port Macquarie, NSW Australia (K.H., K.A.)
| | - Christopher S Hayward
- Cardiac Physiology and Transplantation Division (C.S.H., M.P.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - J G Seidman
- Howard Hughes Medical Institute, MD (J.G.S.).,Department of Genetics, Harvard Medical School (J.G.S., C.E.S.)
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School (J.G.S., C.E.S.).,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.)
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division (C.S.H., M.P.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Germany (M.v.F.-S., W.A.L.)
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division (I.G.H., L.W.W., C.F.S., C.H., R.J., T.J.B., G.T., D.F.).,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington (I.G.H., L.W.W., C.F.S., D.H., C.S.H., M.P.F., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (L.W.W., C.S.H., M.P.F., D.F.)
| |
Collapse
|
47
|
Li Q, Qin Z, Wang Q, Xu T, Yang Y, He Z. Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Comput Struct Biotechnol J 2019; 17:689-698. [PMID: 31303973 PMCID: PMC6603303 DOI: 10.1016/j.csbj.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 02/05/2023] Open
Abstract
Genome editing technology is a technique for targeted genetic modifications, enabling the knockout and addition of specific DNA fragments. This technology has been widely used in various types of biomedical research, clinics and agriculture. In terms of disease research, constructing appropriate animal models is necessary. Combining reproductive technology with genome editing, many animal disease models have been generated for basic and clinical research. In addition, precisely targeted modifications allow genome editing to flourish in the field of gene therapy. Many mutations refractory to traditional gene therapy could be permanently corrected at the DNA level. Thus, genome editing is undoubtedly a promising technology for gene therapy. In this review, we mainly introduce the applications of genome editing in constructing animal disease models and gene therapies, as well as its future prospects and challenges.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhou Qin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Ting Xu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
48
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
49
|
The Translational Landscape of the Human Heart. Cell 2019; 178:242-260.e29. [DOI: 10.1016/j.cell.2019.05.010] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
|
50
|
Abstract
Heritable cardiomyopathies are a class of heart diseases caused by variations in a number of genetic loci. Genetic variants on one allele lead to either a degraded protein, which causes a haploinsufficiency of that protein, or a nonfunctioning protein that subverts the molecular system within which the protein works. Over years, both of these mechanisms eventually lead to diseased heart tissue and symptoms of a failing heart. Most cardiomyopathy treatments repurpose heart failure drugs to manage these symptoms and avoid adverse outcomes. There are few therapies that correct the underlying pathogenic genetic or molecular mechanism. This review will reflect on this unmet clinical need in genetic cardiomyopathies and consider a variety of therapies that address the mechanism of disease rather than patient symptoms. These therapies are genetic, targeting a defective gene or transcript, or ameliorating a genetic insufficiency. However, there are also a number of small molecules under exploration that modulate downstream faulty protein products affected in cardiomyopathies.
Collapse
Affiliation(s)
- Giuliana G Repetti
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christopher N Toepfer
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.N.T.)
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.N.T., C.E.S.)
| | - Jonathan G Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christine E Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|