1
|
Santos VR, Jerow LG, LaSarge CL. Behavioral analyses in rodent models of tuberous sclerosis complex. Epilepsy Behav 2025; 165:110313. [PMID: 39978075 DOI: 10.1016/j.yebeh.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Tuberous sclerosis complex (TSC) is typically associated with epilepsy, but patients also present with a myriad of comorbid neuropsychiatric disorders. TSC is caused by mutations in the tuberous sclerosis complex genes 1 or 2 (TSC1, TSC2). This TSC1/2 complex serves as a negative regulator of the mammalian target of rapamycin (mTOR) signaling pathway, which plays a crucial role in regulating neuronal function, including cell proliferation, survival, growth, and protein synthesis. Mutations result in hyperactivation of the pathway. Animal models with mutations in Tsc1 or Tsc2 consistently exhibit epilepsy and behavioral phenotypes. Additionally, abnormal neuronal populations can impact the broader network, leading to deficits in learning and memory, anxiety-like behaviors, deficits in social behaviors, and perseverative and repetitive behaviors. This review aims to synthesize the existing animal literature linking TSC models to epileptogenesis and behavioral impairments, with insights on how modifications in TSC signaling influence both the structure and function of neurons and behavior. Understanding these relationships may provide valuable insights into potential therapeutic targets for managing epilepsy and neuropsychiatric disorders associated with TSC dysregulation.
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Biology Cell Graduate Program, Neuroscience Graduate Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, OH, USA.
| | - Candi L LaSarge
- Neuroscience Graduate Program, University of Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Bedel HA, Usta C. Effect of ellagic acid on BDNF/PI3K/AKT-mediated signaling pathways in mouse models of depression. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:493-497. [PMID: 39968087 PMCID: PMC11831741 DOI: 10.22038/ijbms.2025.81230.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 02/20/2025]
Abstract
Objectives The aim of this study is to investigate the possible role of the hippocampal BDNF-PI3K-AKT signaling pathway in the antidepressant-like activity of ellagic acid (EA) in mice. Materials and Methods Male BALB/C mice were divided into 5 groups; vehicle (0.1 ml/day), sertraline (5mg/kg), EA (1 mg/kg), EA+BKM120 (PI3K inhibitor), EA+MK2206 (AKT inhibitor). EA, sertraline and vehicle were injected intraperitoneally for 14 days. Locomotor activity was determined by open field test. The tail suspension test was used to detect the antidepressant-like effect. After behavioral tests, hippocampal tissue was obtained and Western blot analyzes were performed for BDNF and pAKT1. Results Sertraline and EA provided a reduction in immobility time in the tail suspension test when compared with the control group. BKM120 and MK2206 administration reversed this effect of EA. No statistical difference was found between groups in terms of locomotor activity. EA treatment caused an increase in hippocampal BDNF and pAKT1 levels in mice. While inhibitory agent administrations did not affect the increase of BDNF induced by EA, MK2206 administration reversed the increase in pAKT1 observed with EA. Conclusion It has shown that EA has an antidepressant-like effect in mice without changing locomotor activity, and this effect may be mediated by the BDNF-PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Hatice Aslı Bedel
- Süleyman Demirel University Faculty of Pharmacy Department of Pharmacology, Türkiye
- Akdeniz University Faculty of Medicine Department of Medicinal Pharmacology, Türkiye
| | - Coşkun Usta
- Akdeniz University Faculty of Medicine Department of Medicinal Pharmacology, Türkiye
| |
Collapse
|
3
|
Moffat A, Schuurmans C. The Control of Cortical Folding: Multiple Mechanisms, Multiple Models. Neuroscientist 2024; 30:704-722. [PMID: 37621149 PMCID: PMC11558946 DOI: 10.1177/10738584231190839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/26/2023]
Abstract
The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.
Collapse
Affiliation(s)
- Alexandra Moffat
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Barker-Haliski M, Hawkins NA. Innovative drug discovery strategies in epilepsy: integrating next-generation syndrome-specific mouse models to address pharmacoresistance and epileptogenesis. Expert Opin Drug Discov 2024; 19:1099-1113. [PMID: 39075876 PMCID: PMC11390315 DOI: 10.1080/17460441.2024.2384455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Although there are numerous treatment options already available for epilepsy, over 30% of patients remain resistant to these antiseizure medications (ASMs). Historically, ASM discovery has relied on the demonstration of efficacy through the use of 'traditional' acute in vivo seizure models (e.g. maximal electroshock, subcutaneous pentylenetetrazol, and kindling). However, advances in genetic sequencing technologies and remaining medical needs for people with treatment-resistant epilepsy or special patient populations have encouraged recent efforts to identify novel compounds in syndrome-specific models of epilepsy. Syndrome-specific models, including Scn1a variant models of Dravet syndrome and APP/PS1 mice associated with familial early-onset Alzheimer's disease, have already led to the discovery of two mechanistically novel treatments for developmental and epileptic encephalopathies (DEEs), namely cannabidiol and soticlestat, respectively. AREAS COVERED In this review, the authors discuss how it is likely that next-generation drug discovery efforts for epilepsy will more comprehensively integrate syndrome-specific epilepsy models into early drug discovery providing the reader with their expert perspectives. EXPERT OPINION The percentage of patients with pharmacoresistant epilepsy has remained unchanged despite over 30 marketed ASMs. Consequently, there is a high unmet need to reinvent and revise discovery strategies to more effectively address the remaining needs of patients with specific epilepsy syndromes, including drug-resistant epilepsy and DEEs.
Collapse
Affiliation(s)
| | - Nicole A Hawkins
- Feinberg School of Medicine Chicago, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
6
|
Dorotan MKC, Tobochnik S. Patient-Centered Management of Brain Tumor-Related Epilepsy. Curr Neurol Neurosci Rep 2024; 24:413-422. [PMID: 39017829 DOI: 10.1007/s11910-024-01360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Brain tumor-related epilepsy is a heterogenous syndrome involving variability in incidence, timing, pathophysiology, and clinical risk factors for seizures across different brain tumor pathologies. Seizure risk and disability are dynamic over the course of disease and influenced by tumor-directed treatments, necessitating individualized patient-centered management strategies to optimize quality of life. RECENT FINDINGS Recent translational findings in diffuse gliomas indicate a dynamic bidirectional relationship between glioma growth and hyperexcitability. Certain non-invasive measures of hyperexcitability are correlated with survival outcomes, however it remains uncertain how to define and measure clinically relevant hyperexcitability serially over time. The extent of resection, timing of pre-operative and/or post-operative seizures, and the likelihood of tumor progression are critical factors impacting the risk of seizure recurrence. Newer anti-seizure medications are generally well-tolerated with similar efficacy in this population, and several rapid-onset seizure rescue agents are in development and available. Seizures in patients with brain tumors are strongly influenced by the underlying tumor biology and treatment. An improved understanding of the interactions between tumor cells and the spectrum of hyperexcitability will facilitate targeted therapies. Multidisciplinary management of seizures should occur with consideration of tumor-directed therapy and prognosis, and anti-seizure medication decision-making tailored to the individual priorities and quality of life of the patient.
Collapse
Affiliation(s)
| | - Steven Tobochnik
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, VA Boston Healthcare System, 150 S. Huntington Ave., 6th Floor, Neurology Service, Boston, MA, 02130, USA.
| |
Collapse
|
7
|
Qin L, Zhou Q, Sun Y, Pang X, Chen Z, Zheng J. Dynamic functional connectivity and gene expression correlates in temporal lobe epilepsy: insights from hidden markov models. J Transl Med 2024; 22:763. [PMID: 39143498 PMCID: PMC11323657 DOI: 10.1186/s12967-024-05580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUD Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms associated with the dynamic temporal characteristics of TLE. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment (TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database. RESULTS Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in neuronal signaling and synaptic function. CONCLUSIONS This study provides new insights into characterizing dynamic neural activity in TLE. The brain network dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qin Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuting Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaomin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
9
|
Xu Y, Lu R, Li H, Feng W, Zhao R. A spectrum of AKT3 activating mutations cause focal malformations of cortical development (FMCDs) in cortical organoids. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167232. [PMID: 38759814 DOI: 10.1016/j.bbadis.2024.167232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Focal malformations of cortical development (FMCDs) are brain disorders mainly caused by hyperactive mTOR signaling due to both inactivating and activating mutations of genes in the PI3K-AKT-mTOR pathway. Among them, mosaic and somatic activating mutations of the mTOR pathway activators are more frequently linked to severe form of FMCDs. A human stem cell-based FMCDs model to study these activating mutations is still lacking. Herein, we genetically engineer human embryonic stem cell lines carrying these activating mutations to generate cortical organoids. Mosaic and somatic expression of AKT3 activating mutations in cortical organoids mimicking the disease presentation with overproliferation and the formation of dysmorphic neurons. In parallel comparison of various AKT3 activating mutations reveals that stronger mutation is associated with more severe neuronal migratory and overgrowth defects. Together, we have established a feasible human stem cell-based model for FMCDs that could help to better understand pathogenic mechanism and develop novel therapeutic strategy.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongrong Lu
- Department of Neurosurgery, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China; Department of Neurosurgery, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Rui Zhao
- Department of Neurosurgery, Shanghai Children's Hospital, Shanghai 200333, China.
| |
Collapse
|
10
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2024:10.1007/s12264-024-01259-2. [PMID: 39023844 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Cullen ER, Safari M, Mittelstadt I, Weston MC. Hyperactivity of mTORC1- and mTORC2-dependent signaling mediates epilepsy downstream of somatic PTEN loss. eLife 2024; 12:RP91323. [PMID: 38446016 PMCID: PMC10942640 DOI: 10.7554/elife.91323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/07/2024] Open
Abstract
Gene variants that hyperactivate PI3K-mTOR signaling in the brain lead to epilepsy and cortical malformations in humans. Some gene variants associated with these pathologies only hyperactivate mTORC1, but others, such as PTEN, PIK3CA, and AKT, hyperactivate both mTORC1- and mTORC2-dependent signaling. Previous work established a key role for mTORC1 hyperactivity in mTORopathies, however, whether mTORC2 hyperactivity contributes is not clear. To test this, we inactivated mTORC1 and/or mTORC2 downstream of early Pten deletion in a new mouse model of somatic Pten loss-of-function (LOF) in the cortex and hippocampus. Spontaneous seizures and epileptiform activity persisted despite mTORC1 or mTORC2 inactivation alone, but inactivating both mTORC1 and mTORC2 simultaneously normalized brain activity. These results suggest that hyperactivity of both mTORC1 and mTORC2 can cause epilepsy, and that targeted therapies should aim to reduce activity of both complexes.
Collapse
Affiliation(s)
- Erin R Cullen
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Mona Safari
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology ResearchRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate ProgramRoanokeUnited States
| | - Isabelle Mittelstadt
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Matthew C Weston
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology ResearchRoanokeUnited States
- School of Neuroscience, Virginia Polytechnic and State UniversityBlacksburgUnited States
| |
Collapse
|
12
|
Cullen ER, Safari M, Mittelstadt I, Weston MC. Hyperactivity of mTORC1 and mTORC2-dependent signaling mediate epilepsy downstream of somatic PTEN loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553856. [PMID: 37645923 PMCID: PMC10462128 DOI: 10.1101/2023.08.18.553856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/31/2023]
Abstract
Gene variants that hyperactivate PI3K-mTOR signaling in the brain lead to epilepsy and cortical malformations in humans. Some gene variants associated with these pathologies only hyperactivate mTORC1, but others, such as PTEN, PIK3CA, and AKT, hyperactivate both mTORC1- and mTORC2-dependent signaling. Previous work established a key role for mTORC1 hyperactivity in mTORopathies, however, whether mTORC2 hyperactivity contributes is not clear. To test this, we inactivated mTORC1 and/or mTORC2 downstream of early Pten deletion in a new model of somatic Pten loss-of-function (LOF) in the cortex and hippocampus. Spontaneous seizures and epileptiform activity persisted despite mTORC1 or mTORC2 inactivation alone, but inactivating both mTORC1 and mTORC2 simultaneously normalized brain activity. These results suggest that hyperactivity of both mTORC1 and mTORC2 can cause epilepsy, and that targeted therapies should aim to reduce activity of both complexes.
Collapse
Affiliation(s)
- Erin R. Cullen
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Mona Safari
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology Research, Roanoke VA, 24016, USA
| | - Isabelle Mittelstadt
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Matthew C. Weston
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington VT, 05405, USA
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology Research, Roanoke VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg VA, 24060, USA
| |
Collapse
|
13
|
Mich JK, Ryu J, Wei AD, Gore BB, Guo R, Bard AM, Martinez RA, Bishaw Y, Luber E, Oliveira Santos LM, Miranda N, Ramirez JM, Ting JT, Lein ES, Levi BP, Kalume FK. AAV-mediated interneuron-specific gene replacement for Dravet syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571820. [PMID: 38168178 PMCID: PMC10760176 DOI: 10.1101/2023.12.15.571820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2024]
Abstract
Dravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of SCN1A , which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV human SCN1A gene replacement therapy using cell class-specific enhancers. We generated a split-intein fusion form of SCN1A to circumvent AAV packaging limitations and deliver SCN1A via a dual vector approach using cell class-specific enhancers. These constructs produced full-length Na V 1.1 protein and functional sodium channels in HEK293 cells and in brain cells in vivo . After packaging these vectors into enhancer-AAVs and administering to mice, immunohistochemical analyses showed telencephalic GABAergic interneuron-specific and dose-dependent transgene biodistribution. These vectors conferred strong dose-dependent protection against postnatal mortality and seizures in two DS mouse models carrying independent loss-of-function alleles of Scn1a, at two independent research sites, supporting the robustness of this approach. No mortality or toxicity was observed in wild-type mice injected with single vectors expressing either the N-terminal or C-terminal halves of SCN1A , or the dual vector system targeting interneurons. In contrast, nonselective neuronal targeting of SCN1A conferred less rescue against mortality and presented substantial preweaning lethality. These findings demonstrate proof-of-concept that interneuron-specific AAV-mediated SCN1A gene replacement is sufficient for significant rescue in DS mouse models and suggest it could be an effective therapeutic approach for patients with DS.
Collapse
|
14
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
15
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
16
|
Mojarad BA, Hernandez PV, Evenson MJ, Corliss MM, Stein SL, Theos A, Coughlin CC, Sisk B, Menezes M, Schroeder MC, Heusel JW, Neidich JA, Cao Y. Profiling PIK3CA variants in disorders of somatic mosaicism. GENETICS IN MEDICINE OPEN 2023; 1:100815. [PMID: 39669231 PMCID: PMC11613552 DOI: 10.1016/j.gimo.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 12/14/2024]
Abstract
Purpose Variants in PIK3CA (encoding p110α; the catalytic subunit of PI3K) characterize some disorders of somatic mosaicism (DoSM) conditions with clinical features, including sporadic overgrowth and vascular malformations. Here, we profile PIK3CA variants in DoSM. Methods We applied a next-generation, sequencing-based, laboratory-developed test, using an average coverage of approximately 2000× for up to 37 genes associated with DoSM, on a cohort of 1197 patients with DoSM referred for clinical genomics services between 2013 and 2022. Results We identified clinically reportable variants in 747 (62.4%) individuals in this cohort. Notably, 371 clinically reportable variants in PIK3CA were identified in 368 patients, constituting approximately 49.2% of all patients with reportable findings. Variants in the C2 domain of p110α are enriched in DoSM (this cohort) compared with those of cancer (Catalogue of Somatic Mutations in Cancer [COSMIC] database), highlighting the role of the C2 domain in driving uncontrolled cell proliferation in DoSM. Furthermore, we report 17 novel variants in PIK3CA that are not previously reported in DoSM and describe clinical presentation correlation for 4 novel variants. Conclusion Our findings from the largest single-center cohort of patients with DoSM expand the spectrum of variants in PIK3CA and shed light on the less-studied role of the C2 domain in the pathogenesis of DoSM.
Collapse
Affiliation(s)
- Bahareh A. Mojarad
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Patricia V. Hernandez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Meagan M. Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Sarah L. Stein
- Section of Dermatology, Departments of Medicine and Pediatrics, University of Chicago, Chicago, IL
| | - Amy Theos
- Department of Dermatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Carrie C. Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Bryan Sisk
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, and Department of Medicine, Oncology and Bioethics Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Maithilee Menezes
- Division of Pediatric Otolaryngology, Department of Otolaryngology, Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Molly C. Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jonathan W. Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Julie A. Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Yang Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
17
|
Du X, Wei L, Yang B, Long S, Wang J, Sun A, Jiang Y, Qiao Z, Wang H, Wang Y. Cortical and subcortical morphological alteration in Angelman syndrome. J Neurodev Disord 2023; 15:7. [PMID: 36788499 PMCID: PMC9930225 DOI: 10.1186/s11689-022-09469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Accepted: 11/28/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a neurodevelopmental disorder with serious seizures. We aim to explore the brain morphometry of patients with AS and figure out whether the seizure is associated with brain development. METHODS Seventy-three patients and 26 healthy controls (HC) underwent high-resolution structural brain MRI. Group differences between the HC group and the AS group and also between AS patients with seizure (AS-Se) and age-matched AS patients with non-seizure (AS-NSe) were compared. The voxel-based and surface-based morphometry analyses were used in our study. Gray matter volume, cortical thickness (CTH), and local gyrification index (LGI) were assessed to analyze the cortical and subcortical structure alteration in the AS brain. RESULTS Firstly, compared with the HC group, children with AS were found to have a significant decrease in gray matter volume in the subcortical nucleus, cortical, and cerebellum. However, the gray matter volume of AS patients in the inferior precuneus was significantly increased. Secondly, patients with AS had significantly increased LGI in the whole brain as compared with HC. Thirdly, the comparison of AS-Se and the AS-NSe groups revealed a significant decrease in caudate volume in the AS-Se group. Lastly, we further selected the caudate and the precuneus as ROIs for volumetric analysis, the AS group showed significantly increased LGI in the precuneus and reduced CTH in the right precuneus. Between the AS-Se and the AS-NSe groups, the AS-Se group exhibited significantly lower density in the caudate, while only the CTH in the left precuneus showed a significant difference. CONCLUSIONS These results revealed cortical and subcortical morphological alterations in patients with AS, including globally the decreased brain volume in the subcortical nucleus, the increased gray matter volume of precuneus, and the whole-brain increase of LGI and reduction of CTH. The abnormal brain pattern was more serious in patients with seizures, suggesting that the occurrence of seizures may be related to abnormal brain changes.
Collapse
Affiliation(s)
- Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Shasha Long
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ji Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Aiqi Sun
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yonghui Jiang
- Department of Genetics and Paediatrics, Yale School of Medicine, CT, New Haven, China
| | - Zhongwei Qiao
- Department of Radiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China. .,Human Phenome Institute, Fudan University, Shanghai, China. .,Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, Shanghai, USA.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
18
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
19
|
Barker-Haliski M, Pitsch J, Galanopoulou AS, Köhling R. A companion to the preclinical common data elements for phenotyping seizures and epilepsy in rodent models. A report of the TASK3-WG1C: Phenotyping working group of the ILAE/AES joint translational task force. Epilepsia Open 2022. [PMID: 36461665 DOI: 10.1002/epi4.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
20
|
Marechal E, Poliard A, Henry K, Moreno M, Legrix M, Macagno N, Mondielli G, Fauquier T, Barlier A, Etchevers HC. Multiple congenital malformations arise from somatic mosaicism for constitutively active Pik3ca signaling. Front Cell Dev Biol 2022; 10:1013001. [PMID: 36353506 PMCID: PMC9637999 DOI: 10.3389/fcell.2022.1013001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent missense mutations of the PIK3CA oncogene are among the most frequent drivers of human cancers. These often lead to constitutive activation of its product p110α, a phosphatidylinositol 3-kinase (PI3K) catalytic subunit. In addition to causing a broad range of cancers, the H1047R mutation is also found in affected tissues of a distinct set of congenital tumors and malformations. Collectively termed PIK3CA-related disorders (PRDs), these lead to overgrowth of brain, adipose, connective and musculoskeletal tissues and/or blood and lymphatic vessel components. Vascular malformations are frequently observed in PRD, due to cell-autonomous activation of PI3K signaling within endothelial cells. These, like most muscle, connective tissue and bone, are derived from the embryonic mesoderm. However, important organ systems affected in PRDs are neuroectodermal derivatives. To further examine their development, we drove the most common post-zygotic activating mutation of Pik3ca in neural crest and related embryonic lineages. Outcomes included macrocephaly, cleft secondary palate and more subtle skull anomalies. Surprisingly, Pik3ca-mutant subpopulations of neural crest origin were also associated with widespread cephalic vascular anomalies. Mesectodermal neural crest is a major source of non-endothelial connective tissue in the head, but not the body. To examine the response of vascular connective tissues of the body to constitutive Pik3ca activity during development, we expressed the mutation by way of an Egr2 (Krox20) Cre driver. Lineage tracing led us to observe new lineages that had normally once expressed Krox20 and that may be co-opted in pathogenesis, including vascular pericytes and perimysial fibroblasts. Finally, Schwann cell precursors having transcribed either Krox20 or Sox10 and induced to express constitutively active PI3K were associated with vascular and other tumors. These murine phenotypes may aid discovery of new candidate human PRDs affecting craniofacial and vascular smooth muscle development as well as the reciprocal paracrine signaling mechanisms leading to tissue overgrowth.
Collapse
Affiliation(s)
- Elise Marechal
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Poliard
- URP 2496 Orofacial Pathologies, Imagery and Biotherapies, CNRS, GDR 2031 CREST-NET, Université Paris Cité, Montrouge, France
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Kilian Henry
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Mathias Moreno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Mathilde Legrix
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Grégoire Mondielli
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Teddy Fauquier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Barlier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
- AP-HM, MMG, MarMaRa Institute, La Conception Hospital Laboratory of Molecular Biology, Marseille, France
| | - Heather C. Etchevers
- INSERM, MMG, U1251, CNRS, GDR 2031 CREST-NET, MarMaRa Institute, Aix Marseille University, Marseille, France
- *Correspondence: Heather C. Etchevers,
| |
Collapse
|
21
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development that is a prevalent cause of intractable epilepsy in children. Of the three FCD subtypes, understanding the etiology and pathogenesis of FCD type II has seen the most progress owing to the recent advances in identifying gene mutations along the mTOR signaling pathway as a frequent cause of this disorder. Accordingly, numerous animal models of FCD type II based on genetic manipulation of the mTOR signaling pathway have emerged to investigate the mechanisms of epileptogenesis and novel therapeutics for epilepsy. These include transgenic and in utero electroporation-based animal models. Here, we review the histopathological and electroclinical features of existing FCD type II animal models and discuss the scientific and technical considerations, clinical applications, and limitations of current models. We also highlight other models of FCD based on early life acquired factors.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Departments of Neurosurgery and Cellular & Molecular
Physiology, Yale University School of
Medicine, New Haven, CT, USA
| | - Angélique Bordey
- Departments of Neurosurgery and Cellular & Molecular
Physiology, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Pirozzi F, Berkseth M, Shear R, Gonzalez L, Timms AE, Sulc J, Pao E, Oyama N, Forzano F, Conti V, Guerrini R, Doherty ES, Saitta SC, Lockwood CM, Pritchard CC, Dobyns WB, Novotny E, Wright JNN, Saneto RP, Friedman S, Hauptman J, Ojemann J, Kapur RP, Mirzaa GM. Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain 2022; 145:925-938. [PMID: 35355055 PMCID: PMC9630661 DOI: 10.1093/brain/awab376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew Berkseth
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rylee Shear
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Andrew E Timms
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Francesca Forzano
- Department of Clinical Genetics, Guy's and St Thomas NHS Foundation Trust and King's College London, London, UK
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Emily S Doherty
- Section of Clinical Genetics, Carilion Clinic Children's Hospital, Roanoke, VA, USA
| | - Sulagna C Saitta
- Division of Medical Genetics, Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Christina M Lockwood
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Edward Novotny
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Jason N N Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Russell P Saneto
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, Seattle, WA, USA
| | - Seth Friedman
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jeffrey Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Raj P Kapur
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Chen WL, Pao E, Owens J, Glass I, Pritchard C, Shirts BH, Lockwood C, Mirzaa GM. The utility of cerebrospinal fluid-derived cell-free DNA in molecular diagnostics for the PIK3CA-related megalencephaly-capillary malformation (MCAP) syndrome: a case report. Cold Spring Harb Mol Case Stud 2022; 8:a006188. [PMID: 35483878 PMCID: PMC9059787 DOI: 10.1101/mcs.a006188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
The megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth disorder caused by mosaic gain-of-function variants in PIK3CA It is characterized by megalencephaly or hemimegalencephaly, vascular malformations, somatic overgrowth, among other features. Epilepsy is commonly associated with MCAP, and a subset of individuals have cortical malformations requiring resective epilepsy surgery. Like other mosaic disorders, establishing a molecular diagnosis is largely achieved by screening lesional tissues (such as brain or skin), with a low diagnostic yield from peripheral tissues (such as blood). Therefore, in individuals with MCAP in whom lesional tissues are scarce or unavailable or those ineligible for epilepsy surgery, establishing a molecular diagnosis can be challenging. Here we report on the utility of cerebrospinal fluid (CSF)-derived cfDNA for the molecular diagnosis of an individual with MCAP syndrome harboring a mosaic PIK3CA variant (c.3139C > T, p.His1047Tyr). The proband presented with asymmetric megalencephaly without significant dysgyria. He did not have refractory epilepsy and was therefore not a candidate for epilepsy surgery. However, he developed diffuse large B-cell lymphoma (DLBCL) in late childhood, with four CSF samples obtained via lumbar puncture for cancer staging during which one sample was collected for cfDNA extraction and sequencing. PIK3CA variant allele fractions in CSF cell-free DNA (cfDNA), skin fibroblasts, and peripheral blood were 3.08%, 37.31%, and 2.04%, respectively. This report illustrates the utility of CSF-derived cfDNA in MCAP syndrome. Minimally invasive-based molecular diagnostic approaches utilizing cfDNA not only facilitate accurate genetic diagnosis but also have important therapeutic implications for individuals with refractory epilepsy as repurposed PI3K-AKT-MTOR pathway-inhibitors become more widely available.
Collapse
Affiliation(s)
- Wei-Liang Chen
- School of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| | - James Owens
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Colin Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Brain H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Christina Lockwood
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- The Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
26
|
Herrmann T, Gerth M, Dittmann R, Pensold D, Ungelenk M, Liebmann L, Hübner CA. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front Mol Neurosci 2022; 14:807090. [PMID: 35185464 PMCID: PMC8850922 DOI: 10.3389/fnmol.2021.807090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.
Collapse
|
27
|
Slavotinek A, Lefebvre M, Brehin AC, Thauvin C, Patrier S, Sparks TN, Norton M, Yu J, Huang E. Prenatal presentation of multiple anomalies associated with haploinsufficiency for ARID1A. Eur J Med Genet 2022; 65:104407. [PMID: 34942405 PMCID: PMC9162882 DOI: 10.1016/j.ejmg.2021.104407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2021] [Revised: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
The ARID1A gene is an infrequent cause of Coffin-Siris syndrome (CSS) and has been associated with severe to profound developmental delays and hypotonia in addition to characteristic craniofacial and digital findings. We present three fetuses and a male neonate with ventriculomegaly/hydrocephalus, absence of the corpus callosum (ACC), cerebellar hypoplasia, retinal dysplasia, lung lobulation defects, renal dysplasia, imperforate or anteriorly placed anus, thymus hypoplasia and a single umbilical artery. Facial anomalies included downslanting palpebral fissures, wide-spaced eyes, low-set and posteriorly rotated ears, a small jaw, widely spaced nipples and hypoplastic nails. All fetuses had heterozygous variants predicting premature protein truncation in ARID1A (c.4886dup:p.Val1630Cysfs*18; c.4860dup:p.Pro1621Thrfs*27; and c.175G>T:p.Glu59*) and the baby's microarray demonstrated mosaicism for a deletion at chromosome 1p36.11 (arr[GRCh37] 1p36.11(26,797,508_27,052,080)×1∼2), that contained the first exon of ARID1A. Although malformations, in particular ACC, have been described with CSS caused by pathogenic variants in ARID1A, prenatal presentations associated with this gene are rare. Retinal dysplasia, lung lobulation defects and absent thymus were novel findings in association with ARID1A variants. Studies in cancer have demonstrated that pathogenic ARID1A variants hamper nuclear import of the protein and/or affect interaction with the subunits of SWI/SNF complex, resulting in dysregulation of the PI3K/AKT pathway and perturbed PTEN and PIKC3A signaling. As haploinsufficiency for PTEN and PIKC3A can be associated with ventriculomegaly/hydrocephalus, aberrant expression of these genes is a putative mechanism for the brain malformations demonstrated in patients with ARID1A variants.
Collapse
Affiliation(s)
- Anne Slavotinek
- Dept. Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Mathilde Lefebvre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231, Génétique des Anomalies du Développement, Dijon, France
| | | | - Christel Thauvin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231, Génétique des Anomalies du Développement, Dijon, France
| | - Sophie Patrier
- Department of Pathology, CHU Rouen, F-76000, Rouen, France
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mary Norton
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jingwei Yu
- Dept. Cytogenetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eric Huang
- Dept. Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
28
|
Chen F, Liu J, Song X, DuCote TJ, Byrd AL, Wang C, Brainson CF. EZH2 inhibition confers PIK3CA-driven lung tumors enhanced sensitivity to PI3K inhibition. Cancer Lett 2022; 524:151-160. [PMID: 34655667 PMCID: PMC8743034 DOI: 10.1016/j.canlet.2021.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2021] [Revised: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Members of the PI3K signaling pathway, especially PIK3CA, the gene encoding the catalytic subunit of the PI3K complex, are highly mutated and amplified in various cancer types, including non-small cell lung cancer. Although PI3K inhibitors have been used in clinics for follicular lymphoma and chronic lymphocytic leukemia, no agents targeting PI3K aberrations in lung cancer have been approved by the FDA so far. In this study, we observed that PIK3CA-E545K, the most common mutation in lung cancer, harbored a modest induction of stem-like properties in lung epithelial cells, and drove development of adenocarcinoma autochthonously when paired with p53 loss in a murine mouse model. We also found that PIK3CA-mutant of amplified lung cancer cells were sensitive to EZH2 inhibition. EZH2 inhibition synergized with PI3K inhibition in human cancer cells in vitro and worked together efficiently in vivo. Mechanistically, EZH2 inhibition cooperated with PI3K inhibition to produce a more potent suppression of phospho-AKT downstream of PI3K. This study suggests a promising combination therapy to combat lung cancers with PIK3CA mutation or amplification. Both copanlisib, the PI3K inhibitor, and tazemetostat, the EZH2 inhibitor, are FDA-approved, which should enhance the clinical translation of this work.
Collapse
Affiliation(s)
- Fan Chen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA,Department of Internal Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiulong Song
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Tanner J. DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Aria L. Byrd
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA,Department of Internal Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA,Corresponding author. Department of Toxicology and Cancer Biology Markey Cancer Center University of Kentucky, 1095 VA Drive, HSRB 456, Lexington, KY, 40536, USA.
| |
Collapse
|
29
|
Morin G, Canaud G. Treatment strategies for mosaic overgrowth syndromes of the PI3K-AKT-mTOR pathway. Br Med Bull 2021; 140:36-49. [PMID: 34530449 DOI: 10.1093/bmb/ldab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 11/14/2022]
Abstract
INTRODUCTION OR BACKGROUND Mosaic overgrowth syndromes (OS) are a proteiform ensemble of rare diseases displaying asymmetric overgrowth involving any tissue type, with degrees of severity ranging from isolated malformation to life-threatening conditions such as pulmonary embolism. Despite discordant clinical presentations, all those syndromes share common genetic anomalies: somatic mutations of genes involved in cell growth and proliferation. The PI3K-AKT-mTOR signaling pathway is one of the most prominent regulators of cell homeostasis, and somatic oncogenic mutations affecting this pathway are responsible for mosaic OS. This review aims to describe the clinical and molecular characteristics of the main OS involving the PI3K-AKT-mTOR pathway, along with the treatments available or under development. SOURCES OF DATA This review summarizes available data regarding OS in scientific articles published in peer-reviewed journals. AREAS OF AGREEMENT OS care requires a multidisciplinary approach relying on clinical and radiological follow-up along with symptomatic treatment. However, no specific treatment has yet shown efficacy in randomized control trials. AREAS OF CONTROVERSY Clinical classifications of OS led to frequent misdiagnosis. Moreover, targeted therapies directed at causal mutated proteins are developing in OSs through cancer drugs repositioning, but the evidence of efficacy and tolerance is still lacking for most of them. GROWING POINTS The genetic landscape of OS is constantly widening and molecular classifications tend to increase the accuracy of diagnosis, opening opportunities for targeted therapies. AREAS TIMELY FOR DEVELOPING RESEARCH OS are a dynamic, expanding field of research. Studies focusing on the identification of genetic anomalies and their pharmacological inhibition are needed.
Collapse
Affiliation(s)
- Gabriel Morin
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Unité d'hypercroissance dysharmonieuse et centre d'anomalies vasculaires, hôpital Necker Enfants Malades, AP-HP, France
| | - Guillaume Canaud
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Unité d'hypercroissance dysharmonieuse et centre d'anomalies vasculaires, hôpital Necker Enfants Malades, AP-HP, France
| |
Collapse
|
30
|
Roy A, Han VZ, Bard AM, Wehle DT, Smith SEP, Ramirez JM, Kalume F, Millen KJ. Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy. Front Mol Neurosci 2021; 14:772847. [PMID: 34899181 PMCID: PMC8662737 DOI: 10.3389/fnmol.2021.772847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
Collapse
Affiliation(s)
- Achira Roy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Devin T Wehle
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
32
|
Mussa A, Carli D, Cardaropoli S, Ferrero GB, Resta N. Lateralized and Segmental Overgrowth in Children. Cancers (Basel) 2021; 13:cancers13246166. [PMID: 34944785 PMCID: PMC8699773 DOI: 10.3390/cancers13246166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/19/2023] Open
Abstract
Congenital disorders of lateralized or segmental overgrowth (LO) are heterogeneous conditions with increased tissue growth in a body region. LO can affect every region, be localized or extensive, involve one or several embryonic tissues, showing variable severity, from mild forms with minor body asymmetry to severe ones with progressive tissue growth and related relevant complications. Recently, next-generation sequencing approaches have increased the knowledge on the molecular defects in LO, allowing classifying them based on the deranged cellular signaling pathway. LO is caused by either genetic or epigenetic somatic anomalies affecting cell proliferation. Most LOs are classifiable in the Beckwith-Wiedemann spectrum (BWSp), PI3KCA/AKT-related overgrowth spectrum (PROS/AROS), mosaic RASopathies, PTEN Hamartoma Tumor Syndrome, mosaic activating variants in angiogenesis pathways, and isolated LO (ILO). These disorders overlap over common phenotypes, making their appraisal and distinction challenging. The latter is crucial, as specific management strategies are key: some LO is associated with increased cancer risk making imperative tumor screening since childhood. Interestingly, some LO shares molecular mechanisms with cancer: recent advances in tumor biological pathway druggability and growth downregulation offer new avenues for the treatment of the most severe and complicated LO.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Clinical Genetics Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
- Correspondence: ; Tel.: +39-0113135372
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
33
|
Vyas P, Tulsawani R, Vohora D. Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Front Immunol 2021; 12:739452. [PMID: 34887852 PMCID: PMC8650161 DOI: 10.3389/fimmu.2021.739452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests the association of seizures and inflammation; however, underlying cell signaling mechanisms are still not fully understood. Overactivation of phosphoinositide-3-kinases is associated with both neuroinflammation and seizures. Herein, we speculate the PI3K/Akt/mTOR pathway as a promising therapeutic target for neuroinflammation-mediated seizures and associated neurodegeneration. Firstly, we cultured HT22 cells for detection of the downstream cell signaling events activated in a lipopolysaccharide (LPS)-primed pilocarpine (PILO) model. We then evaluated the effects of 7-day treatment of buparlisib (PI3K inhibitor, 25 mg/kg p.o.), dactolisib (PI3K/mTOR inhibitor, 25 mg/kg p.o.), and rapamycin (mTORC1 inhibitor, 10 mg/kg p.o.) in an LPS-primed PILO model of seizures in C57BL/6 mice. LPS priming resulted in enhanced seizure severity and reduced latency. Buparlisib and dactolisib, but not rapamycin, prolonged latency to seizures and reduced neuronal loss, while all drugs attenuated seizure severity. Buparlisib and dactolisib further reduced cellular redox, mitochondrial membrane potential, cleaved caspase-3 and p53, nuclear integrity, and attenuated NF-κB, IL-1β, IL-6, TNF-α, and TGF-β1 and TGF-β2 signaling both in vitro and in vivo post-PILO and LPS+PILO inductions; however, rapamycin mitigated the same only in the PILO model. Both drugs protected against neuronal cell death demonstrating the contribution of this pathway in the seizure-induced neuronal pyknosis; however, rapamycin showed resistance in a combination model. Furthermore, LPS and PILO exposure enhanced pAkt/Akt and phospho-p70S6/total-p70S6 kinase activity, while buparlisib and dactolisib, but not rapamycin, could reduce it in a combination model. Partial rapamycin resistance was observed possibly due to the reactivation of the pathway by a functionally different complex of mTOR, i.e., mTORC2. Our study substantiated the plausible involvement of PI3K-mediated apoptotic and inflammatory pathways in LPS-primed PILO-induced seizures and provides evidence that its modulation constitutes an anti-inflammatory mechanism by which seizure inhibitory effects are observed. We showed dual inhibition by dactolisib as a promising approach. Targeting this pathway at two nodes at a time may provide new avenues for antiseizure therapies.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rajkumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
34
|
Rashidieh B, Shohayeb B, Bain AL, Fortuna PRJ, Sinha D, Burgess A, Mills R, Adams RC, Lopez JA, Blumbergs P, Finnie J, Kalimutho M, Piper M, Hudson JE, Ng DCH, Khanna KK. Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genet 2021; 17:e1009334. [PMID: 34710087 PMCID: PMC8577787 DOI: 10.1371/journal.pgen.1009334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Revised: 11/09/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3β/β-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3β. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.
Collapse
Affiliation(s)
- Behnam Rashidieh
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Environment and Sciences, Griffith University, Nathan, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | | | - Debottam Sinha
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Sydney, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, Australia
| | - Richard Mills
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Rachael C. Adams
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Environment and Sciences, Griffith University, Nathan, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | | | - Michael Piper
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | - Dominic C. H. Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
35
|
Klofas LK, Short BP, Zhou C, Carson RP. Prevention of premature death and seizures in a Depdc5 mouse epilepsy model through inhibition of mTORC1. Hum Mol Genet 2021; 29:1365-1377. [PMID: 32280987 DOI: 10.1093/hmg/ddaa068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Mutations in DEP domain containing 5 (DEPDC5) are increasingly appreciated as one of the most common causes of inherited focal epilepsy. Epilepsies due to DEPDC5 mutations are often associated with brain malformations, tend to be drug-resistant, and have been linked to an increased risk of sudden unexplained death in epilepsy (SUDEP). Generation of epilepsy models to define mechanisms of epileptogenesis remains vital for future therapies. Here, we describe a novel mouse model of Depdc5 deficiency with a severe epilepsy phenotype, generated by conditional deletion of Depdc5 in dorsal telencephalic neuroprogenitor cells. In contrast to control and heterozygous mice, Depdc5-Emx1-Cre conditional knockout (CKO) mice demonstrated macrocephaly, spontaneous seizures and premature death. Consistent with increased mTORC1 activation, targeted neurons were enlarged and both neurons and astrocytes demonstrated increased S6 phosphorylation. Electrophysiologic characterization of miniature inhibitory post-synaptic currents in excitatory neurons was consistent with impaired post-synaptic response to GABAergic input, suggesting a potential mechanism for neuronal hyperexcitability. mTORC1 inhibition with rapamycin significantly improved survival of CKO animals and prevented observed seizures, including for up to 40 days following rapamycin withdrawal. These data not only support a primary role for mTORC1 hyperactivation in epilepsy following homozygous loss of Depdc5, but also suggest a developmental window for treatment which may have a durable benefit for some time even after withdrawal.
Collapse
Affiliation(s)
- Lindsay K Klofas
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Brittany P Short
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert P Carson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
36
|
Venot Q, Canaud G. PIK3CA-related overgrowth spectrum: animal model and drug discovery. C R Biol 2021; 344:189-201. [PMID: 34213856 DOI: 10.5802/crbiol.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
This review recapitulates the recent knowledge accumulation on overgrowth syndrome related to gain of function of the phosphoinositide3 kinase (PI3K)-alpha. These disorders, known as PIK3CA related overgrowth syndromes (PROS) are caused by somatic PIK3CA mutation occurring during embryogenesis. We summarize here the currently available animal models and new treatments undergoing development.
Collapse
Affiliation(s)
- Quitterie Venot
- Inserm U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Guillaume Canaud
- Inserm U1151, Institut Necker Enfants Malades, Paris, France.,Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Unité d'hypercroissance dysharmonieuse, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
37
|
Abstract
Malformations of cortical development (MCDs) represent a range of neurodevelopmental disorders that are collectively common causes of developmental delay and epilepsy, especially refractory childhood epilepsy. Initial treatment with antiseizure medications is empiric, and consideration of surgery is the standard of care for eligible patients with medically refractory epilepsy. In the past decade, advances in next generation sequencing technologies have accelerated progress in understanding the genetic etiologies of MCDs, and precision therapies for focal MCDs are emerging. Notably, mutations that lead to abnormal activation of the mammalian target of rapamycin (mTOR) pathway, which provides critical control of cell growth and proliferation, have emerged as a common cause of malformations. These include tuberous sclerosis complex (TSC), hemimegalencephaly (HME), and some types of focal cortical dysplasia (FCD). TSC currently represents the best example for the pathway from gene discovery to relatively safe and efficacious targeted therapy for epilepsy related to MCDs. Based on extensive pre-clinical and clinical data, the mTOR inhibitor everolimus is currently approved for the treatment of focal refractory seizures in patients with TSC. Although clinical studies are just emerging for FCD and HME, we believe the next decade will bring significant advancements in precision therapies for epilepsy related to these and other MCDs.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
38
|
4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A 2021; 118:2025522118. [PMID: 33876772 DOI: 10.1073/pnas.2025522118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3ca H1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.
Collapse
|
39
|
Abstract
The CLOVES syndrome is an overgrowth disease arising from mosaic activating somatic mutations in the PIK3CA gene. These mutations occur during fetal development producing malformation and overgrowth of a variety of tissues. It has recently been shown that treatment with low doses of a selective inhibitor of Class I PI3K catalytic subunit p110α, the protein product of the PIK3CA gene, can yield dramatic therapeutic benefits for patients with CLOVES and PROS (a spectrum of PIK3CA-related overgrowth syndromes). To assess the long-term effects of moderate loses of p110α activity, we followed development and growth of mice with heterozygous loss of p110α (Pik3ca+/−) over their entire lifetimes, paying particular attention to effects on the brain. While homozygous deletion of the Pik3ca gene is known to result in early embryonic lethality, these Pik3ca+/− mice displayed a longer lifespan compared to their wild-type littermates. These mice appeared normal, exhibited no obvious behavioral abnormalities, and no body weight changes. However, their brains showed a significant reduction in size and weight. Notably, mice featuring deletion of one allele of Pik3ca only in the brain also showed gradually reduced brain size and weight. Mechanistically, either deletion of p110α or pharmacological inhibition of p110α activity reduced neurosphere size, but not numbers, in vitro, suggesting that p110α activity is critical for neuronal stem cells. The phenotypes observed in our two genetically engineered mouse models suggest that the sustained pharmacological inhibition of the PIK3CA activity in human patients might have both beneficial and harmful effects, and future treatments may need to be deployed in a way to avoid or minimize adverse effects.
Collapse
|
40
|
Dasgupta K, Lessard S, Hann S, Fowler ME, Robling AG, Warman ML. Sensitive detection of Cre-mediated recombination using droplet digital PCR reveals Tg(BGLAP-Cre) and Tg(DMP1-Cre) are active in multiple non-skeletal tissues. Bone 2021; 142:115674. [PMID: 33031974 DOI: 10.1016/j.bone.2020.115674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
In humans, somatic activating mutations in PIK3CA are associated with skeletal overgrowth. In order to determine if activated PI3K signaling in bone cells causes overgrowth, we used Tg(BGLAP-Cre) and Tg(DMP1-Cre) mouse strains to somatically activate a disease-causing conditional Pik3ca allele (Pik3caH1047R) in osteoblasts and osteocytes. We observed Tg(BGLAP-Cre);Pik3caH1047R/+ offspring were born at the expected Mendelian frequency. However, these mice developed cutaneous lymphatic malformations and died before 7 weeks of age. In contrast, Tg(DMP1-Cre);Pik3caH1047R/+ offspring survived and had no cutaneous lymphatic malformations. Assuming that Cre-activity outside of the skeletal system accounted for the difference in phenotype between Tg(BGLAP-Cre);Pik3caH1047R/+ and Tg(DMP1-Cre);Pik3caH1047R/+ mice, we developed sensitive and specific droplet digital PCR (ddPCR) assays to search for and quantify rates of Tg(BGLAP-Cre)- and Tg(DMP1-Cre)-mediated recombination in non-skeletal tissues. We observed Tg(BGLAP-Cre)-mediated recombination in several tissues including skin, muscle, artery, and brain; two CNS locations, hippocampus and cerebellum, exhibited Cre-mediated recombination in >5% of cells. Tg(DMP1-Cre)-mediated recombination was also observed in muscle, artery, and brain. Although we cannot preclude that differences in phenotype between mice with Tg(BGLAP-Cre)- and Tg(DMP1-Cre)-mediated PIK3CA activation are due to Cre-recombination being induced at different stages of osteoblast differentiation, differences in recombination at non-skeletal sites are the more likely explanation. Since unanticipated sites of recombination can affect the interpretation of data from experiments involving conditional alleles, we recommend ddPCR as a good first step for assessing efficiency, leakiness, and off-targeting in experiments that employ Cre-mediated or Flp-mediated recombination.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America; Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Samantha Lessard
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
| | - Steven Hann
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
| | - Megan E Fowler
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
| | - Alexander G Robling
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Matthew L Warman
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America; Department of Genetics, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
41
|
Shi X, Lim Y, Myers AK, Stallings BL, Mccoy A, Zeiger J, Scheck J, Cho G, Marsh ED, Mirzaa GM, Tao T, Golden JA. PIK3R2/Pik3r2 Activating Mutations Result in Brain Overgrowth and EEG Changes. Ann Neurol 2020; 88:1077-1094. [PMID: 32856318 PMCID: PMC8176885 DOI: 10.1002/ana.25890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) complex have been associated with a broad spectrum of brain and organ overgrowth syndromes. For example, mutations in phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2) have been identified in human patients with megalencephaly polymicrogyria polydactyly hydrocephalus (MPPH) syndrome, which includes brain overgrowth. To better understand the pathogenesis of PIK3R2-related mutations, we have developed and characterized a murine model. METHODS We generated a knock-in mouse model for the most common human PIK3R2 mutation, p.G373R (p.G367R in mice) using CRISPR/Cas9. The mouse phenotypes, including brain size, seizure activity, cortical lamination, cell proliferation/size/density, interneuron migration, and PI3K pathway activation, were analyzed using standard methodologies. For human patients with PIK3R2 mutations, clinical data (occipitofrontal circumference [OFC] and epilepsy) were retrospectively obtained from our clinical records (published / unpublished). RESULTS The PI3K-AKT pathway was hyperactivated in these mice, confirming the p.G367R mutation is an activating mutation in vivo. Similar to human patients with PIK3R2 mutations, these mice have enlarged brains. We found cell size to be increased but not cell numbers. The embryonic brain showed mild defects in cortical lamination, although not observed in the mature brain. Furthermore, electroencephalogram (EEG) recordings from mutant mice showed background slowing and rare seizures, again similar to our observations in human patients. INTERPRETATION We have generated a PIK3R2 mouse model that exhibits megalencephaly and EEG changes, both of which overlap with human patients. Our data provide novel insight into the pathogenesis of the human disease caused by PIK3R2 p.G373R mutation. We anticipate this model will be valuable in testing therapeutic options for human patients with MPPH. ANN NEUROL 2020;88:1077-1094.
Collapse
Affiliation(s)
- Xiuyu Shi
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Youngshin Lim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail K. Myers
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brenna L. Stallings
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Almedia Mccoy
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jordan Zeiger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Joshua Scheck
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric D. Marsh
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jeffrey A. Golden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Sahai N, Bard AM, Devinsky O, Kalume F. Disordered autonomic function during exposure to moderate heat or exercise in a mouse model of Dravet syndrome. Neurobiol Dis 2020; 147:105154. [PMID: 33144172 DOI: 10.1016/j.nbd.2020.105154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine autonomic regulation of core body temperature, heart rate (HR), and breathing rate (BR) in response to moderately elevated ambient temperature or moderate physical exercise in a mouse model of Dravet syndrome (DS). METHODS We studied video-EEG, ECG, respiration, and temperature in mice with global heterozygous Scn1a knockout (KO) (DS mice), interneuron specific Scn1a KO, and wildtype (WT) mice during exposure to increased environmental temperature and moderate treadmill exercise. RESULTS Core body temperatures of WT and DS mice were similar during baseline. After 15 mins of heat exposure, the peak value was lower in DS than WT mice. In the following mins of heat exposure, the temperature slowly returned close to baseline level in WT, whereas it remained elevated in DS mice. KO of Scn1a in GABAergic neurons caused similar thermoregulatory deficits in mice. During exercise, the HR increase was less prominent in DS than WT mice. After exercise, the HR was significantly more suppressed in DS. The heart rate variability (HRV) was lower in DS than WT mice during baseline and higher in DS during exercise-recovery periods. SIGNIFICANCE We found novel abnormalities that expand the spectrum of interictal, ictal, and postictal autonomic dysregulation in DS mice. During mild heat stress, there was a significantly blunted correction of body temperature, and a less suppression of both HR and respiration rate in DS than WT mice. These effects were seen in mice with selective KO of Scn1A in GABAergic neurons. During exercise stress, there was diminished increase in HR, followed by an exaggerated HR suppression and HRV elevation during recovery in DS mice compared to controls. These findings suggest that different environmental stressors can uncover distinct autonomic disturbances in DS mice. Interneurons play an important role in thermoregulation. Understanding the spectrum and mechanisms of autonomic disorders in DS may help develop more effective strategies to prevent seizures and SUDEP.
Collapse
Affiliation(s)
- Nikhil Sahai
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Castello MA, Gleeson JG. Insight into developmental mechanisms of global and focal migration disorders of cortical development. Curr Opin Neurobiol 2020; 66:77-84. [PMID: 33099181 DOI: 10.1016/j.conb.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Cortical development involves neurogenesis followed by migration, maturation, and myelination of immature neurons. Disruptions in these processes can cause malformations of cortical development (MCD). Radial glia (RG) are the stem cells of the brain, both generating neurons and providing the scaffold upon which immature neurons radially migrate. Germline mutations in genes required for cell migration, or cell-cell contact, often lead to global MCDs. Somatic mutations in RG in genes involved in homeostatic function, like mTOR signaling, often lead to focal MCDs. Two different mutations occurring in the same patient can combine in ways we are just beginning to understand. Our growing knowledge about MCD suggests mTOR inhibitors may have expanded utility in treatment-resistant epilepsy, while imaging techniques can better delineate the type and extent of these lesions.
Collapse
Affiliation(s)
- Michael A Castello
- Department of Neurosciences, Division of Child Neurology, University of California San Diego, San Diego, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
44
|
White AR, Tiwari D, MacLeod MC, Danzer SC, Gross C. PI3K isoform-selective inhibition in neuron-specific PTEN-deficient mice rescues molecular defects and reduces epilepsy-associated phenotypes. Neurobiol Dis 2020; 144:105026. [PMID: 32712265 DOI: 10.1016/j.nbd.2020.105026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023] Open
Abstract
Epilepsy affects all ages, races, genders, and socioeconomic groups. In about one third of patients, epilepsy is uncontrolled with current medications, leaving a vast need for improved therapies. The causes of epilepsy are diverse and not always known but one gene mutated in a small subpopulation of patients is phosphatase and tensin homolog (PTEN). Moreover, focal cortical dysplasia, which constitutes a large fraction of refractory epilepsies, has been associated with signaling defects downstream of PTEN. So far, most preclinical attempts to reverse PTEN deficiency-associated neurological deficits have focused on mTOR, a signaling hub several steps downstream of PTEN. Phosphoinositide 3-kinases (PI3Ks), by contrast, are the direct enzymatic counteractors of PTEN, and thus may be alternative treatment targets. PI3K activity is mediated by four different PI3K catalytic isoforms. Studies in cancer, where PTEN is commonly mutated, have demonstrated that inhibition of only one isoform, p110β, reduces progression of PTEN-deficient tumors. Importantly, inhibition of a single PI3K isoform leaves critical functions of general PI3K signaling throughout the body intact. Here, we show that this disease mechanism-targeted strategy borrowed from cancer research rescues or ameliorates neuronal phenotypes in male and female mice with neuron-specific PTEN deficiency. These phenotypes include cell signaling defects, protein synthesis aberrations, seizures, and cortical dysplasia. Of note, p110β is also dysregulated and a promising treatment target in the intellectual disability Fragile X syndrome, pointing towards a shared biological mechanism that is therapeutically targetable in neurodevelopmental disorders of different etiologies. Overall, this work advocates for further assessment of p110β inhibition not only in PTEN deficiency-associated neurodevelopmental diseases but also other brain disorders characterized by defects in the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | - Molly C MacLeod
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA.
| |
Collapse
|
45
|
Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer 2020; 20:383-397. [PMID: 32341551 PMCID: PMC7787056 DOI: 10.1038/s41568-020-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
Human oncoproteins promote transformation of cells into tumours by dysregulating the signalling pathways that are involved in cell growth, proliferation and death. Although oncoproteins were discovered many years ago and have been widely studied in the context of cancer, the recent use of high-throughput sequencing techniques has led to the identification of cancer-associated mutations in other conditions, including many congenital disorders. These syndromes offer an opportunity to study oncoprotein signalling and its biology in the absence of additional driver or passenger mutations, as a result of their monogenic nature. Moreover, their expression in multiple tissue lineages provides insight into the biology of the proto-oncoprotein at the physiological level, in both transformed and unaffected tissues. Given the recent paradigm shift in regard to how oncoproteins promote transformation, we review the fundamentals of genetics, signalling and pathogenesis underlying oncoprotein duality.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine A Rauen
- MIND Institute, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Castro VL, Reyes JF, Reyes-Nava NG, Paz D, Quintana AM. Hcfc1a regulates neural precursor proliferation and asxl1 expression in the developing brain. BMC Neurosci 2020; 21:27. [PMID: 32522152 PMCID: PMC7288482 DOI: 10.1186/s12868-020-00577-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. Methods Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. Results The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. Conclusion Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Joel F Reyes
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - David Paz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
47
|
Goz RU, Akgül G, LoTurco JJ. BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons. J Neurophysiol 2020; 123:2449-2464. [PMID: 32401131 PMCID: PMC7311733 DOI: 10.1152/jn.00523.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations have emerged as the likely cause of focal epilepsies associated with developmental malformations and epilepsy-associated glioneuronal tumors (GNT). Somatic BRAFV600E mutations in particular have been detected in the majority of low-grade neuroepithelial tumors (LNETS) and in neurons in focal cortical dysplasias adjacent to epilepsy-associated tumors. Furthermore, conditional expression of an activating BRAF mutation in neocortex causes seizures in mice. In this study we characterized the cellular electrophysiology of layer 2/3 neocortical pyramidal neurons induced to express BRAFV600E from neural progenitor stages. In utero electroporation of a piggyBac transposase plasmid system was used to introduce transgenes expressing BRAF wild type (BRAFwt), BRAFV600E, and/or enhanced green fluorescent protein (eGFP) and monomeric red fluorescent protein (mRFP) into radial glia progenitors in mouse embryonic cortex. Whole cell patch-clamp recordings of pyramidal neurons in slices prepared from both juvenile and adult mice showed that BRAFV600E resulted in neurons with a distinct hyperexcitable phenotype characterized by depolarized resting membrane potentials, increased input resistances, lowered action potential (AP) thresholds, and increased AP firing frequencies. Some of the BRAFV600E-expressing neurons normally destined for upper cortical layers by their birthdate were stalled in their migration and occupied lower cortical layers. BRAFV600E-expressing neurons also displayed increased hyperpolarization-induced inward currents (Ih) and decreased sustained potassium currents. Neurons adjacent to BRAFV600E transgene-expressing neurons, and neurons with TSC1 genetically deleted by CRISPR or those induced to carry PIK3CAE545K transgenes, did not show an excitability phenotype similar to that of BRAFV600E-expressing neurons. Together, these results indicate that BRAFV600E leads to a distinct hyperexcitable neuronal phenotype.NEW & NOTEWORTHY This study is the first to report the cell autonomous effects of BRAFV600E mutations on the intrinsic neuronal excitability. We show that BRAFV600E alters multiple electrophysiological parameters in neocortical neurons. Similar excitability changes did not occur in cells neighboring BRAFV600E-expressing neurons, after overexpression of wild-type BRAF transgenes, or after introduction of mutations affecting the mammalian target of rapamycin (mTOR) or the catalytic subunit of phosphoinositide 3-kinase (PIK3CA). We conclude that BRAFV600E causes a distinct, cell autonomous, highly excitable neuronal phenotype when introduced somatically into neocortical neuronal progenitors.
Collapse
Affiliation(s)
- Roman U Goz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Gülcan Akgül
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
48
|
Roy A, Millen KJ, Kapur RP. Hippocampal granule cell dispersion: a non-specific finding in pediatric patients with no history of seizures. Acta Neuropathol Commun 2020; 8:54. [PMID: 32317027 PMCID: PMC7171777 DOI: 10.1186/s40478-020-00928-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic epilepsy has been associated with hippocampal abnormalities like neuronal loss, gliosis and granule cell dispersion. The granule cell layer of a normal human hippocampal dentate gyrus is traditionally regarded as a compact neuron-dense layer. Histopathological studies of surgically resected or autopsied hippocampal samples primarily from temporal lobe epilepsy patients, as well as animal models of epilepsy, describe variable patterns of granule cell dispersion including focal cell clusters, broader thick segments, and bilamination or “tram-tracking”. Although most studies have implicated granule cell dispersion as a specific feature of chronic epilepsy, very few “non-seizure” controls were included in these published investigations. Our retrospective survey of 147 cadaveric pediatric human hippocampi identified identical morphological spectra of granule cell dispersion in both normal and seizure-affected brains. Moreover, sections across the entire antero-posterior axis of a control cadaveric hippocampus revealed repetitive occurrence of different morphologies of the granule cell layer – compact, focally disaggregated and bilaminar. The results indicate that granule cell dispersion is within the spectrum of normal variation and not unique to patients with epilepsy. We speculate that sampling bias has been responsible for an erroneous dogma, which we hope to rectify with this investigation.
Collapse
|
49
|
Abstract
Overgrowth syndromes are a large group of rare disorders characterized by generalized or segmental excessive growth. Segmental overgrowth syndromes are mainly due to genetic anomalies appearing during the embryogenesis and leading to mosaicism. The numbers of patients with segmental overgrowth with an identified molecular defect has dramatically increased following the recent advances in molecular genetic using next-generation sequencing approaches. This review discusses various syndromes and pathways involved in segmental overgrowth syndromes and presents actual and future therapeutic strategies.
Collapse
Affiliation(s)
- Quitterie Venot
- Inserm U1151, Institut Necker Enfants Malades, 75015 Paris, France
| | - Guillaume Canaud
- Inserm U1151, Institut Necker Enfants Malades, 75015 Paris, France - Service d'Hypercroissance Pathologique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France - Université de Paris, Paris, France
| |
Collapse
|
50
|
Niesen J, Ohli J, Sedlacik J, Dührsen L, Hellwig M, Spohn M, Holsten T, Schüller U. Pik3ca mutations significantly enhance the growth of SHH medulloblastoma and lead to metastatic tumour growth in a novel mouse model. Cancer Lett 2020; 477:10-18. [PMID: 32112900 DOI: 10.1016/j.canlet.2020.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumour in children with a poor outcome. Divided into four molecular subgroups, MB of the Sonic hedgehog (SHH) subgroup accounts for approximately 25% of the cases and is driven by mutations within components of the SHH pathway, such as its receptors PTCH1 or SMO. A fraction of these cases additionally harbour PIK3CA mutations, the relevance of which is so far unknown. To unravel the role of Pik3ca mutations alone or in combination with a constitutively activated SHH signalling pathway, transgenic mice were used. These mice show mutated variants within Smo, Ptch1 or Pik3ca genes in cerebellar granule neuron precursors, which represent the cellular origin of SHH MB. Our results show that Pik3ca mutations alone are insufficient to cause developmental alterations or to initiate MB. However, they significantly accelerate the growth of Shh MB, induce tumour spread throughout the cerebrospinal fluid, and result in lower survival rates of mice with a double Pik3caH1047R/SmoM2 or Pik3caH1047R/Ptch1 mutation. Therefore, PIK3CA mutations in SHH MB may represent a therapeutic target for first and second line combination treatments.
Collapse
Affiliation(s)
- Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Jasmin Ohli
- Centre for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jan Sedlacik
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany; Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|