1
|
Farshadi EA, Wang W, Mohammad F, van der Oost E, Doukas M, van Eijck CHJ, van de Werken HJG, Katsikis PD. Tumor organoids improve mutation detection of pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:25468. [PMID: 39462012 PMCID: PMC11513084 DOI: 10.1038/s41598-024-75888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents challenges in detecting somatic mutations due to its complex cellular composition. This study investigated the utility of patient-derived organoids (PDOs) to overcome these obstacles and enhance somatic mutation identification. Surgically resected PDAC tumors and their paired PDOs from 21 patients were examined. Whole-exome sequencing (WES) of tumor tissue, organoids, and peripheral blood mononuclear cells was performed to identify somatic mutations. Our findings demonstrate that PDOs retained about 80% of the somatic mutations from the original tumors, showing high concordance in mutation types. PDOs exhibited increased tumor purity and uncovered key driver mutations, aiding in identifying clinically relevant genomic alterations. Moreover, eight cycles of FOLFIRINOX treatment did not significantly alter the mutational landscape at the DNA level, indicating the stability of the mutational profile after therapeutic pressure in patients. In conclusion, PDOs are potentially important tools for exploring the somatic mutational landscape of PDAC. While they can reveal mutations that may be challenging to detect through traditional biopsy sequencing due to the inherently low tumor purity of PDAC, it is important to note that PDOs may not always fully recapitulate all mutations found in primary tumors. Despite this limitation, PDOs can still offer critical insights into the genomic complexities of PDAC, which is crucial for the development of personalized vaccines and therapies for this disease.
Collapse
Affiliation(s)
- Elham Aida Farshadi
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Wenya Wang
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Farzana Mohammad
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Elise van der Oost
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
2
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
3
|
Gao Y, Feng J, Zhang Y, Yi M, Zhang L, Yan Y, Zhu AJ, Liu M. Ehbp1 orchestrates orderly sorting of Wnt/Wingless to the basolateral and apical cell membranes. EMBO Rep 2024:10.1038/s44319-024-00289-1. [PMID: 39402333 DOI: 10.1038/s44319-024-00289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery. Genetic analyses showed that Ehbp1 specifically regulates the polarized distribution of Wg/Wnt, a process that depends on the dedicated Wg/Wnt cargo receptor Wntless. Mechanistically, Ehbp1 competes with Wntless for AP-1 binding, thereby preventing the unregulated basolateral Wg/Wnt transport. Reducing Ehbp1 expression, or removing the coiled-coil motifs within its bMERB domain, leads to basolateral Wg/Wnt accumulation. Importantly, the regulation of polarized Wnt delivery by EHBP1 is conserved in vertebrates. The generality of this switch mechanism for regulating intracellular transport remains to be determined in future studies.
Collapse
Affiliation(s)
- Yuan Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China
| | - Mengyuan Yi
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lebing Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Tapia Contreras C, Falke JD, Seifert DM, Schneider C, Krauß L, Fang X, Müller D, Demirdizen E, Spitzner M, De Oliveira T, Schneeweis C, Gaedcke J, Kaulfuß S, Mirzakhani K, Wollnik B, Conrads K, Beißbarth T, Salinas G, Hügel J, Beyer N, Rheinländer S, Sax U, Wirth M, Conradi LC, Reichert M, Ellenrieder V, Ströbel P, Ghadimi M, Grade M, Saur D, Hessmann E, Schneider G. KRAS G 12C-inhibitor-based combination therapies for pancreatic cancer: insights from drug screening. Mol Oncol 2024. [PMID: 39253995 DOI: 10.1002/1878-0261.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRASG12C mutated allele, which show encouraging results in clinical trials. However, the development of resistance necessitates exploring potent combination therapies. Our objective was to identify effective KRASG12C-inhibitor combination therapies through unbiased drug screening. Results revealed synergistic effects with son of sevenless homolog 1 (SOS1) inhibitors, tyrosine-protein phosphatase non-receptor type 11 (PTPN11)/Src homology region 2 domain-containing phosphatase-2 (SHP2) inhibitors, and broad-spectrum multi-kinase inhibitors. Validation in a novel and unique KRASG12C-mutated patient-derived organoid model confirmed the described hits from the screening experiment. Our findings propose strategies to enhance KRASG12C-inhibitor efficacy, guiding clinical trial design and molecular tumor boards.
Collapse
Affiliation(s)
| | - Jonas Dominik Falke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Dana-Magdalena Seifert
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Xin Fang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Engin Demirdizen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Melanie Spitzner
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
| | - Silke Kaulfuß
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Kimia Mirzakhani
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Bernd Wollnik
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Karly Conrads
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Department of Medical Bioinformatics, University Medical Center Göttingen, Germany
| | - Tim Beißbarth
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Department of Medical Bioinformatics, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
- Campus-Institute Data Science (CIDAS), Göttingen, Germany
| | - Gabriela Salinas
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Germany
| | - Jonas Hügel
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Department of Medical Informatics, University Medical Center, Göttingen, Germany
| | - Nils Beyer
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Department of Medical Informatics, University Medical Center, Göttingen, Germany
| | - Sophia Rheinländer
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Department of Medical Informatics, University Medical Center, Göttingen, Germany
| | - Ulrich Sax
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- Campus-Institute Data Science (CIDAS), Göttingen, Germany
- Department of Medical Informatics, University Medical Center, Göttingen, Germany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Germany
- Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Garching, Germany
- Center for Organoid Systems and Tissue Engineering (COS), Technical University Munich, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Hospital Klinikum rechts der Isar, Munich, Germany
| | - Volker Ellenrieder
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Hospital Klinikum rechts der Isar, Munich, Germany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| |
Collapse
|
5
|
Nelson AL, Mancino C, Gao X, Choe JA, Chubb L, Williams K, Czachor M, Marcucio R, Taraballi F, Cooke JP, Huard J, Bahney C, Ehrhart N. β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioact Mater 2024; 39:273-286. [PMID: 38832305 PMCID: PMC11145078 DOI: 10.1016/j.bioactmat.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/β-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding β-catenin could promote cartilage to bone transformation formation by activating the canonical Wnt signaling pathway in chondrocytes. To optimize a delivery platform built on recent advancements in liposomal technologies, two FDA-approved ionizable phospholipids, DLin-MC3-DMA (MC3) and SM-102, were used to fabricate unique ionizable lipid nanoparticle (LNP) formulations and then tested for transfection efficacy both in vitro and in a murine tibia fracture model. Using firefly luciferase mRNA as a reporter gene to track and quantify transfection, SM-102 LNPs showed enhanced transfection efficacy in vitro and prolonged transfection, minimal fracture interference and no localized inflammatory response in vivo over MC3 LNPs. The generated β-cateninGOF mRNA encapsulated in SM-102 LNPs (SM-102-β-cateninGOF mRNA) showed bioactivity in vitro through upregulation of downstream canonical Wnt genes, axin2 and runx2. When testing SM-102-β-cateninGOF mRNA therapeutic in a murine tibia fracture model, histomorphometric analysis showed increased bone and decreased cartilage composition with the 45 μg concentration at 2 weeks post-fracture. μCT testing confirmed that SM-102-β-cateninGOF mRNA promoted bone formation in vivo, revealing significantly more bone volume over total volume in the 45 μg group. Thus, we generated a novel mRNA-based therapeutic encoding a β-catenin mRNA and optimized an SM-102-based LNP to maximize transfection efficacy with a localized delivery.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, School of Biomedical Engineering, Fort Collins CO, USA
| | - Chiara Mancino
- Houston Methodist Research Institute, Center for Musculoskeletal Regeneration, Houston TX, USA
| | - Xueqin Gao
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
| | - Joshua A. Choe
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Department of Biomedical Engineering, Medical Scientist Training Program, Madison, WI, USA
| | - Laura Chubb
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
| | - Katherine Williams
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Molly Czachor
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
| | - Ralph Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - Francesca Taraballi
- Houston Methodist Research Institute, Center for Musculoskeletal Regeneration, Houston TX, USA
| | - John P. Cooke
- Houston Methodist Research Institute, Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston, TX, USA
| | - Johnny Huard
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
| | - Chelsea Bahney
- Steadman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine, Vail, CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - Nicole Ehrhart
- Colorado State University, School of Biomedical Engineering, Fort Collins CO, USA
- Colorado State University, Department of Clinical Sciences, Fort Collins CO, USA
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| |
Collapse
|
6
|
Qin Y, Lei C, Lin T, Han X, Wang D. Identification of Potential Drug Targets for Myopia Through Mendelian Randomization. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39110588 PMCID: PMC11314700 DOI: 10.1167/iovs.65.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 08/11/2024] Open
Abstract
Purpose The purpose of this study was to identify potential drug targets for myopia and explore underlying mechanisms. Methods Mendelian randomization (MR) was implemented to assess the effect of 2684 pharmacologically targetable genes in the blood and retina on the risk of myopia from a genomewide association study (GWAS) for age-at-onset of spectacle wearing-inferred mean spherical equivalent (MSE; discovery cohort, N = 287,448, European), which was further validated in a GWAS for autorefraction-measured MSE (replication cohort, N = 95,619, European). The reliability of the identified significant potential targets was strengthened by colocalization analysis. Additionally, enrichment analysis, protein-protein interaction network, and molecular docking were performed to explore the functional roles and the druggability of these targets. Results This systematic drug target identification has unveiled 6 putative genetically causal targets for myopia-CD34, CD55, Wnt3, LCAT, BTN3A1, and TSSK6-each backed by colocalization evidence in adult blood eQTL datasets. Functional analysis found that dopaminergic neuron differentiation, cell adhesion, Wnt signaling pathway, and plasma lipoprotein-associated pathways may be involved in myopia pathogenesis. Finally, drug prediction and molecular docking corroborated the pharmacological value of these targets with LCAT demonstrating the strongest binding affinity. Conclusions Our study not only opens new avenues for the development of therapeutic interventions for myopia but may also help to understand the underlying mechanisms of myopia.
Collapse
Affiliation(s)
- Yimin Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Chengcheng Lei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Tianfeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Decai Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
7
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
8
|
Hammerhøj A, Chakravarti D, Sato T, Jensen KB, Nielsen OH. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024; 27:110118. [PMID: 38947526 PMCID: PMC11214415 DOI: 10.1016/j.isci.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.
Collapse
Affiliation(s)
- Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
9
|
Guo L, Li C, Gong W. Toward reproducible tumor organoid culture: focusing on primary liver cancer. Front Immunol 2024; 15:1290504. [PMID: 38571961 PMCID: PMC10987700 DOI: 10.3389/fimmu.2024.1290504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Organoids present substantial potential for pushing forward preclinical research and personalized medicine by accurately recapitulating tissue and tumor heterogeneity in vitro. However, the lack of standardized protocols for cancer organoid culture has hindered reproducibility. This paper comprehensively reviews the current challenges associated with cancer organoid culture and highlights recent multidisciplinary advancements in the field with a specific focus on standardizing liver cancer organoid culture. We discuss the non-standardized aspects, including tissue sources, processing techniques, medium formulations, and matrix materials, that contribute to technical variability. Furthermore, we emphasize the need to establish reproducible platforms that accurately preserve the genetic, proteomic, morphological, and pharmacotypic features of the parent tumor. At the end of each section, our focus shifts to organoid culture standardization in primary liver cancer. By addressing these challenges, we can enhance the reproducibility and clinical translation of cancer organoid systems, enabling their potential applications in precision medicine, drug screening, and preclinical research.
Collapse
Affiliation(s)
| | | | - Weiqiang Gong
- Department of Hepatobiliary and Pancreatic Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
10
|
Nakahashi H, Oda T, Shimomura O, Akashi Y, Takahashi K, Miyazaki Y, Furuta T, Kuroda Y, Louphrasitthiphol P, Mathis BJ, Tateno H. Aberrant Glycosylation in Pancreatic Ductal Adenocarcinoma 3D Organoids Is Mediated by KRAS Mutations. JOURNAL OF ONCOLOGY 2024; 2024:1529449. [PMID: 38528852 PMCID: PMC10963106 DOI: 10.1155/2024/1529449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Aberrant glycosylation in tumor cells is a hallmark during carcinogenesis. KRAS gene mutations are the most well-known oncogenic abnormalities but their association with glycan alterations in pancreatic ductal adenocarcinoma (PDAC) is largely unknown. We employed patient-derived 3D organoids to culture pure live PDAC cells, excluding contamination by fibroblasts and immune cells, to gasp the comprehensive cancer cell surface glycan expression profile using lectin microarray and transcriptomic analyses. Surgical specimens from 24 PDAC patients were digested and embedded into a 3D culture system. Surface-bound glycans of 3D organoids were analyzed by high-density, 96-lectin microarrays. KRAS mutation status and expression of various glycosyltransferases were analyzed by RNA-seq. We successfully established 16 3D organoids: 14 PDAC, 1 intraductal papillary mucinous neoplasm (IPMN), and 1 normal pancreatic duct. KRAS was mutated in 13 (7 G12V, 5 G12D, 1 Q61L) and wild in 3 organoids (1 normal duct, 1 IPMN, 1 PDAC). Lectin reactivity of AAL (Aleuria aurantia) and AOL (Aspergillus oryzae) with binding activity to α1-3 fucose was higher in organoids with KRAS mutants than those with KRAS wild-type. FUT6 (α1-3fucosyltransferase 6) and FUT3 (α1-3/4 fucosyltransferase 3) expression was also higher in KRAS mutants than wild-type. Meanwhile, mannose-binding lectin (rRSL [Ralstonia solanacearum] and rBC2LA [Burkholderia cenocepacia]) signals were higher while those of galactose-binding lectins (rGal3C and rCGL2) were lower in the KRAS mutants. We demonstrated here that PDAC 3D-cultured organoids with KRAS mutations were dominantly covered in increased fucosylated glycans, pointing towards novel treatment targets and/or tumor markers.
Collapse
Affiliation(s)
- Hiromitsu Nakahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshimasa Akashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kazuhiro Takahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yukihito Kuroda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Pakavarin Louphrasitthiphol
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| |
Collapse
|
11
|
Liu T, Li X, Li H, Qin J, Xu H, Wen J, He Y, Zhang C. Intestinal organoid modeling: bridging the gap from experimental model to clinical translation. Front Oncol 2024; 14:1334631. [PMID: 38496762 PMCID: PMC10941338 DOI: 10.3389/fonc.2024.1334631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
The 3D culture of intestinal organoids entails embedding isolated intestinal crypts and bone marrow mesenchymal stem cells within a growth factor-enriched matrix gel. This process leads to the formation of hollow microspheres with structures resembling intestinal epithelial cells, which are referred to as intestinal organoids. These structures encompass various functional epithelial cell types found in the small intestine and closely mimic the organizational patterns of the small intestine, earning them the name "mini-intestines". Intestinal tumors are prevalent within the digestive system and represent a significant menace to human health. Through the application of 3D culture technology, miniature colorectal organs can be cultivated to retain the genetic characteristics of the primary tumor. This innovation offers novel prospects for individualized treatments among patients with intestinal tumors. Presently established libraries of patient-derived organoids serve as potent tools for conducting comprehensive investigations into tissue functionality, developmental processes, tumorigenesis, and the pathobiology of cancer. This review explores the origins of intestinal organoids, their culturing environments, and their advancements in the realm of precision medicine. It also addresses the current challenges and outlines future prospects for development.
Collapse
Affiliation(s)
- Taotao Liu
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Xiaoqi Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Hao Li
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Jingjing Qin
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Hui Xu
- Department of Anesthesiology and Surgery, Gansu Provincial People's Hospital, Lan Zhou, Gansu, China
| | - Jun Wen
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Yaqin He
- School of Clinical Medicine, Ningxia Medical University, Yin Chuan, Ningxia, China
| | - Cao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Ningxia Medical University, Yin Chuan, Ningxia, China
| |
Collapse
|
12
|
Tran THN, Takada R, Krayukhina E, Maruno T, Mii Y, Uchiyama S, Takada S. Soluble Frizzled-related proteins promote exosome-mediated Wnt re-secretion. Commun Biol 2024; 7:254. [PMID: 38429359 PMCID: PMC10907715 DOI: 10.1038/s42003-024-05881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Wnt proteins are thought to be transported in several ways in the extracellular space. For instance, they are known to be carried by exosomes and by Wnt-carrier proteins, such as sFRP proteins. However, little is known about whether and/or how these two transport systems are related. Here, we show that adding sFRP1 or sFRP2, but not sFRP3 or sFRP4, to culture medium containing Wnt3a or Wnt5a increases re-secretion of exosome-loaded Wnt proteins from cells. This effect of sFRP2 is counteracted by heparinase, which removes sugar chains on heparan sulfate proteoglycans (HSPGs), but is independent of LRP5/6, Wnt co-receptors essential for Wnt signaling. Wnt3a and Wnt5a specifically dimerize with sFRP2 in culture supernatant. Furthermore, a Wnt3a mutant defective in heterodimerization with sFRP2 impairs the ability to increase exosome-mediated Wnt3a re-secretion. Based on these results, we propose that Wnt heterodimerization with its carrier protein, sFRP2, enhances Wnt accumulation at sugar chains on HSPGs on the cell surface, leading to increased endocytosis and exosome-mediated Wnt re-secretion. Our results suggest that the range of action of Wnt ligands is controlled by coordination of different transport systems.
Collapse
Affiliation(s)
- Thi Hong Nguyen Tran
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Elena Krayukhina
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Takahiro Maruno
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
13
|
Inui T, Uraya Y, Yokota J, Yamashita T, Kawai K, Okada K, Ueyama-Toba Y, Mizuguchi H. Functional intestinal monolayers from organoids derived from human iPS cells for drug discovery research. Stem Cell Res Ther 2024; 15:57. [PMID: 38424603 PMCID: PMC10905936 DOI: 10.1186/s13287-024-03685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem (iPS) cell-derived enterocyte-like cells (ELCs) are expected to be useful for evaluating the intestinal absorption and metabolism of orally administered drugs. However, it is difficult to generate large amounts of ELCs with high quality because they cannot proliferate and be passaged. METHODS To solve the issue above, we have established intestinal organoids from ELCs generated using our protocol. Furthermore, monolayers were produced from the organoids. We evaluated the usefulness of the monolayers by comparing their functions with those of the original ELCs and the organoids. RESULTS We established organoids from ELCs (ELC-org) that could be passaged and maintained for more than a year. When ELC-org were dissociated into single cells and seeded on cell culture inserts (ELC-org-mono), they formed a tight monolayer in 3 days. Both ELC-org and ELC-org-mono were composed exclusively of epithelial cells. Gene expressions of many drug-metabolizing enzymes and drug transporters in ELC-org-mono were enhanced, as compared with those in ELC-org, to a level comparable to those in adult human small intestine. The CYP3A4 activity level in ELC-org-mono was comparable or higher than that in primary cryopreserved human small intestinal cells. ELC-org-mono had the efflux activities of P-gp and BCRP. Importantly, ELC-org-mono maintained high intestinal functions without any negative effects even after long-term culture (for more than a year) or cryopreservation. RNA-seq analysis showed that ELC-org-mono were more mature as intestinal epithelial cells than ELCs or ELC-org. CONCLUSIONS We have successfully improved the function and convenience of ELCs by utilizing organoid technology.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Yusei Uraya
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Okada
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Youk J, Kwon HW, Lim J, Kim E, Kim T, Kim R, Park S, Yi K, Nam CH, Jeon S, An Y, Choi J, Na H, Lee ES, Cho Y, Min DW, Kim H, Kang YR, Choi SH, Bae MJ, Lee CG, Kim JG, Kim YS, Yu T, Lee WC, Shin JY, Lee DS, Kim TY, Ku T, Kim SY, Lee JH, Koo BK, Lee H, Yi OV, Han EC, Chang JH, Kim KS, Son TG, Ju YS. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. CELL GENOMICS 2024; 4:100499. [PMID: 38359788 PMCID: PMC10879144 DOI: 10.1016/j.xgen.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Woo Kwon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Eunji Kim
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20, Boramae-ro 5 Gil, Dongjak-gu, Seoul 07061, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taewoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sara Jeon
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwook Choi
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Hyelin Na
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Eon-Seok Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong-Wook Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - HyoJin Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Joon-Goon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea
| | | | | | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Su Yeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - On Vox Yi
- Department of Breast Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Eon Chul Han
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
15
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
16
|
Xu Y, Nipper MH, Dominguez AA, Ye Z, Akanuma N, Lopez K, Deng JJ, Arenas D, Sanchez A, Sharkey FE, Court CM, Singhi AD, Wang H, Fernandez-Zapico ME, Sun LZ, Zheng S, Chen Y, Liu J, Wang P. Reconstitution of human PDAC using primary cells reveals oncogenic transcriptomic features at tumor onset. Nat Commun 2024; 15:818. [PMID: 38280869 PMCID: PMC10821902 DOI: 10.1038/s41467-024-45097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Michael H Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Angel A Dominguez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zhenqing Ye
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Naoki Akanuma
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kevin Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Janice J Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Destiny Arenas
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ava Sanchez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Francis E Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colin M Court
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
17
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, Maganti S, Duong-Polk K, Bhullar D, Naeem R, Scott DA, Lowy AM, Tiriac H, Commisso C. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. NATURE CANCER 2024; 5:100-113. [PMID: 37814011 PMCID: PMC10956382 DOI: 10.1038/s43018-023-00649-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepika Bhullar
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Razia Naeem
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Sen P, Roy Acharyya S, Arora A, Ghosh SS. An in-silico approach to understand the potential role of Wnt inhibitory factor-1 (WIF-1) in the inhibition of the Wnt signalling pathway. J Biomol Struct Dyn 2024; 42:326-345. [PMID: 36995086 DOI: 10.1080/07391102.2023.2192810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
WIF1 (Wnt inhibitory factor 1) is a potent tumour suppressor gene which is epigenetically silenced in numerous malignancies. The associations of WIF1 protein with the Wnt pathway molecules have not been fully explored, despite their involvement in the downregulation of several malignancies. In the present study, a computational approach encompassing the expression, gene ontology analysis and pathway analysis is employed to obtain an insight into the role of the WIF1 protein. Moreover, the interaction of the WIF1 domain with the Wnt pathway molecules was carried out to ascertain the tumour-suppressive role of the domain, along with the determination of their plausible interactions. Initially, the protein-protein interaction network analysis endowed us with the Wnt ligands (such as Wnt1, Wnt3a, Wnt4, Wnt5a, Wnt8a and Wnt9a), along with the Frizzled receptors (Fzd1 and Fzd2) and the low-density lipoprotein complex (Lrp5/6) as the foremost interactors of the protein. Further, the expression analysis of the aforementioned genes and proteins was determined using The Cancer Genome Atlas to comprehend the significance of the signalling molecules in the major cancer subtypes. Moreover, the associations of the aforementioned macromolecular entities with the WIF1 domain were explored using the molecular docking studies, whereas the dynamics and stability of the assemblage were investigated using 100 ns molecular dynamics simulations. Therefore, providing us insights into the plausible roles of WIF1 in inhibiting the Wnt pathways in various malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suchandra Roy Acharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
20
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
21
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Nualart F, Cifuentes M, Ramírez E, Martínez F, Barahona MJ, Ferrada L, Saldivia N, Bongarzone ER, Thorens B, Salazar K. Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing. PLoS Biol 2023; 21:e3002308. [PMID: 37733692 PMCID: PMC10513282 DOI: 10.1371/journal.pbio.3002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.
Collapse
Affiliation(s)
- Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga Biomedical Research Institute and Nanomedicine Platform (IBIMA-BIONAND Platform), Malaga, Spain
| | - Eder Ramírez
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Barahona
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
23
|
Nishimura T, Kakiuchi N, Yoshida K, Sakurai T, Kataoka TR, Kondoh E, Chigusa Y, Kawai M, Sawada M, Inoue T, Takeuchi Y, Maeda H, Baba S, Shiozawa Y, Saiki R, Nakagawa MM, Nannya Y, Ochi Y, Hirano T, Nakagawa T, Inagaki-Kawata Y, Aoki K, Hirata M, Nanki K, Matano M, Saito M, Suzuki E, Takada M, Kawashima M, Kawaguchi K, Chiba K, Shiraishi Y, Takita J, Miyano S, Mandai M, Sato T, Takeuchi K, Haga H, Toi M, Ogawa S. Evolutionary histories of breast cancer and related clones. Nature 2023; 620:607-614. [PMID: 37495687 PMCID: PMC10432280 DOI: 10.1038/s41586-023-06333-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.
Collapse
Affiliation(s)
- Tomomi Nishimura
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Pathology, Iwate Medical University, Iwate, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Obstetrics and Gynecology Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Yasuhide Takeuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hirona Maeda
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomoe Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yukiko Inagaki-Kawata
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kosaku Nanki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Limited, Osaka, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Breast Surgery Department, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Department of Integrated Analytics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
24
|
Tanaka K, Kawai S, Fujii E, Yano M, Miyayama T, Nakano K, Terao K, Suzuki M. Development of rat duodenal monolayer model with effective barrier function from rat organoids for ADME assay. Sci Rep 2023; 13:12130. [PMID: 37495742 PMCID: PMC10372144 DOI: 10.1038/s41598-023-39425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
The in-depth analysis of the ADME profiles of drug candidates using in vitro models is essential for drug development since a drug's exposure in humans depends on its ADME properties. In contrast to efforts in developing human in vitro absorption models, only a limited number of studies have explored models using rats, the most frequently used species in in vivo DMPK studies. In this study, we developed a monolayer model with an effective barrier function for ADME assays using rat duodenal organoids as a cell source. At first, we developed rat duodenal organoids according to a previous report, but they were not able to generate a confluent monolayer. Therefore, we modified organoid culture protocols and developed cyst-enriched organoids; these strongly promoted the formation of a confluent monolayer. Furthermore, adding valproic acid to the culture accelerated the differentiation of the monolayer, which possessed an effective barrier function and apicobasal cell polarity. Drug transporter P-gp function as well as CYP3A activity and nuclear receptor function were confirmed in the model. We expect our novel monolayer model to be a useful tool for elucidating drug absorption processes in detail, enabling the development of highly absorbable drugs.
Collapse
Affiliation(s)
- Kai Tanaka
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 5-1-1 Tsukiji Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Shigeto Kawai
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 5-1-1 Tsukiji Chuo-Ku, Tokyo, 104-0045, Japan
| | - Etsuko Fujii
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka Totsuka-Ku Yokohama, Kanagawa, 244-8602, Japan
| | - Masumi Yano
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka Totsuka-Ku Yokohama, Kanagawa, 244-8602, Japan
| | - Takashi Miyayama
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka Totsuka-Ku Yokohama, Kanagawa, 244-8602, Japan
| | - Kiyotaka Nakano
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 5-1-1 Tsukiji Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kimio Terao
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-Ku, Tokyo, 103-8324, Japan
| | - Masami Suzuki
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
25
|
Nabhan AN, Webster JD, Adams JJ, Blazer L, Everrett C, Eidenschenk C, Arlantico A, Fleming I, Brightbill HD, Wolters PJ, Modrusan Z, Seshagiri S, Angers S, Sidhu SS, Newton K, Arron JR, Dixit VM. Targeted alveolar regeneration with Frizzled-specific agonists. Cell 2023; 186:2995-3012.e15. [PMID: 37321220 DOI: 10.1016/j.cell.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Collapse
Affiliation(s)
- Ahmad N Nabhan
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jarret J Adams
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Levi Blazer
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Christine Everrett
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Celine Eidenschenk
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Isabel Fleming
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | | | - Stephane Angers
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 1A2, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sachdev S Sidhu
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joseph R Arron
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
26
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
27
|
Li M, Zheng J, Luo D, Xu K, Sheng R, MacDonald BT, He X, Zhang X. Frizzled receptors facilitate Tiki inhibition of Wnt signaling at the cell surface. EMBO Rep 2023; 24:e55873. [PMID: 36994853 PMCID: PMC10240186 DOI: 10.15252/embr.202255873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The membrane-tethered protease Tiki antagonizes Wnt3a signaling by cleaving and inactivating Wnt3a in Wnt-producing cells. Tiki also functions in Wnt-receiving cells to antagonize Wnt signaling by an unknown mechanism. Here, we demonstrate that Tiki inhibition of Wnt signaling at the cell surface requires Frizzled (FZD) receptors. Tiki associates with the Wnt-FZD complex and cleaves the N-terminus of Wnt3a or Wnt5a, preventing the Wnt-FZD complex from recruiting and activating the coreceptor LRP6 or ROR1/2 without affecting Wnt-FZD complex stability. Intriguingly, we demonstrate that the N-terminus of Wnt3a is required for Wnt3a binding to LRP6 and activating β-catenin signaling, while the N-terminus of Wnt5a is dispensable for recruiting and phosphorylating ROR1/2. Both Tiki enzymatic activity and its association with the Wnt-FZD complex contribute to its inhibitory function on Wnt5a. Our study uncovers the mechanism by which Tiki antagonizes Wnt signaling at the cell surface and reveals a negative role of FZDs in Wnt signaling by acting as Tiki cofactors. Our findings also reveal an unexpected role of the Wnt3a N-terminus in the engagement of the coreceptor LRP6.
Collapse
Affiliation(s)
- Mingyi Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Zheng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Dong Luo
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Kai Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ren Sheng
- College of Life and Health ScienceNortheastern UniversityShenyangChina
| | | | - Xi He
- Department of Neurology, Harvard Medical School, The F. M. Kirby Neurobiology CenterBoston Children's HospitalBostonMAUSA
| | - Xinjun Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
28
|
Kornsuthisopon C, Tompkins KA, Osathanon T. Tideglusib enhances odontogenic differentiation in human dental pulp stem cells in vitro. Int Endod J 2023; 56:369-384. [PMID: 36458950 DOI: 10.1111/iej.13877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIM Tideglusib is a small molecule agonist of the canonical Wnt pathway. The present study investigated the influence of Tideglusib on human dental pulp stem cell (hDPSC) proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY hDPSCs were treated with 50, 100 nM or 200 nM Tideglusib. β-catenin accumulation was detected by immunofluorescence staining. Colony-forming unit ability was assessed by staining with Coomassie blue. Cell cycle progression and cell apoptosis were investigated using flow cytometry. Cell migration was examined using an in vitro wound-healing assay. Osteogenic differentiation was examined using alkaline phosphatase (ALP) staining, alizarin red S staining and osteogenic-related gene expression. The gene expression profile was examined using a high-throughput RNA sequencing technique. All experiments were repeated using cells derived from at least four different donors (n = 4). The Mann-Whitney U-test was used to identify significant differences between two independent group comparisons. For three or more group comparisons, statistical differences were assessed using the Kruskal-Wallis test followed by pairwise comparison. The significance level was set at 5% (p < .05). RESULTS Tideglusib activated the Wnt signalling pathway in hDPSCs as demonstrated by an increase in cytoplasmic β-catenin accumulation and nuclear translocation. Tideglusib did not affect hDPSC proliferation, cell cycle progression, cell apoptosis or cell migration. In contrast, 50 and 100 nM Tideglusib significantly enhanced mineralization and osteogenic marker gene expression (RUNX2, ALP, BMP2 and DSPP; p < .05). CONCLUSIONS Tideglusib enhanced the odonto/osteogenic differentiation of hDPSCs. Therefore, incorporating this bioactive molecule in a pulp-capping material could be a promising strategy to promote dentine repair.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
29
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
30
|
Hanyu H, Sugimoto S, Sato T. Visualization of Differentiated Cells in 3D and 2D Intestinal Organoid Cultures. Methods Mol Biol 2023; 2650:141-153. [PMID: 37310630 DOI: 10.1007/978-1-0716-3076-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal epithelium maintains self-renewal and differentiation capacities via coordination of key signaling pathways, including the Wnt, bone morphogenetic protein (BMP), epidermal growth factor (EGF), and Notch signaling pathways. Based on this understanding, a combination of stem cell niche factors, EGF, Noggin, and the Wnt agonist R-spondin was shown to enable the growth of mouse intestinal stem cells and the formation of organoids with indefinite self-renewal and full differentiation capacity. Two small-molecule inhibitors, including a p38 inhibitor and a TGF-beta inhibitor, were added to propagate cultured human intestinal epithelium but at the cost of differentiation capacity. There have been improvements in culture conditions to overcome these issues. Substitution of the EGF and a p38 inhibitor with insulin-like growth factor-1 (IGF-1) and fibroblast growth factor-2 (FGF-2) enabled multilineage differentiation. Monolayer culture with mechanical flow to the apical epithelium promoted the formation of villus-like structures with mature enterocyte gene expression. Here, we summarize our recent technological improvements in human intestinal organoid culture that will deepen the understanding of intestinal homeostasis and diseases.
Collapse
Affiliation(s)
- Hikaru Hanyu
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Ishikawa K, Sugimoto S, Oda M, Fujii M, Takahashi S, Ohta Y, Takano A, Ishimaru K, Matano M, Yoshida K, Hanyu H, Toshimitsu K, Sawada K, Shimokawa M, Saito M, Kawasaki K, Ishii R, Taniguchi K, Imamura T, Kanai T, Sato T. Identification of Quiescent LGR5 + Stem Cells in the Human Colon. Gastroenterology 2022; 163:1391-1406.e24. [PMID: 35963362 DOI: 10.1053/j.gastro.2022.07.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-β signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.
Collapse
Affiliation(s)
- Keiko Ishikawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Ishimaru
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Yoshida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Hanyu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Sawada
- Center for Integrated Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Mariko Shimokawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
32
|
Zahedi S, Carvalho AS, Ejtehadifar M, Beck HC, Rei N, Luis A, Borralho P, Bugalho A, Matthiesen R. Assessment of a Large-Scale Unbiased Malignant Pleural Effusion Proteomics Study of a Real-Life Cohort. Cancers (Basel) 2022; 14:cancers14184366. [PMID: 36139528 PMCID: PMC9496668 DOI: 10.3390/cancers14184366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pleural effusion (PE) occurs as a consequence of various pathologies. Malignant effusion due to lung cancer is one of the most frequent causes. A method for accurate differentiation of malignant from benign PE is an unmet clinical need. Proteomics profiling of PE has shown promising results. However, mass spectrometry (MS) analysis typically involves the tedious elimination of abundant proteins before analysis, and clinical annotation of proteomics profiled cohorts is limited. This study compares the proteomes of malignant PE and nonmalignant PE, identifies lung cancer malignant markers in agreement with other studies, and identifies markers strongly associated with patient survival. Abstract Background: Pleural effusion (PE) is common in advanced-stage lung cancer patients and is related to poor prognosis. Identification of cancer cells is the standard method for the diagnosis of a malignant PE (MPE). However, it only has moderate sensitivity. Thus, more sensitive diagnostic tools are urgently needed. Methods: The present study aimed to discover potential protein targets to distinguish malignant pleural effusion (MPE) from other non-malignant pathologies. We have collected PE from 97 patients to explore PE proteomes by applying state-of-the-art liquid chromatography-mass spectrometry (LC-MS) to identify potential biomarkers that correlate with immunohistochemistry assessment of tumor biopsy or with survival data. Functional analyses were performed to elucidate functional differences in PE proteins in malignant and benign samples. Results were integrated into a clinical risk prediction model to identify likely malignant cases. Sensitivity, specificity, and negative predictive value were calculated. Results: In total, 1689 individual proteins were identified by MS-based proteomics analysis of the 97 PE samples, of which 35 were diagnosed as malignant. A comparison between MPE and benign PE (BPE) identified 58 differential regulated proteins after correction of the p-values for multiple testing. Furthermore, functional analysis revealed an up-regulation of matrix intermediate filaments and cellular movement-related proteins. Additionally, gene ontology analysis identified the involvement of metabolic pathways such as glycolysis/gluconeogenesis, pyruvate metabolism and cysteine and methionine metabolism. Conclusion: This study demonstrated a partial least squares regression model with an area under the curve of 98 and an accuracy of 0.92 when evaluated on the holdout test data set. Furthermore, highly significant survival markers were identified (e.g., PSME1 with a log-rank of 1.68 × 10−6).
Collapse
Affiliation(s)
- Sara Zahedi
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Mostafa Ejtehadifar
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Hans C. Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Nádia Rei
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Luis
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
| | - Paula Borralho
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
| | - António Bugalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
- Correspondence: (A.B.); (R.M.)
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
- Correspondence: (A.B.); (R.M.)
| |
Collapse
|
33
|
Yamaguchi K, Yoshihiro T, Ariyama H, Ito M, Nakano M, Semba Y, Nogami J, Tsuchihashi K, Yamauchi T, Ueno S, Isobe T, Shindo K, Moriyama T, Ohuchida K, Nakamura M, Nagao Y, Ikeda T, Hashizume M, Konomi H, Torisu T, Kitazono T, Kanayama T, Tomita H, Oda Y, Kusaba H, Maeda T, Akashi K, Baba E. Potential therapeutic targets discovery by transcriptome analysis of an in vitro human gastric signet ring carcinoma model. Gastric Cancer 2022; 25:862-878. [PMID: 35661943 DOI: 10.1007/s10120-022-01307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loss of E-cadherin expression is frequently observed in signet ring carcinoma (SRCC). People with germline mutations in CDH1, which encodes E-cadherin, develop diffuse gastric cancer at a higher rate. Loss of E-cadherin expression is thus assumed to trigger oncogenic development. METHODS To investigate novel therapeutic targets for gastric SRCC, we engineered an E-cadherin-deficient SRCC model in vitro using a human gastric organoid (hGO) with CDH1 knockout (KO). RESULTS CDH1 KO hGO cells demonstrated distinctive morphological changes similar to SRCC and high cell motility. RNA-sequencing revealed up-regulation of matrix metalloproteinase (MMP) genes in CDH1 KO hGO cells compared to wild type. MMP inhibitors suppressed cell motility of CDH1 KO hGO cells and SRCC cell lines in vitro. Immunofluorescent analysis with 95 clinical gastric cancer tissues revealed that MMP-3 was specifically abundant in E-cadherin-aberrant SRCC. In addition, CXCR4 molecules translocated onto the cell membrane after CDH1 KO. Addition of CXCL12, a ligand of CXCR4, to the culture medium prolonged cell survival of CDH1 KO hGO cells and was abolished by the inhibitor, AMD3100. In clinical SRCC samples, CXCL12-secreting fibroblasts showed marked infiltration into the cancer area. CONCLUSIONS E-cadherin deficient SRCCs might gain cell motility through upregulation of MMPs. CXCL12-positive cancer-associated fibroblasts could serve to maintain cancer-cell survival as a niche. MMPs and the CXCL12/CXCR4 axis represent promising candidates as novel therapeutic targets for E-cadherin-deficient SRCC.
Collapse
Affiliation(s)
- Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoyasu Yoshihiro
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Ariyama
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Michitaka Nakano
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Ueno
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Taichi Isobe
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuo Ikeda
- Department of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Kusaba
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro Maeda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
6-Bromoindirubin-3′-Oxime Regulates Colony Formation, Apoptosis, and Odonto/Osteogenic Differentiation in Human Dental Pulp Stem Cells. Int J Mol Sci 2022; 23:ijms23158676. [PMID: 35955809 PMCID: PMC9368902 DOI: 10.3390/ijms23158676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
6-bromoindirubin-3′-oxime (BIO) is a candidate small molecule that effectively modulates Wnt signalling owing to its stable property. The present study investigated the influence of BIO on the odonto/osteogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were treated with 200, 400, or 800 nM BIO, and the effects on hDPSC responses and osteogenic differentiation were assessed. BIO-mediated Wnt activation was confirmed by β-catenin nuclear translocation detected by immunofluorescence staining. BIO attenuated colony formation and cell migration determined by in vitro wound-healing assay. BIO increased early apoptotic cell population evaluated using flow cytometry. For osteogenic induction, BIO promoted alkaline phosphatase (ALP) activity and mineralisation in a dose-dependent manner. ALP, RUNX2, OCN, OSX, ANKH, DMP1, and DSPP mRNA expression were significantly upregulated. The OPG/RANKL expression ratio was also increased. Further, BIO attenuated adipogenic differentiation as demonstrated by decreased lipid accumulation and adipogenic-related gene expression. Bioinformatic analysis of RNA sequencing data from the BIO-treated hDPSCs revealed that BIO modulated pathways related to autophagy and actin cytoskeleton regulation. These findings demonstrated that BIO treatment promoted hDPSC osteogenic differentiation. Therefore, this small molecule is a strong candidate as a bioactive molecule to enhance dentin repair.
Collapse
|
35
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Kantaputra P, Jatooratthawichot P, Tantachamroon O, Nanekrungsan K, Intachai W, Olsen B, Tongsima S, Ngamphiw C, Cairns JRK. Novel Dental Anomaly-associated Mutations in WNT10A Protein Binding Sites. Int Dent J 2022; 73:79-86. [PMID: 35537890 PMCID: PMC9875279 DOI: 10.1016/j.identj.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE WNT/β-catenin signaling is initiated by binding of a WNT protein to a Frizzled (FZD) receptor and a co-receptor, low-density lipoprotein (LDL) receptor-related protein 5 or 6 (LRP5/6). The objective of this study was to find the genetic variants responsible for dental anomalies found in 4 families. METHODS Clinical and radiographic examination and whole exome sequencing were performed on 5 patients affected with dental anomalies and the mutant proteins modeled. RESULTS Five patients were heterozygous for the WNT10A variants, including c.877C>T; p.Arg293Cys, c.874A>G; p.Ser292Gly, c.1042C>T; p.Arg348Cys, and c.1039G>T; p.347GluX. The p.Arg293Cys and p.Ser292Gly mutations are located in the WNT10A N-terminal domain region with binding sites for FZD receptor, porcupine, WNTLESS, and extracellular binding proteins, so they are likely to have adverse effects on binding these proteins. The p.Arg348Cys mutation, which is located in the binding site of LRP5/6 co-receptors, is postulated to result in impaired binding to these co-receptors. The nonsense mutation p.347GluX is predicted to result in the truncation of most of the C-terminal domain, which is likely to disrupt the binding of WNT10A to WNTLESS, the membrane protein that binds lipid-acylated WNT proteins to carry them from the endoplasmic reticulum to the cell surface and FZD. CONCLUSIONS Four novel mutations in WNT10A were identified in patients with isolated tooth agenesis. The mutations in the N-terminal domain and the interface between the N- and C-terminal domains of WNT10A in our patients are likely to disrupt its binding with FZD, LRP5/6, and various other proteins involved in WNT10A processing and transport, impair WNT and SHH signaling, and subsequently result in tooth agenesis, microdontia, and root maldevelopment.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand,Corresponding author. Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry; Faculty of Dentistry, Chiang Mai University; Chiang Mai 50200, Thailand.
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand,Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
37
|
Ko SB, Mihara E, Park Y, Roh K, Kang C, Takagi J, Bang I, Choi HJ. Functional role of the Frizzled linker domain in the Wnt signaling pathway. Commun Biol 2022; 5:421. [PMID: 35513706 PMCID: PMC9072438 DOI: 10.1038/s42003-022-03370-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
The Wnt signaling pathway plays a critical role in the developmental and physiological processes of metazoans. We previously reported that the Frizzled4 (FZD4) linker domain plays an important role in Norrin binding and signaling. However, the question remains whether the FZD linker contributes to Wnt signaling in general. Here, we show that the FZD linker is involved in Wnt binding and affects downstream Wnt signaling. A FZD4 chimera, in which the linker was swapped with that of the non-canonical receptor FZD6, impairs the binding with WNT3A and suppresses the recruitment of LRP6 and Disheveled, resulting in reduced canonical signaling. A similar effect was observed for non-canonical signaling. A FZD6 chimera containing the FZD1 linker showed reduced WNT5A binding and impaired signaling in ERK, JNK, and AKT mediated pathways. Altogether, our results suggest that the FZD linker plays an important role in specific Wnt binding and intracellular Wnt signaling.
Collapse
Affiliation(s)
- Seung-Bum Ko
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Emiko Mihara
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yedarm Park
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeonghwan Roh
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanhee Kang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Injin Bang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, 10016, NY, USA.
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
38
|
Arredondo SB, Valenzuela-Bezanilla D, Santibanez SH, Varela-Nallar L. Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells 2022; 40:630-640. [PMID: 35446432 DOI: 10.1093/stmcls/sxac027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| |
Collapse
|
39
|
Nelson JK, Thin MZ, Evan T, Howell S, Wu M, Almeida B, Legrave N, Koenis DS, Koifman G, Sugimoto Y, Llorian Sopena M, MacRae J, Nye E, Howell M, Snijders AP, Prachalias A, Zen Y, Sarker D, Behrens A. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun 2022; 13:2070. [PMID: 35440539 PMCID: PMC9018856 DOI: 10.1038/s41467-022-29684-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited.
Collapse
Affiliation(s)
- Jessica K Nelson
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - May Zaw Thin
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodore Evan
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steven Howell
- Proteomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Bruna Almeida
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nathalie Legrave
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabriela Koifman
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Yoichiro Sugimoto
- Hypoxia Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James MacRae
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Andreas Prachalias
- Hepatobiliary and Pancreatic Surgery, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
- Imperial College, Division of Cancer, Department of Surgery and Cancer, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
- Convergence Science Centre, Imperial College, Exhibition Road, London, SW7 2BU, UK.
| |
Collapse
|
40
|
Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat Chem Biol 2022; 18:605-614. [PMID: 35273398 DOI: 10.1038/s41589-022-00984-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022]
Abstract
Precision oncology presumes an accurate prediction of drug response on the basis of the molecular profile of tumors. However, the extent to which patient-derived tumor organoids recapitulate the response of in vivo tumors to a given drug remains obscure. To gain insights into the pharmacobiology of human colorectal cancer (CRC), we here created a robust drug screening platform for patient-derived colorectal organoids. Application of suspension culture increased organoid scalability, and a refinement of the culture condition enabled incorporation of normal and precursor organoids to high-throughput drug screening. Drug screening identified bromodomain and extra-terminal (BET) bromodomain protein inhibitor as a cancer-selective growth suppressor that targets genes aberrantly activated in CRC. A multi-omics analysis identified an association between checkpoint with forkhead and ring finger domaines (CHFR) silencing and paclitaxel sensitivity, which was further validated by gene engineering of organoids and in xenografts. Our findings highlight the utility of multiparametric validation in enhancing the biological and clinical fidelity of a drug screening system.
Collapse
|
41
|
LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. NATURE MATERIALS 2022; 21:143-159. [PMID: 34385685 DOI: 10.1038/s41563-021-01057-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/21/2021] [Indexed: 05/13/2023]
Abstract
Organotypic models of patient-specific tumours are revolutionizing our understanding of cancer heterogeneity and its implications for personalized medicine. These advancements are, in part, attributed to the ability of organoid models to stably preserve genetic, proteomic, morphological and pharmacotypic features of the parent tumour in vitro, while also offering unprecedented genomic and environmental manipulation. Despite recent innovations in organoid protocols, current techniques for cancer organoid culture are inherently uncontrolled and irreproducible, owing to several non-standardized facets including cancer tissue sources and subsequent processing, medium formulations, and animal-derived three-dimensional matrices. Given the potential for cancer organoids to accurately recapitulate the intra- and intertumoral biological heterogeneity associated with patient-specific cancers, eliminating the undesirable technical variability accompanying cancer organoid culture is necessary to establish reproducible platforms that accelerate translatable insights into patient care. Here we describe the current challenges and recent multidisciplinary advancements and opportunities for standardizing next-generation cancer organoid systems.
Collapse
Affiliation(s)
- Bauer L LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Pancreatic Cancer Organoids in the Field of Precision Medicine: A Review of Literature and Experience on Drug Sensitivity Testing with Multiple Readouts and Synergy Scoring. Cancers (Basel) 2022; 14:cancers14030525. [PMID: 35158794 PMCID: PMC8833348 DOI: 10.3390/cancers14030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary New treatments are urgently needed for pancreatic ductal adenocarcinoma because it is one of the most aggressive and lethal cancers, detected too late and resistant to conventional chemotherapy. Tumors in most patients feature a similar set of core mutations but so far it has not been possible to design a one-fits-all treatment strategy. Instead, efforts are underway to personalize the therapies. To find the treatments that might work the best for each patient, entirely new experimental platforms based on living miniature tumors, organoids, have been developed. We review here the latest international findings in designing personalized treatments pancreatic cancer patients using organoids as testing beds. Our own work adds important clues about how such testing could, and perhaps should, be conducted. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a silent killer, often diagnosed late. However, it is also dishearteningly resistant to nearly all forms of treatment. New therapies are urgently needed, and with the advent of organoid culture for pancreatic cancer, an increasing number of innovative approaches are being tested. Organoids can be derived within a short enough time window to allow testing of several anticancer agents, which opens up the possibility for functional precision medicine for pancreatic cancer. At the same time, organoid model systems are being refined to better mimic the cancer, for example, by incorporation of components of the tumor microenvironment. We review some of the latest developments in pancreatic cancer organoid research and in novel treatment design. We also summarize our own current experiences with pancreatic cancer organoid drug sensitivity and resistance testing (DSRT) in 14 organoids from 11 PDAC patients. Our data show that it may be necessary to include a cell death read-out in ex vivo DSRT assays, as metabolic viability quantitation does not capture actual organoid killing. We also successfully adapted the organoid platform for drug combination synergy discovery. Lastly, live organoid culture 3D confocal microscopy can help identify individual surviving tumor cells escaping cell death even during harsh combination treatments. Taken together, the organoid technology allows the development of novel precision medicine approaches for PDAC, which paves the way for clinical trials and much needed new treatment options for pancreatic cancer patients.
Collapse
|
43
|
An itch for things remote: The journey of Wnts. Curr Top Dev Biol 2022; 150:91-128. [DOI: 10.1016/bs.ctdb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Sonavane PR, Willert K. Enrichment and Detection of Wnt Proteins from Cell Culture Media. Methods Mol Biol 2022; 2438:123-131. [PMID: 35147939 DOI: 10.1007/978-1-0716-2035-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wnt proteins are secreted, lipid-modified growth factors with a wide range of activities across all metazoan species. Their production, secretion, and signaling range are under tight cellular control such that detection of Wnt proteins in biological samples is often extremely difficult. In this chapter, we describe a protocol to detect secreted Wnt proteins in the culture medium of cell lines that ectopically or endogenously express Wnt genes. This protocol uses an affinity resin, called Blue Sepharose, that binds and thereby enriches Wnt proteins, followed by immunoblotting for the Wnt protein of interest. This method for detecting Wnt proteins will aid in the isolation of biologically active Wnt proteins, provide an assay to study the molecular basis of Wnt secretion, and potentially offer a means to detect trace amounts of Wnt proteins associated with pathological states.
Collapse
Affiliation(s)
- Pooja R Sonavane
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karl Willert
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Nagano Y, Arafiles JVV, Kuwata K, Kawaguchi Y, Imanishi M, Hirose H, Futaki S. Grafting Hydrophobic Amino Acids Critical for Inhibition of Protein-Protein Interactions on a Cell-Penetrating Peptide Scaffold. Mol Pharm 2021; 19:558-567. [PMID: 34958576 DOI: 10.1021/acs.molpharmaceut.1c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of β-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of β-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of β-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides.
Collapse
Affiliation(s)
- Yuki Nagano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
46
|
Purwaningsih NMS, Khor GH, Nik Mohd Rosdy NMM, Abdul Rahman EO. Wnt pathway in oral cancer: A review update. Saudi Dent J 2021; 33:813-818. [PMID: 34938020 PMCID: PMC8665198 DOI: 10.1016/j.sdentj.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 10/24/2022] Open
|
47
|
Farshadi EA, Chang J, Sampadi B, Doukas M, Van 't Land F, van der Sijde F, Vietsch EE, Pothof J, Koerkamp BG, van Eijck CH. Organoids Derived from Neoadjuvant FOLFIRINOX Patients Recapitulate Therapy Resistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2021; 27:6602-6612. [PMID: 34580113 PMCID: PMC9401459 DOI: 10.1158/1078-0432.ccr-21-1681] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We investigated whether organoids can be generated from resected tumors of patients who received eight cycles of neoadjuvant FOLFIRINOX chemotherapy before surgery, and evaluated the sensitivity/resistance of these surviving cancer cells to cancer therapy. EXPERIMENTAL DESIGN We generated a library of 10 pancreatic ductal adenocarcinoma (PDAC) organoid lines: five each from treatment-naïve and FOLFIRINOX-treated patients. We first assessed the histologic, genetic, and transcriptional characteristics of the organoids and their matched primary PDAC tissue. Next, the organoids' response to treatment with single agents-5-FU, irinotecan, and oxaliplatin-of the FOLFIRINOX regimen as well as combined regimen was evaluated. Finally, global mRNA-seq analyses were performed to identify FOLFIRINOX resistance pathways. RESULTS All 10 patient-derived PDAC organoids recapitulate histologic, genetic, and transcriptional characteristics of their primary tumor tissue. Neoadjuvant FOLFIRINOX-treated organoids display resistance to FOLFIRINOX (5/5), irinotecan (5/5), and oxaliplatin (4/5) when compared with treatment-naïve organoids (FOLFIRINOX: 1/5, irinotecan: 2/5, oxaliplatin: 0/5). 5-Fluorouracil treatment responses between naïve and treated organoids were similar. Comparative global transcriptome analysis of treatment-naïve and FOLFIRINOX samples-in both organoids and corresponding matched tumor tissues-uncovered modulated pathways mainly involved in genomic instability, energy metabolism, and innate immune system. CONCLUSIONS Resistance development in neoadjuvant FOLFIRINOX organoids, recapitulating their primary tumor resistance, suggests continuation of FOLFIRINOX therapy as an adjuvant treatment may not be advantageous for these patients. Gene-expression profiles of PDAC organoids identify targetable pathways involved in chemoresistance development upon neoadjuvant FOLFIRINOX treatment, thus opening up combination therapy possibilities.
Collapse
Affiliation(s)
- Elham Aida Farshadi
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jiang Chang
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Freek Van 't Land
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fleur van der Sijde
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eveline E. Vietsch
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Casper H.J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.,Corresponding Author: Casper H.J. van Eijck, Department of Surgery, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands. Phone: 31-10-7-033854; E-mail:
| |
Collapse
|
48
|
Cho YW, Min DW, Kim HP, An Y, Kim S, Youk J, Chun J, Im JP, Song SH, Ju YS, Han SW, Park KJ, Kim TY. Patient-derived organoids as a preclinical platform for precision medicine in colorectal cancer. Mol Oncol 2021; 16:2396-2412. [PMID: 34850547 PMCID: PMC9208081 DOI: 10.1002/1878-0261.13144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Patient‐derived organoids are being considered as models that can help guide personalized therapy through in vitro anticancer drug response evaluation. However, attempts to quantify in vitro drug responses in organoids and compare them with responses in matched patients remain inadequate. In this study, we investigated whether drug responses of organoids correlate with clinical responses of matched patients and disease progression of patients. Organoids were established from 54 patients with colorectal cancer who (except for one patient) did not receive any form of therapy before, and tumor organoids were assessed through whole‐exome sequencing. For comparisons of in vitro drug responses in matched patients, we developed an ‘organoid score’ based on the variable anticancer treatment responses observed in organoids. Very interestingly, a higher organoid score was significantly correlated with a lower tumor regression rate after the standard‐of‐care treatment in matched patients. Additionally, we confirmed that patients with a higher organoid score (≥ 2.5) had poorer progression‐free survival compared with those with a lower organoid score (< 2.5). Furthermore, to assess potential drug repurposing using an FDA‐approved drug library, ten tumor organoids derived from patients with disease progression were applied to a simulation platform. Taken together, organoids and organoid scores can facilitate the prediction of anticancer therapy efficacy, and they can be used as a simulation model to determine the next therapeutic options through drug screening. Organoids will be an attractive platform to enable the implementation of personalized therapy for colorectal cancer patients.
Collapse
Affiliation(s)
- Young-Won Cho
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Dong-Wook Min
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Hwang-Phill Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Yohan An
- BioMedical Science and Engineering Interdisciplinary Program (BSEIP), Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sheehyun Kim
- Department of Internal Medicine, Seoul National University Hospital, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Korea
| | - Jeonghwan Youk
- Graduate School of Medical Science & Engineering (GSMSE), Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jaeyoung Chun
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Korea.,Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Korea
| | - Young Seok Ju
- BioMedical Science and Engineering Interdisciplinary Program (BSEIP), Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Graduate School of Medical Science & Engineering (GSMSE), Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Korea
| | - Tae-You Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea.,Department of Internal Medicine, Seoul National University Hospital, Korea
| |
Collapse
|
49
|
Gross JC. Extracellular WNTs: Trafficking, Exosomes, and Ligand-Receptor Interaction. Handb Exp Pharmacol 2021; 269:29-43. [PMID: 34505202 DOI: 10.1007/164_2021_531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
WNT signaling is a key developmental pathway in tissue organization. A recent focus of research is the secretion of WNT proteins from source cells. Research over the past decade on how WNTs are produced and released into the extracellular space has unravelled very specific control mechanisms in the early secretory pathway, specialized trafficking routes, and redundant forms of packaging for delivery to target cells. In this review I discuss the findings that WNT proteins have been found on extracellular vesicles (EVs) such as exosomes and possible functional implications. There is an ongoing debate in the WNT signaling field whether EV are relevant in vivo and can fulfill specific functions, also fueled by the general preconception of EV secretion as cellular garbage disposal. As part of the EV research community, I want to give an overview of what we know and don't know about WNT secretion on EVs and offer a more unifying model that can explain current discrepancies in observations regarding WNT secretion.
Collapse
Affiliation(s)
- Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany. .,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany. .,Health and Medical University Potsdam, Potsdam, Germany.
| |
Collapse
|
50
|
The Diverse Applications of Pancreatic Ductal Adenocarcinoma Organoids. Cancers (Basel) 2021; 13:cancers13194979. [PMID: 34638463 PMCID: PMC8508245 DOI: 10.3390/cancers13194979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies. While immortalized cancer cell lines and genetically engineered murine models have increased our understanding of PDAC tumorigenesis, they do not recapitulate inter- and intra-patient heterogeneity. PDAC patient derived organoid (PDO) biobanks have overcome this hurdle, and provide an opportunity for the high throughput screening of potential new therapies. This review provides a summary of the PDAC PDO biobanks established to date, and discusses how they have advanced our understanding of PDAC biology. Looking forward, the development of coculturing techniques for specific immune or stromal cell populations will enable a better understanding of the crosstalk that occurs within the tumor microenvironment, and the impact of this crosstalk on treatment response.
Collapse
|