1
|
Moreau A, Yaya F, Lu H, Surendranath A, Charrier A, Dehapiot B, Helfer E, Viallat A, Peng Z. Reply to Kaestner et al.: Activation of PIEZO1 is not significant for the passage of red blood cells through biomimetic splenic slits. Proc Natl Acad Sci U S A 2025; 122:e2411469121. [PMID: 39746004 PMCID: PMC11745357 DOI: 10.1073/pnas.2411469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Affiliation(s)
- Alexis Moreau
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - François Yaya
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - Huijie Lu
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL60612
| | - Anagha Surendranath
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - Anne Charrier
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - Benoit Dehapiot
- CNRS, Institut de Biologie du Développement de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - Emmanuèle Helfer
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - Annie Viallat
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Aix Marseille Université, Marseille13009, France
| | - Zhangli Peng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL60612
| |
Collapse
|
2
|
Li Y, Wang X, Guo J, Wang Y, Zykov V, Bodenschatz E, Gao X. Sonogenetics is a novel antiarrhythmic mechanism. CHAOS (WOODBURY, N.Y.) 2025; 35:013127. [PMID: 39792701 DOI: 10.1063/5.0224817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm. In contrast to anchoring the implanted ICD lead at a fixed position in the myocardium, the size and position of the ultrasound focal region can be selected dynamically by adjusting the signals of every piezoelectric chip on the ultrasonic phased array, and it allows novel and efficient defibrillations. Based on the developed interdisciplinary electro-mechanical model of sonogenetic treatment, our analysis shows that the proposed ultrasound intensity and frequency will be safe and painless for humans and well below the limits established by the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Yang Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xingang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Jianzhong Guo
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Yong Wang
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen 37077, Germany
| | - Vladimir Zykov
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen 37077, Germany
- Institute for Dynamics of Complex Systems, University of Göttingen, Göttingen 37075, Germany
- Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Xiang Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| |
Collapse
|
3
|
Chen GL, Li JY, Chen X, Liu JW, Zhang Q, Liu JY, Wen J, Wang N, Lei M, Wei JP, Yi L, Li JJ, Ling YP, Yi HQ, Hu Z, Duan J, Zhang J, Zeng B. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J Clin Invest 2024; 134:e174508. [PMID: 38127458 PMCID: PMC10904053 DOI: 10.1172/jci174508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Wei Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Qian Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jie-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jun-Peng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Li Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Jia Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Yu-Peng Ling
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - He-Qiang Yi
- Department of Cardiothoracic Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences and
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences and
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| |
Collapse
|
4
|
Liu S, Yang X, Chen X, Zhang X, Jiang J, Yuan J, Liu W, Wang L, Zhou H, Wu K, Tian B, Li X, Xiao B. An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel. Neuron 2024:S0896-6273(24)00877-8. [PMID: 39719701 DOI: 10.1016/j.neuron.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure. Compared with the curved and flattened structures of PIEZO1, the S2472E-Intermediate structure displays partially flattened blades, a downward and rotational motion of the top cap, and a spring-like compression of the linker connecting the cap to the pore-lining inner helix. These conformational changes open the cap gate and the hydrophobic transmembrane gate, whereas the intracellular lateral plug gate remains closed. The flattened structure of PIEZO1 with an up-state cap and closed cap gate might represent an inactivated state. Molecular dynamics (MD) simulations of ion conduction support the closed, intermediate open, and inactivated structural states. Mutagenesis and electrophysiological studies identified key domains and residues critical for the mechanical activation of PIEZO1. These studies collectively define the distinct structural states and gating transitions of PIEZO1.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuzhong Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xudong Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jinghui Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingyi Yuan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wenhao Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Li Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Heng Zhou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Xueming Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Rashidi N, Harasymowicz NS, Savadipour A, Steward N, Tang R, Oswald S, Guilak F. PIEZO1-mediated mechanotransduction regulates collagen synthesis on nanostructured 2D and 3D models of fibrosis. Acta Biomater 2024:S1742-7061(24)00744-X. [PMID: 39675497 DOI: 10.1016/j.actbio.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Progressive fibrosis can lead to tissue malfunction and organ failure due to the pathologic accumulation of a collagen-rich extracellular matrix. In vitro models provide useful tools for deconstructing the roles of specific biomechanical or biological mechanisms, such as substrate micro- and nanoscale architecture, in these processes for identifying potential therapeutic targets. Here, we investigated how the mechanosensitive ion channel PIEZO1 influences fibrotic gene and protein expression in adipose-derived stem cells (hASCs). Specifically, we examined the role of PIEZO1 and the mechanosensitive transcription factors YAP/TAZ in sensing aligned or non-aligned substrate architecture to regulate collagen formation. We utilized both 2D microphotopatterned substrates and 3D electrospun polycaprolactone (PCL) substrates to study the role of culture dimensionality. We found that PIEZO1 regulates collagen synthesis in hASCs in a manner that is sensitive to substrate architecture. Activation of PIEZO1 induced significant morphological changes in hASCs, particularly when cultured on aligned substrates, leading to a 30-40 % reduction in cell spreading area and increased cell elongation, in 3D-aligned cultures. Picrosirius Red staining and immunoblotting revealed that PIEZO1 activation reduced collagen accumulation in 3D culture. While YAP translocated to the cytoplasm following PIEZO1 activation, depleting YAP and TAZ did not change collagen expression significantly downstream of PIEZO1 activation, implying that YAP/TAZ translocation from the nucleus and decreased collagen synthesis may be independent consequences of PIEZO1 activation. Our studies demonstrate a role for PIEZO1 in cellular mechanosensing of substrate architecture and provide targetable pathways for treating fibrosis and for enhancing tissue-engineered and regenerative approaches for fibrous tissue repair. STATEMENT OF SIGNIFICANCE: This study examines how cells sense and respond to their physical environment via PIEZO1 mechanotransduction. We discovered that cells use PIEZO1 to detect the alignment of surrounding structures, influencing the production of collagen - a key component in fibrosis. Our study used both 2D and 3D models to mimic different tissue environments, providing new insights into how cellular responses change in more complex settings. Importantly, we found that activating PIEZO1 alters cell shape and collagen production, especially on aligned surfaces. Interestingly, while PIEZO1 activation caused YAP translocation to the cytoplasm, this translocation did not directly affect collagen production. This work advances our understanding of fibrosis development and identifies PIEZO1 as a potential target for new therapies.
Collapse
Affiliation(s)
- Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Oswald
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA; Cytex Therapeutics, Inc., Durham, NC 27704, USA.
| |
Collapse
|
6
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Increased keratinocyte activity and PIEZO1 signaling contribute to paclitaxel-induced mechanical hypersensitivity. Sci Transl Med 2024; 16:eadn5629. [PMID: 39661703 DOI: 10.1126/scitranslmed.adn5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown whether keratinocytes contribute to touch-evoked pain and hypersensitivity after tissue injury. Here, we used a mouse model of paclitaxel treatment to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapy. We found that keratinocyte inhibition by either optogenetic or chemogenetic methods largely alleviated paclitaxel-induced mechanical hypersensitivity across acute and persistent time points from 2 days through 3 weeks. Furthermore, we found that paclitaxel exposure sensitized mouse and human keratinocytes to mechanical stimulation and enhanced currents of PIEZO1, a mechanosensitive channel highly expressed in keratinocytes. Deletion of PIEZO1 from keratinocytes alleviated paclitaxel-induced mechanical hypersensitivity in mice. These findings suggest that nonneuronal cutaneous cells contribute substantially to neuropathic pain and pave the way for the development of new pain relief strategies that target epidermal keratinocytes and PIEZO1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Roeterink RMA, Casadevall I Solvas X, Collins DJ, Scott DJ. Force versus Response: Methods for Activating and Characterizing Mechanosensitive Ion Channels and GPCRs. Adv Healthc Mater 2024; 13:e2402167. [PMID: 39402780 DOI: 10.1002/adhm.202402167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanotransduction is the process whereby cells convert mechanical signals into electrochemical responses, where mechanosensitive proteins mediate this interaction. To characterize these critical proteins, numerous techniques have been developed that apply forces and measure the subsequent cellular responses. While these approaches have given insight into specific aspects of many such proteins, subsequent validation and cross-comparison between techniques remain difficult given significant variations in reported activation thresholds and responses for the same protein across different studies. Accurately determining mechanosensitivity responses for various proteins, however, is essential for understanding mechanotransduction and potential physiological implications, including therapeutics. This critical review provides an assessment of current and emerging approaches used for mechanosensitive ion channel and G-Coupled Receptors (GPCRs) stimulation and measurement, with a specific focus on the ability to quantitatively measure mechanosensitive responses.
Collapse
Affiliation(s)
- Renate M A Roeterink
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
8
|
Luu N, Liao J, Fang Y, Chen W. Advances in ligand-based surface engineering strategies for fine-tuning T cell mechanotransduction toward efficient immunotherapy. Biophys J 2024:S0006-3495(24)02240-9. [PMID: 39600091 DOI: 10.1016/j.bpj.2024.11.1512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
T cell-based immunotherapy has recently emerged as a promising strategy to treat cancer, requiring the activation of antigen-directed cytotoxicity to eliminate cancer cells. Mechanical signaling, although often overshadowed by its biochemical counterpart, plays a crucial role in T cell anticancer responses, from activation to cytolytic killing. Rapid advancements in the fields of chemistry, biomaterials, and micro/nanoengineering offer an interdisciplinary approach to incorporating mechano- and immunomodulatory ligands, including but not limited to synthetic peptides, small molecules, cytokines, and artificial antigens, onto the biomaterial-based platforms to modulate mechanotransducive processes in T cells. The surface engineering of these immunomodulatory ligands with optimization of ligand density, geometrical arrangement, and mobility has been proven to better mimic the natural ligation between immunoreceptors and ligands to directly enhance or inhibit mechanotransduction pathways in T cells, through triggering upstream mechanosensitive channels, adhesion molecules, cytoskeletal components, or downstream mechanoimmunological regulators. Despite its tremendous potential, current research on this new biomaterial surface engineering approach for mechanomodulatory T cell activation and effector functions remains in a nascent stage. This review highlights the recent progress in this new direction, focusing on achievements in mechanomodulatory ligand-based surface engineering strategies and underlying principles, and outlooks the further research in the rapidly evolving field of T cell mechanotransduction engineering for efficient immunotherapy.
Collapse
Affiliation(s)
- Ngoc Luu
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Junru Liao
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Yifei Fang
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, Brooklyn, New York; Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
9
|
Liu C, Dernburg AF. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science 2024; 386:eadm7969. [PMID: 39571011 DOI: 10.1126/science.adm7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis. We developed and deployed a chemically induced proximity system to identify key elements of this quality control pathway in Caenorhabditis elegans. Persistence of the polo-like kinase PLK-2 at pairing centers-specialized chromosome regions that interact with the nuclear envelope-induced apoptosis of oocytes in response to phosphorylation and destabilization of the nuclear lamina. Unexpectedly, the Piezo1/PEZO-1 channel localized to the nuclear envelope and was required to transduce this signal to promote apoptosis in maturing oocytes.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
10
|
Matsuki Y, Iwamoto M, Maki T, Takashima M, Yoshida T, Oiki S. Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology. ACS NANO 2024; 18:30561-30573. [PMID: 39437160 PMCID: PMC11544928 DOI: 10.1021/acsnano.4c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology. However, in situ studies in chaotically complex cell membranes are challenging, and characterizing the tension dependency of mechanosensitive channels remains semiquantitative owing to technical limitations. Here, we developed a programmable membrane tension-control apparatus on a lipid bilayer system. This synthetic membrane system [contact bubble bilayer (CBB)] uses pressure to drive bilayer tension changes via the Young-Laplace principle, whereas absolute bilayer tension is monitored in real-time through image analysis of the bubble geometry via the Young principle. Consequently, the mechanical nature of the system permits the implementation of closed-loop feedback control of bilayer tension (tension-clamp CBB), maintaining a constant tension for minutes and allowing stepwise tension changes within a hundred milliseconds in the tension range of 0.8 to 15 mN·m-1. We verified the system performance by examining the single-channel behavior of tension-dependent KcsA and TREK-1 potassium channels under scheduled tension time courses prescribed via visual interfaces. The result revealed steady-state activity and dynamic responses to the step tension changes, which are essential to the biophysical characterization of the channels. The apparatus explores a frontier for quantitative mechanobiology studies and promotes the development of a tension-operating experimental robot.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masako Takashima
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshiyuki Yoshida
- Department
of Information Science, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
11
|
Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol 2024; 25:886-903. [PMID: 39251883 DOI: 10.1038/s41580-024-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Zhang Y, Li J, Pan J, Deng S. Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury. Front Physiol 2024; 15:1473501. [PMID: 39534859 PMCID: PMC11554511 DOI: 10.3389/fphys.2024.1473501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Shengli Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
14
|
Ni K, Che B, Gu R, Wang C, Pan Y, Li J, Liu L, Luo M, Deng L. Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation. Cells 2024; 13:1697. [PMID: 39451215 PMCID: PMC11505810 DOI: 10.3390/cells13201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Yu H, Zhang Y, Shuai L, Peng C, Zhao C, Jiang Y, Yao L, Lai J, Chen Z, Zhang L, Xiong X, Wang X. Low hepatic artery blood flow mediates NET extravasation through the regulation of PIEZO1/SRC signaling to induce biliary complications after liver transplantation. Theranostics 2024; 14:6783-6797. [PMID: 39479458 PMCID: PMC11519797 DOI: 10.7150/thno.99514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Biliary complications after liver transplantation persistently affect patient prognosis and graft survival. Neutrophil-mediated immune injury is an important factor leading to biliary injury. However, the mechanism by which neutrophils reach the periphery of the bile duct and further mediate bile duct injury is not fully understood. Methods: First, we obtained hepatic tissue samples from grafted rats subjected to warm and nonwarm ischemic injury. We constructed a protein map via proteomics and analyzed the correlations between neutrophil extracellular traps (NETs) and biliary injury. HuCCT1 cells were cocultured with NETs isolated from the peripheral blood of grafted rats in vitro to evaluate the role of NETs in bile duct injury. Next, we assessed NET extravasation through the PIEZO1/SRC pathway in liver samples from rats with liver grafts via proteomic analysis, immunohistochemical staining and immunofluorescence. Finally, we evaluated the correlations between hepatic arterial blood flow and the PIEZO1/SRC pathway in a liver graft model. Results: The results revealed a close correlation between NET formation by activated neutrophils and bile duct injury. Low hepatic arterial blood flow leads to NET extravasation through the activation of the mechanosensitive ion channel PIEZO1 and its downstream signaling events, including phosphorylation of tyrosine kinases sarcoma (SRC) protein. The extravasated NETs accumulate around the bile ducts and subsequently mediate biliary cell apoptosis. Verapamil was further used to increase hepatic artery blood flow to inhibit the PIEZO1/SRC axis, which reduced bile duct injury caused by extravasated NETs. Conclusions: Suppressing NET extravasation by increasing hepatic arterial blood flow is a potential strategy for the treatment of biliary complications after liver transplantation.
Collapse
Affiliation(s)
- Hongqiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Yujun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Ling Shuai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Cong Peng
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Changchun Zhao
- Department of General Surgery, Traditional Chinese Medicine Hospital, Chongqing, China 400015, China
| | - Yan Jiang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Ling Yao
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Jiejuan Lai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Zhiyu Chen
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Leida Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Xiang Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| | - Xiaojun Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China 400038, China
| |
Collapse
|
16
|
Xu T, Zhang Y, Li D, Lai C, Wang S, Zhang S. Mechanosensitive Ion Channels Piezo1 and Piezo2 Mediate Motor Responses In Vivo During Transcranial Focused Ultrasound Stimulation of the Rodent Cerebral Motor Cortex. IEEE Trans Biomed Eng 2024; 71:2900-2910. [PMID: 38748529 DOI: 10.1109/tbme.2024.3401136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) neuromodulation offers a noninvasive, safe, deep brain stimulation with high precision, presenting potential in understanding neural circuits and treating brain disorders. This in vivo study investigated the mechanism of tFUS in activating the opening of the mechanosensitive ion channels Piezo1 and Piezo2 in the mouse motor cortex to induce motor responses. METHODS Piezo1 and Piezo2 were knocked down separately in the mouse motor cortex, followed by EMG and motor cortex immunofluorescence comparisons before and after knockdown under tFUS stimulation. RESULTS The results demonstrated that the stimulation-induced motor response success rates in Piezo knockdown mice were lower compared to the control group (Piezo1 knockdown: 57.63% ± 14.62%, Piezo2 knockdown: 73.71% ± 13.10%, Control mice: 85.69% ± 10.23%). Both Piezo1 and Piezo2 knockdowns showed prolonged motor response times (Piezo1 knockdown: 0.62 ± 0.19 s, Piezo2 knockdown: 0.60 ± 0.13 s, Control mice: 0.44 ± 0.12 s) compared to controls. Additionally, Piezo knockdown animals subjected to tFUS showed reduced immunofluorescent c-Fos expression in the target area when measured in terms of cells per unit area compared to the control group. CONCLUSION This in vivo study confirms the pivotal role of Piezo channels in tFUS-induced neuromodulation, highlighting their influence on motor response efficacy and timing. SIGNIFICANCE This study provides insights into the mechanistic underpinnings of noninvasive brain stimulation techniques and opens avenues for developing targeted therapies for neural disorders.
Collapse
|
17
|
Garcia-Sanchez J, Lin D, Liu WW. Mechanosensitive ion channels in glaucoma pathophysiology. Vision Res 2024; 223:108473. [PMID: 39180975 PMCID: PMC11398070 DOI: 10.1016/j.visres.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Collapse
Affiliation(s)
- Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Danting Lin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
18
|
Lichtenstein L, Cheng CW, Bajarwan M, Evans EL, Gaunt HJ, Bartoli F, Chuntharpursat-Bon E, Patel S, Konstantinou C, Futers TS, Reay M, Parsonage G, Moore JB, Bertrand-Michel J, Sukumar P, Roberts LD, Beech DJ. Endothelial force sensing signals to parenchymal cells to regulate bile and plasma lipids. SCIENCE ADVANCES 2024; 10:eadq3075. [PMID: 39331703 PMCID: PMC11430402 DOI: 10.1126/sciadv.adq3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium. This revealed unique up-regulation of Cyp7a1, which encodes the rate-limiting enzyme for bile synthesis from cholesterol in hepatocytes. Consistent with this effect were increased gallbladder and plasma bile acids and lowered hepatic and plasma cholesterol. Elevated portal fluid flow acting via endothelial PIEZO1 and genetically enhanced PIEZO1 conversely suppressed Cyp7a1. Activation of hepatic endothelial PIEZO1 channels promoted phosphorylation of nitric oxide synthase 3, and portal flow-mediated suppression of Cyp7a1 depended on nitric oxide synthesis, suggesting endothelium-to-hepatocyte coupling via nitric oxide. PIEZO1 variants in people were associated with hepatobiliary disease and dyslipidemia. The data suggest an endothelial force sensing mechanism that controls lipid regulation in parenchymal cells to modulate whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Chew W. Cheng
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Muath Bajarwan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Fiona Bartoli
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Shaili Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | - Charalampos Konstantinou
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | | | - Melanie Reay
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Justine Bertrand-Michel
- MetaToul-Lipidomics Facility, INSERM UMR1048, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1297/I2MC, INSERM, Toulouse, France
| | | | - Lee D. Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Wenqiang D, Novin A, Liu Y, Afzal J, Suhail Y, Liu S, Gavin NR, Jorgensen JR, Morosky CM, Figueroa R, Schmidt TA, Sanders M, Brewer MA, Kshitiz. Scar matrix drives Piezo1 mediated stromal inflammation leading to placenta accreta spectrum. Nat Commun 2024; 15:8379. [PMID: 39333481 PMCID: PMC11436960 DOI: 10.1038/s41467-024-52351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Scar tissue formation is a hallmark of wound repair in adults and can chronically affect tissue architecture and function. To understand the general phenomena, we sought to explore scar-driven imbalance in tissue homeostasis caused by a common, and standardized surgical procedure, the uterine scar due to cesarean surgery. Deep uterine scar is associated with a rapidly increasing condition in pregnant women, placenta accreta spectrum (PAS), characterized by aggressive trophoblast invasion into the uterus, frequently necessitating hysterectomy at parturition. We created a model of uterine scar, recapitulating PAS-like invasive phenotype, showing that scar matrix activates mechanosensitive ion channel, Piezo1, through glycolysis-fueled cellular contraction. Piezo1 activation increases intracellular calcium activity and Protein kinase C activation, leading to NF-κB nuclear translocation, and MafG stabilization. This inflammatory transformation of decidua leads to production of IL-8 and G-CSF, chemotactically recruiting invading trophoblasts towards scar, initiating PAS. Our study demonstrates aberrant mechanics of scar disturbs stroma-epithelia homeostasis in placentation, with implications in cancer dissemination.
Collapse
Affiliation(s)
- Du Wenqiang
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Junaid Afzal
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Nicole R Gavin
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Jennifer R Jorgensen
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Christopher M Morosky
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Reinaldo Figueroa
- Department of Obstetrics and Gynecology, Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - Melinda Sanders
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pathology, University of Connecticut Health Center, Farmington, CT, USA
| | - Molly A Brewer
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
20
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. Neuron 2024; 112:3161-3175.e5. [PMID: 39043183 PMCID: PMC11427155 DOI: 10.1016/j.neuron.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through them, are required for modulating the K2P channel K2P2.1 (TREK1). Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting that the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Bertaccini GA, Casanellas I, Evans EL, Nourse JL, Dickinson GD, Liu G, Seal S, Ly AT, Holt JR, Wijerathne TD, Yan S, Hui EE, Lacroix JJ, Panicker MM, Upadhyayula S, Parker I, Pathak MM. Visualizing PIEZO1 Localization and Activity in hiPSC-Derived Single Cells and Organoids with HaloTag Technology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573117. [PMID: 38187535 PMCID: PMC10769387 DOI: 10.1101/2023.12.22.573117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca2+-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we used lightsheet imaging of hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue organoids. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and targeted therapeutic development.
Collapse
Affiliation(s)
- Gabriella A Bertaccini
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Ignasi Casanellas
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Elizabeth L Evans
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Jamison L Nourse
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - George D Dickinson
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Gaoxiang Liu
- Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sayan Seal
- Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Alan T Ly
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Jesse R Holt
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Tharaka D Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Shijun Yan
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Jerome J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Mitradas M Panicker
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
22
|
Zubiarrain-Laserna A, Martínez-Moreno D, López de Andrés J, de Lara-Peña L, Guaresti O, Zaldua AM, Jiménez G, Marchal JA. Beyond stiffness: deciphering the role of viscoelasticity in cancer evolution and treatment response. Biofabrication 2024; 16:042002. [PMID: 38862006 DOI: 10.1088/1758-5090/ad5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
There is increasing evidence that cancer progression is linked to tissue viscoelasticity, which challenges the commonly accepted notion that stiffness is the main mechanical hallmark of cancer. However, this new insight has not reached widespread clinical use, as most clinical trials focus on the application of tissue elasticity and stiffness in diagnostic, therapeutic, and surgical planning. Therefore, there is a need to advance the fundamental understanding of the effect of viscoelasticity on cancer progression, to develop novel mechanical biomarkers of clinical significance. Tissue viscoelasticity is largely determined by the extracellular matrix (ECM), which can be simulatedin vitrousing hydrogel-based platforms. Since the mechanical properties of hydrogels can be easily adjusted by changing parameters such as molecular weight and crosslinking type, they provide a platform to systematically study the relationship between ECM viscoelasticity and cancer progression. This review begins with an overview of cancer viscoelasticity, describing how tumor cells interact with biophysical signals in their environment, how they contribute to tumor viscoelasticity, and how this translates into cancer progression. Next, an overview of clinical trials focused on measuring biomechanical properties of tumors is presented, highlighting the biomechanical properties utilized for cancer diagnosis and monitoring. Finally, this review examines the use of biofabricated tumor models for studying the impact of ECM viscoelasticity on cancer behavior and progression and it explores potential avenues for future research on the production of more sophisticated and biomimetic tumor models, as well as their mechanical evaluation.
Collapse
Affiliation(s)
- Ana Zubiarrain-Laserna
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
| | - Daniel Martínez-Moreno
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
| | - Julia López de Andrés
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Laura de Lara-Peña
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Olatz Guaresti
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Gema Jiménez
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Health Science, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain
| | - Juan Antonio Marchal
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Cronin ME, Grandl J. Subconductance states add complexity to Piezo1 gating model. Trends Biochem Sci 2024; 49:567-568. [PMID: 38816279 PMCID: PMC11227380 DOI: 10.1016/j.tibs.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Piezos are force-gated ion channels that detect and communicate membrane tension to the cell. Recent work from Ullah, Nosyreva, and colleagues characterizes partial channel openings, known as subconductance states, and develops a new gating model of Piezo1 function.
Collapse
Affiliation(s)
- Marie E Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
25
|
Wang HJ, Wang Y, Mirjavadi SS, Andersen T, Moldovan L, Vatankhah P, Russell B, Jin J, Zhou Z, Li Q, Cox CD, Su QP, Ju LA. Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution. Nat Commun 2024; 15:5521. [PMID: 38951553 PMCID: PMC11217425 DOI: 10.1038/s41467-024-49833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.
Collapse
Affiliation(s)
- Haoqing Jerry Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Seyed Sajad Mirjavadi
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tomas Andersen
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Laura Moldovan
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia
| | - Parham Vatankhah
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Blake Russell
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Jasmine Jin
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wale, Sydney, NSW, 2010, Australia
| | - Qian Peter Su
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia.
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
26
|
Lei L, Wen Z, Cao M, Zhang H, Ling SKK, Fu BSC, Qin L, Xu J, Yung PSH. The emerging role of Piezo1 in the musculoskeletal system and disease. Theranostics 2024; 14:3963-3983. [PMID: 38994033 PMCID: PMC11234281 DOI: 10.7150/thno.96959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024] Open
Abstract
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Lei Lei
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingde Cao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruma Sai-Chuen Fu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Lüchtefeld I, Pivkin IV, Gardini L, Zare-Eelanjegh E, Gäbelein C, Ihle SJ, Reichmuth AM, Capitanio M, Martinac B, Zambelli T, Vassalli M. Dissecting cell membrane tension dynamics and its effect on Piezo1-mediated cellular mechanosensitivity using force-controlled nanopipettes. Nat Methods 2024; 21:1063-1073. [PMID: 38802520 PMCID: PMC11166569 DOI: 10.1038/s41592-024-02277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.
Collapse
Affiliation(s)
- Ines Lüchtefeld
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland.
| | - Igor V Pivkin
- Institute of Computing, Università della Svizzera Italiana, Lugano, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Lucia Gardini
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy
| | | | | | - Stephan J Ihle
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Andreas M Reichmuth
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Marco Capitanio
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy
- Physics and Astronomy Department, University of Florence, Florence, Italy
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Tomaso Zambelli
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland.
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
28
|
Gomez-Cruz C, Fernandez-de la Torre M, Lachowski D, Prados-de-Haro M, Del Río Hernández AE, Perea G, Muñoz-Barrutia A, Garcia-Gonzalez D. Mechanical and Functional Responses in Astrocytes under Alternating Deformation Modes Using Magneto-Active Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312497. [PMID: 38610101 DOI: 10.1002/adma.202312497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Indexed: 04/14/2024]
Abstract
This work introduces NeoMag, a system designed to enhance cell mechanics assays in substrate deformation studies. NeoMag uses multidomain magneto-active materials to mechanically actuate the substrate, transmitting reversible mechanical cues to cells. The system boasts full flexibility in alternating loading substrate deformation modes, seamlessly adapting to both upright and inverted microscopes. The multidomain substrates facilitate mechanobiology assays on 2D and 3D cultures. The integration of the system with nanoindenters allows for precise evaluation of cellular mechanical properties under varying substrate deformation modes. The system is used to study the impact of substrate deformation on astrocytes, simulating mechanical conditions akin to traumatic brain injury and ischemic stroke. The results reveal local heterogeneous changes in astrocyte stiffness, influenced by the orientation of subcellular regions relative to substrate strain. These stiffness variations, exceeding 50% in stiffening and softening, and local deformations significantly alter calcium dynamics. Furthermore, sustained deformations induce actin network reorganization and activate Piezo1 channels, leading to an initial increase followed by a long-term inhibition of calcium events. Conversely, fast and dynamic deformations transiently activate Piezo1 channels and disrupt the actin network, causing long-term cell softening. These findings unveil mechanical and functional alterations in astrocytes during substrate deformation, illustrating the multiple opportunities this technology offers.
Collapse
Affiliation(s)
- Clara Gomez-Cruz
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Miguel Fernandez-de la Torre
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Dariusz Lachowski
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Martin Prados-de-Haro
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Av. Doctor Arce, 37., 28002, Leganés, Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
- Área de Ingeniería Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón, Calle del Doctor Esquerdo 46, Leganés, Madrid, ES28007, Spain
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Daniel Garcia-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| |
Collapse
|
29
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596257. [PMID: 38854150 PMCID: PMC11160644 DOI: 10.1101/2024.05.28.596257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through it, are required for modulating the K2P channel TREK1. Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E. Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Fan Q, Hadla M, Peterson Z, Nelson G, Ye H, Wang X, Mardirossian JM, Harris PC, Alper SL, Prakash YS, Beyder A, Torres VE, Chebib FT. Activation of Piezo1 Inhibits Kidney Cystogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593717. [PMID: 38766249 PMCID: PMC11101129 DOI: 10.1101/2024.05.11.593717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The disruption of calcium signaling associated with polycystin deficiency has been proposed as the primary event underlying the increased abnormally patterned epithelial cell growth characteristic of Polycystic Kidney Disease. Calcium can be regulated through mechanotransduction, and the mechanosensitive cation channel Piezo1 has been implicated in sensing of intrarenal pressure and in urinary osmoregulation. However, a possible role for PIEZO1 in kidney cystogenesis remains undefined. We hypothesized that cystogenesis in ADPKD reflects altered mechanotransduction, suggesting activation of mechanosensitive cation channels as a therapeutic strategy for ADPKD. Here, we show that Yoda-1 activation of PIEZO1 increases intracellular Ca 2+ and reduces forskolin-induced cAMP levels in mIMCD3 cells. Yoda-1 reduced forskolin-induced IMCD cyst surface area in vitro and in mouse metanephros ex vivo in a dose-dependent manner. Knockout of polycystin-2 dampened the efficacy of PIEZO1 activation in reducing both cAMP levels and cyst surface area in IMCD3 cells. However, collecting duct-specific Piezo1 knockout neither induced cystogenesis in wild-type mice nor affected cystogenesis in the Pkd1 RC/RC model of ADPKD. Our study suggests that polycystin-2 and PIEZO1 play a role in mechanotransduction during cystogenesis in vitro , and ex vivo , but that in vivo cyst expansion may require inactivation or repression of additional suppressors of cystogenesis and/or growth. Our study provides a preliminary proof of concept for PIEZO1 activation as a possible component of combination chemotherapy to retard or halt cystogenesis and/or cyst growth.
Collapse
|
31
|
Micek HM, Yang N, Dutta M, Rosenstock L, Ma Y, Hielsberg C, McCord M, Notbohm J, McGregor S, Kreeger PK. The role of Piezo1 mechanotransduction in high-grade serous ovarian cancer: Insights from an in vitro model of collective detachment. SCIENCE ADVANCES 2024; 10:eadl4463. [PMID: 38669327 PMCID: PMC11051664 DOI: 10.1126/sciadv.adl4463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modified PIEZO1-/- OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mayuri Dutta
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren Rosenstock
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yicheng Ma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caitlin Hielsberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Molly McCord
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacob Notbohm
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
32
|
Sorum B, Docter T, Panico V, Rietmeijer RA, Brohawn SG. Tension activation of mechanosensitive two-pore domain K+ channels TRAAK, TREK-1, and TREK-2. Nat Commun 2024; 15:3142. [PMID: 38605031 PMCID: PMC11009253 DOI: 10.1038/s41467-024-47208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
TRAAK, TREK-1, and TREK-2 are mechanosensitive two-pore domain K+ (K2P) channels that contribute to action potential propagation, sensory transduction, and muscle contraction. While structural and functional studies have led to models that explain their mechanosensitivity, we lack a quantitative understanding of channel activation by membrane tension. Here, we define the tension response of mechanosensitive K2Ps using patch-clamp recording and imaging. All are low-threshold mechanosensitive channels (T10%/50% 0.6-2.7 / 4.4-6.4 mN/m) with distinct response profiles. TRAAK is most sensitive, TREK-1 intermediate, and TREK-2 least sensitive. TRAAK and TREK-1 are activated broadly over a range encompassing nearly all physiologically relevant tensions. TREK-2, in contrast, activates over a narrower range like mechanosensitive channels Piezo1, MscS, and MscL. We further show that low-frequency, low-intensity focused ultrasound increases membrane tension to activate TRAAK and MscS. This work provides insight into tension gating of mechanosensitive K2Ps relevant to understanding their physiological roles and potential applications for ultrasonic neuromodulation.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Trevor Docter
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Vincent Panico
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Robert A Rietmeijer
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
33
|
Ullah G, Nosyreva ED, Thompson D, Cuello VA, Cuello LG, Syeda R. Analysis of pressure-activated Piezo1 open and subconductance states at a single channel level. J Biol Chem 2024; 300:107156. [PMID: 38479601 PMCID: PMC11007442 DOI: 10.1016/j.jbc.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.
Collapse
Affiliation(s)
- Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria A Cuello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, TTUHSC, Lubbock, Texas, USA
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
34
|
Karkempetzaki AI, Ravid K. Piezo1 and Its Function in Different Blood Cell Lineages. Cells 2024; 13:482. [PMID: 38534326 PMCID: PMC10969519 DOI: 10.3390/cells13060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell-cell, cell-matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.
Collapse
Affiliation(s)
- Anastasia Iris Karkempetzaki
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
- Whitaker Cardiovascular Institute, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Katya Ravid
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
- Whitaker Cardiovascular Institute, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
35
|
Carrisoza-Gaytan R, Mutchler SM, Carattino F, Soong J, Dalghi MG, Wu P, Wang W, Apodaca G, Satlin LM, Kleyman TR. PIEZO1 is a distal nephron mechanosensor and is required for flow-induced K+ secretion. J Clin Invest 2024; 134:e174806. [PMID: 38426496 PMCID: PMC10904061 DOI: 10.1172/jci174806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024] Open
Abstract
Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.
Collapse
Affiliation(s)
| | | | - Francisco Carattino
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joanne Soong
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianela G. Dalghi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology and
| | - Lisa M. Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|
38
|
Zhang X, Liu J, Deng X, Bo L. Understanding COVID-19-associated endothelial dysfunction: role of PIEZO1 as a potential therapeutic target. Front Immunol 2024; 15:1281263. [PMID: 38487535 PMCID: PMC10937424 DOI: 10.3389/fimmu.2024.1281263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Due to its high infectivity, the pandemic has rapidly spread and become a global health crisis. Emerging evidence indicates that endothelial dysfunction may play a central role in the multiorgan injuries associated with COVID-19. Therefore, there is an urgent need to discover and validate novel therapeutic strategies targeting endothelial cells. PIEZO1, a mechanosensitive (MS) ion channel highly expressed in the blood vessels of various tissues, has garnered increasing attention for its potential involvement in the regulation of inflammation, thrombosis, and endothelial integrity. This review aims to provide a novel perspective on the potential role of PIEZO1 as a promising target for mitigating COVID-19-associated endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
39
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
40
|
Xia K, Chen X, Wang W, Liu Q, Zhao M, Ma J, Jia H. Roles of mechanosensitive ion channels in immune cells. Heliyon 2024; 10:e23318. [PMID: 38148826 PMCID: PMC10750075 DOI: 10.1016/j.heliyon.2023.e23318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Mechanosensitive ion channels are a class of membrane-integrated proteins that convert externalmechanical forces, including stretching, pressure, gravity, and osmotic pressure changes, some of which can be caused by pathogen invasion, into electrical and chemical signals transmitted to the cytoplasm. In recent years, with the identification of many of these channels, their roles in the initiation and progression of many diseases have been gradually revealed. Multiple studies have shown that mechanosensitive ion channels regulate the proliferation, activation, and inflammatory responses of immune cells by being expressed on the surface of immune cells and further responding to mechanical forces. Nonetheless, further clarification is required regarding the signaling pathways of immune-cell pattern-recognition receptors and on the impact of microenvironmental changes and mechanical forces on immune cells. This review summarizes the roles of mechanosensitive ion channels in immune cells.
Collapse
Affiliation(s)
- Kexin Xia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaolin Chen
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyan Wang
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Liu
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Mai Zhao
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road 100, Shanghai, 200080, China
| | - Jiacheng Ma
- The Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Hao Jia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
41
|
Mukhopadhyay A, Tsukasaki Y, Chan WC, Le JP, Kwok ML, Zhou J, Natarajan V, Mostafazadeh N, Maienschein-Cline M, Papautsky I, Tiruppathi C, Peng Z, Rehman J, Ganesh B, Komarova Y, Malik AB. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 2024; 57:52-67.e10. [PMID: 38091995 PMCID: PMC10872880 DOI: 10.1016/j.immuni.2023.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.
Collapse
Affiliation(s)
- Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jonathan P Le
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Man Long Kwok
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jian Zhou
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Nima Mostafazadeh
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ian Papautsky
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Zhangli Peng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia Komarova
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
42
|
Amado NG, Nosyreva ED, Thompson D, Egeland TJ, Ogujiofor OW, Yang M, Fusco AN, Passoni N, Mathews J, Cantarel B, Baker LA, Syeda R. PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome. Nat Commun 2024; 15:339. [PMID: 38184690 PMCID: PMC10771463 DOI: 10.1038/s41467-023-44594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Prune belly syndrome (PBS), also known as Eagle-Barret syndrome, is a rare, multi-system congenital myopathy primarily affecting males. Phenotypically, PBS cases manifest three cardinal pathological features: urinary tract dilation with poorly contractile smooth muscle, wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, and intra-abdominal undescended testes. Genetically, PBS is poorly understood. After performing whole exome sequencing in PBS patients, we identify one compound heterozygous variant in the PIEZO1 gene. PIEZO1 is a cation-selective channel activated by various mechanical forces and widely expressed throughout the lower urinary tract. Here we conduct an extensive functional analysis of the PIEZO1 PBS variants that reveal loss-of-function characteristics in the pressure-induced normalized open probability (NPo) of the channel, while no change is observed in single-channel currents. Furthermore, Yoda1, a PIEZO1 activator, can rescue the NPo defect of the PBS mutant channels. Thus, PIEZO1 mutations may be causal for PBS and the in vitro cellular pathophysiological phenotype could be rescued by the small molecule, Yoda1. Activation of PIEZO1 might provide a promising means of treating PBS and other related bladder dysfunctional states.
Collapse
Affiliation(s)
- Nathalia G Amado
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas J Egeland
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Osita W Ogujiofor
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michelle Yang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandria N Fusco
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niccolo Passoni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy Mathews
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
43
|
Stommen A, Ghodsi M, Cloos AS, Conrard L, Dumitru AC, Henriet P, Pierreux CE, Alsteens D, Tyteca D. Piezo1 Regulation Involves Lipid Domains and the Cytoskeleton and Is Favored by the Stomatocyte-Discocyte-Echinocyte Transformation. Biomolecules 2023; 14:51. [PMID: 38254651 PMCID: PMC10813235 DOI: 10.3390/biom14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Piezo1 is a mechanosensitive ion channel required for various biological processes, but its regulation remains poorly understood. Here, we used erythrocytes to address this question since they display Piezo1 clusters, a strong and dynamic cytoskeleton and three types of submicrometric lipid domains, respectively enriched in cholesterol, GM1 ganglioside/cholesterol and sphingomyelin/cholesterol. We revealed that Piezo1 clusters were present in both the rim and the dimple erythrocyte regions. Upon Piezo1 chemical activation by Yoda1, the Piezo1 cluster proportion mainly increased in the dimple area. This increase was accompanied by Ca2+ influx and a rise in echinocytes, in GM1/cholesterol-enriched domains in the dimple and in cholesterol-enriched domains in the rim. Conversely, the effects of Piezo1 activation were abrogated upon membrane cholesterol depletion. Furthermore, upon Piezo1-independent Ca2+ influx, the above changes were not observed. In healthy donors with a high echinocyte proportion, Ca2+ influx, lipid domains and Piezo1 fluorescence were high even at resting state, whereas the cytoskeleton membrane occupancy was lower. Accordingly, upon decreases in cytoskeleton membrane occupancy and stiffness in erythrocytes from patients with hereditary spherocytosis, Piezo1 fluorescence was increased. Altogether, we showed that Piezo1 was differentially controlled by lipid domains and the cytoskeleton and was favored by the stomatocyte-discocyte-echinocyte transformation.
Collapse
Affiliation(s)
- Amaury Stommen
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (A.S.); (M.G.); (A.-S.C.); (P.H.); (C.E.P.)
| | - Marine Ghodsi
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (A.S.); (M.G.); (A.-S.C.); (P.H.); (C.E.P.)
| | - Anne-Sophie Cloos
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (A.S.); (M.G.); (A.-S.C.); (P.H.); (C.E.P.)
| | - Louise Conrard
- Center for Microscopy and Molecular Imaging (CMMI), Biopark Charleroi, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
| | - Andra C. Dumitru
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium (D.A.)
| | - Patrick Henriet
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (A.S.); (M.G.); (A.-S.C.); (P.H.); (C.E.P.)
| | - Christophe E. Pierreux
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (A.S.); (M.G.); (A.-S.C.); (P.H.); (C.E.P.)
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium (D.A.)
| | - Donatienne Tyteca
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (A.S.); (M.G.); (A.-S.C.); (P.H.); (C.E.P.)
| |
Collapse
|
44
|
Jiang W, Wijerathne TD, Zhang H, Lin YC, Jo S, Im W, Lacroix JJ, Luo YL. Structural and thermodynamic framework for PIEZO1 modulation by small molecules. Proc Natl Acad Sci U S A 2023; 120:e2310933120. [PMID: 38060566 PMCID: PMC10723123 DOI: 10.1073/pnas.2310933120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Tharaka D. Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Han Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015
- Department of Chemistry, Lehigh University, Bethlehem, PA18015
- Department of Bioengineering, Lehigh University, Bethlehem, PA18015
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA18015
| | - Yi-Chun Lin
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Sunhwan Jo
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD21201
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015
- Department of Chemistry, Lehigh University, Bethlehem, PA18015
- Department of Bioengineering, Lehigh University, Bethlehem, PA18015
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA18015
| | - Jerome J. Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Yun L. Luo
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA91766
| |
Collapse
|
45
|
Murciano N, Rotordam MG, Becker N, Ludlow MJ, Parsonage G, Darras A, Kaestner L, Beech DJ, George M, Fertig N, Rapedius M, Brüggemann A. A high-throughput electrophysiology assay to study the response of PIEZO1 to mechanical stimulation. J Gen Physiol 2023; 155:e202213132. [PMID: 37801066 PMCID: PMC10558326 DOI: 10.1085/jgp.202213132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023] Open
Abstract
PIEZO1 channels are mechanically activated cation channels that play a pivotal role in sensing mechanical forces in various cell types. Their dysfunction has been associated with numerous pathophysiological states, including generalized lymphatic dysplasia, varicose vein disease, and hereditary xerocytosis. Given their physiological relevance, investigating PIEZO1 is crucial for the pharmaceutical industry, which requires scalable techniques to allow for drug discovery. In this regard, several studies have used high-throughput automated patch clamp (APC) combined with Yoda1, a specific gating modifier of PIEZO1 channels, to explore the function and properties of PIEZO1 in heterologous expression systems, as well as in primary cells. However, a combination of solely mechanical stimulation (M-Stim) and high-throughput APC has not yet been available for the study of PIEZO1 channels. Here, we show that optimization of pipetting parameters of the SyncroPatch 384 coupled with multihole NPC-384 chips enables M-Stim of PIEZO1 channels in high-throughput electrophysiology. We used this approach to explore differences between the response of mouse and human PIEZO1 channels to mechanical and/or chemical stimuli. Our results suggest that applying solutions on top of the cells at elevated pipetting flows is crucial for activating PIEZO1 channels by M-Stim on the SyncroPatch 384. The possibility of comparing and combining mechanical and chemical stimulation in a high-throughput patch clamp assay facilitates investigations on PIEZO1 channels and thereby provides an important experimental tool for drug development.
Collapse
Affiliation(s)
- Nicoletta Murciano
- Nanion Technologies GmbH, München, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | | | | | - Melanie J. Ludlow
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Alexis Darras
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - David J. Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
46
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
47
|
Honerkamp-Smith AR. Forces and Flows at Cell Surfaces. J Membr Biol 2023; 256:331-340. [PMID: 37773346 PMCID: PMC10947748 DOI: 10.1007/s00232-023-00293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
|
48
|
Ji C, Huang Y. Durotaxis and negative durotaxis: where should cells go? Commun Biol 2023; 6:1169. [PMID: 37973823 PMCID: PMC10654570 DOI: 10.1038/s42003-023-05554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Durotaxis and negative durotaxis are processes in which cell migration is directed by extracellular stiffness. Durotaxis is the tendency of cells to migrate toward stiffer areas, while negative durotaxis occurs when cells migrate toward regions with lower stiffness. The mechanisms of both processes are not yet fully understood. Additionally, the connection between durotaxis and negative durotaxis remains unclear. In this review, we compare the mechanisms underlying durotaxis and negative durotaxis, summarize the basic principles of both, discuss the possible reasons why some cell types exhibit durotaxis while others exhibit negative durotaxis, propose mechanisms of switching between these processes, and emphasize the challenges in the investigation of durotaxis and negative durotaxis.
Collapse
Affiliation(s)
- Congcong Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuxing Huang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
49
|
Liu X, Niu W, Zhao S, Zhang W, Zhao Y, Li J. Piezo1:the potential new therapeutic target for fibrotic diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:42-49. [PMID: 37722629 DOI: 10.1016/j.pbiomolbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Collapse
Affiliation(s)
- Xin Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weipin Niu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuqing Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
50
|
Du Y, Yang K. Role of mechanosensitive ion channel Piezo1 in tension-side orthodontic alveolar bone remodeling in rats. Arch Oral Biol 2023; 155:105798. [PMID: 37651768 DOI: 10.1016/j.archoralbio.2023.105798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Orthodontic tooth movement (OTM) is based on alveolar bone remodeling under mechanical force. In 2010, Piezo1 was identified as a mechanosensitive ion channel that is involved in various physiological functions. We aimed to determine the role of Piezo1 in alveolar bone remodeling during OTM. DESIGN Twenty-five six-week-old male Sprague-Dawley rats were selected to establish OTM models and sacrificed in groups of five on days 0, 1, 3, 7, and 14. Stereomicroscopy measurements, hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, and immunohistochemical staining were performed to examine the tooth movement distance, periodontal tissue morphology, and number of multinucleated osteoclasts, and explore the levels of Piezo1, bone-related factors, and Wnt/Ca2+ signaling pathway at different time points in tension-side periodontal tissues during OTM. Furthermore, we injected equivalent grammostola mechanotoxin 4 (GsMTx4; GsMTx4 group, 25 rats) or saline (control group, 25 rats) to OTM rats and recorded the aforementioned measurement indices. RESULTS Piezo1, bone-related factors and Wnt/Ca2+ signaling pathway levels were elevated on the tension side by orthodontic force in the OTM model. GsMTX4 administration downregulated the aforementioned factors and reduced the tooth movement rate. CONCLUSIONS Piezo1 is essential for alveolar bone remodeling during OTM. The Wnt/Ca2+ signaling pathway might participate in Piezo1-mediated bone remodeling.
Collapse
Affiliation(s)
- Yugui Du
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|