1
|
Ben-Azu B, Oritsemuelebi B, Oghorodi AM, Adebesin A, Isibor H, Eduviere AT, Otuacha OS, Akudo M, Ekereya S, Maidoh IF, Iyayi JO, Uzochukwu-Godfrey FC. Psychopharmacological interaction of alcohol and posttraumatic stress disorder: Effective action of naringin. Eur J Pharmacol 2024; 978:176791. [PMID: 38944175 DOI: 10.1016/j.ejphar.2024.176791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalently co-occurring, important risk factors for a broad array of neuropsychiatric diseases. To date, how these two contrastive concomitant pairs increase the risk of neuropsychiatric states, notably exacerbating PTSD-related symptoms, remains unknown. Moreover, pharmacological interventions with agents that could reverse PTSD-AUD comorbidity, however, remained limited. Hence, we investigated the neuroprotective actions of naringin in mice comorbidly exposed to PTSD followed by repeated ethanol (EtOH)-induced AUD. Following a 7-day single-prolong-stress (SPS)-induced PTSD in mice, binge/heavy drinking, notably related to AUD, was induced in the PTSD mice with every-other-day ethanol (2 g/kg, p.o.) administration, followed by daily treatments with naringin (25 and 50 mg/kg) or fluoxetine (10 mg/kg), from days 8-21. PTSD-AUD-related behavioral changes, alcohol preference, hypothalamic-pituitary-adrenal (HPA)-axis dysfunction-induced neurochemical alterations, oxidative/nitrergic stress, and inflammation were examined in the prefrontal-cortex, striatum, and hippocampus. PTSD-AUD mice showed aggravated anxiety, spatial-cognitive, social impairments and EtOH intake, which were abated by naringin, similar to fluoxetine. Our assays on the HPA-axis showed exacerbated increased corticosterone release and adrenal hypertrophy, accompanied by marked dopamine and serotonin increase, with depleted glutamic acid decarboxylase enzyme in the three brain regions, which naringin, however, reversed, respectively. PTSD-AUD mice also showed increased TNF-α, IL-6, malondialdehyde and nitrite levels, with decreased antioxidant elements in the prefrontal-cortex, striatum, and hippocampus compared to SPS-EtOH-mice, mainly exacerbating catalase and glutathione decrease in the hippocampus relative SPS-mice. These findings suggest that AUD exacerbates PTSD pathologies in different brain regions, notably comprising neurochemical dysregulations, oxidative/nitrergic and cytokine-mediated inflammation, with HPA dysfunction, which were, however, revocable by naringin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Akpobo M Oghorodi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Department of Biomedical Engineering, Faculty of Technology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Happy Isibor
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Oghenemine S Otuacha
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Moses Akudo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Surhirime Ekereya
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Isioma F Maidoh
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Joy O Iyayi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Faith C Uzochukwu-Godfrey
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
2
|
Song RX, Zhou TT, Jia SY, Li WG, Wang J, Li BD, Shan YD, Zhang LM, Li XM. Hydrogen sulfide mitigates memory impairments via the restoration of glutamatergic neurons in a mouse model of hemorrhage shock and resuscitation. Exp Neurol 2024; 376:114758. [PMID: 38513970 DOI: 10.1016/j.expneurol.2024.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Impaired long-term memory, a complication of traumatic stress including hemorrhage shock and resuscitation (HSR), has been reported to be associated with multiple neurodegenerations. The ventral tegmental area (VTA) participates in both learned appetitive and aversive behaviors. In addition to being prospective targets for the therapy of addiction, depression, and other stress-related diseases, VTA glutamatergic neurons are becoming more widely acknowledged as powerful regulators of reward and aversion. This study revealed that HSR exposure induces memory impairments and decreases the activation in glutamatergic neurons, and decreased β power in the VTA. We also found that optogenetic activation of glutamatergic neurons in the VTA mitigated HSR-induced memory impairments, and restored β power. Moreover, hydrogen sulfide (H2S), a gasotransmitter with pleiotropic roles, has neuroprotective functions at physiological concentrations. In vivo, H2S administration improved HSR-induced memory deficits, elevated c-fos-positive vesicular glutamate transporters (Vglut2) neurons, increased β power, and restored the balance of γ-aminobutyric acid (GABA) and glutamate in the VTA. This work suggests that glutamatergic neuron stimulation via optogenetic assay and exogenous H2S may be useful therapeutic approaches for improving memory deficits following HSR.
Collapse
Affiliation(s)
- Rong-Xin Song
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Ting-Ting Zhou
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Wen-Guang Li
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Yu-Dong Shan
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China.
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Resrearch, Cangzhou, China.
| |
Collapse
|
3
|
Saito A, Murata H, Niitani K, Nagasaki J, Otoda A, Chujo Y, Yanagida J, Nishitani N, Deyama S, Kaneda K. Social defeat stress enhances the rewarding effects of cocaine through α 1A adrenoceptors in the medial prefrontal cortex of mice. Neuropharmacology 2024; 242:109757. [PMID: 37839511 DOI: 10.1016/j.neuropharm.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Various stressors potentiate the rewarding effects of cocaine and contribute to cocaine cravings. However, it remains unclear whether psychosocial stress enhances the rewarding effects of cocaine. Accordingly, this study employed a cocaine-conditioned place preference (CPP) paradigm combined with social defeat (SD) exposure to investigate the effects of acute SD stress on cocaine reward in male mice. We found that SD stress immediately before the posttest significantly increased cocaine CPP, and systemic blockade of α1 adrenoceptors, but not β adrenoceptors, suppressed this increase. Fiber photometry recordings with GRABNE1m sensors revealed increased noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) in test mice in response to attacks by aggressor mice during SD. Moreover, the SD stress-induced enhancement of CPP was effectively suppressed by intra-mPFC infusion of an α1 adrenoceptor antagonist. In vitro whole-cell recordings demonstrated that silodosin, an α1A, but not α1B or α1D, adrenoceptor antagonist, inhibited NA-induced depolarizing currents and facilitation of excitatory synaptic transmissions. Consistently, intra-mPFC silodosin infusion significantly suppressed the SD stress-induced CPP enhancement. Conversely, intra-mPFC infusion of α1A adrenoceptor agonist augmented cocaine CPP in the absence of stress exposure. Additionally, intranasal silodosin administration attenuated the SD stress-induced enhancement of CPP, and chemogenetic inhibition of mPFC excitatory neurons also suppressed the SD stress-induced CPP enhancement. Together, these findings suggest that NA stimulation of α1A adrenoceptors and the subsequent activation of mPFC pyramidal cells may contribute to SD stress-induced amplification of the rewarding effects of cocaine, and intranasal silodosin administration may hold therapeutic potential for mitigating stress-associated cocaine craving.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junpei Nagasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsuki Otoda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusuke Chujo
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junko Yanagida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
4
|
González-Portilla M, Moya M, Montagud-Romero S, de Fonseca FR, Orio L, Rodríguez-Arias M. Oleoylethanolamide attenuates the stress-mediated potentiation of rewarding properties of cocaine associated with an increased TLR4 proinflammatory response. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110722. [PMID: 36724838 DOI: 10.1016/j.pnpbp.2023.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain.
| | - Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
5
|
Yang L, Shi LJ, Shen SY, Yang JY, Lv SS, Wang ZC, Huang Q, Xu WD, Yu J, Zhang YQ. Toward Antifragility: Social Defeat Stress Enhances Learning and Memory in Young Mice Via Hippocampal Synaptosome Associated Protein 25. Psychol Sci 2023; 34:616-632. [PMID: 37040450 DOI: 10.1177/09567976231160098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Social adversity not only causes severe psychological diseases but also may improve people's ability to learn and grow. However, the beneficial effects of social adversity are often ignored. In this study, we investigated whether and how social adversity affects learning and memory in a mouse social defeat stress (SDS) model. A total of 652 mice were placed in experimental groups of six to 23 mice each. SDS enhanced spatial, novelty, and fear memory with increased synaptosome associated protein 25 (SNAP-25) level and dendritic spine density in hippocampal neurons among young but not middle-aged mice. Chemogenetic inhibition of hippocampal CaMK2A+ neurons blocked SDS-induced enhancement of learning or memory. Knockdown of SNAP-25 or blockade of N-methyl-D-aspartate (NMDA) receptor subunit GluN2B in the hippocampus prevented SDS-induced learning memory enhancement in an emotion-independent manner. These findings suggest that social adversity promotes learning and memory ability in youths and provide a neurobiological foundation for biopsychological antifragility.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
| | - Li-Jun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
| | - Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University
| | - Jing-Yan Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
| | - Zhe-Chen Wang
- Department of Psychology, School of Social Development and Public Policy, Fudan University
- School of Psychology, The University of Queensland
| | - Qian Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
| | - Wen-Dong Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
- Department of Hand Surgery, Huashan Hospital, Fudan University
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University
| |
Collapse
|
6
|
Hussein A, Guevara CA, Valle PD, Gupta S, Benson DL, Huntley GW. Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist 2023; 29:97-116. [PMID: 33966533 PMCID: PMC9338765 DOI: 10.1177/10738584211011979] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.
Collapse
Affiliation(s)
- Ayan Hussein
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swati Gupta
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Zhan B, Zhu Y, Xia J, Li W, Tang Y, Beesetty A, Ye JH, Fu R. Comorbidity of Post-Traumatic Stress Disorder and Alcohol Use Disorder: Animal Models and Associated Neurocircuitry. Int J Mol Sci 2022; 24:ijms24010388. [PMID: 36613829 PMCID: PMC9820348 DOI: 10.3390/ijms24010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalent neuropsychiatric disorders and frequently co-occur concomitantly. Individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Lacking standard preclinical models limited the exploration of neurobiological mechanisms underlying PTSD and AUD comorbidity. In this review, we summarize well-accepted preclinical model paradigms and criteria for developing successful models of comorbidity. We also outline how PTSD and AUD affect each other bidirectionally in the nervous nuclei have been heatedly discussed recently. We hope to provide potential recommendations for future research.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anju Beesetty
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence: (J.-H.Y.); (R.F.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (J.-H.Y.); (R.F.)
| |
Collapse
|
8
|
Linders LE, Patrikiou L, Soiza-Reilly M, Schut EHS, van Schaffelaar BF, Böger L, Wolterink-Donselaar IG, Luijendijk MCM, Adan RAH, Meye FJ. Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food. Nat Commun 2022; 13:6898. [PMID: 36371405 PMCID: PMC9653441 DOI: 10.1038/s41467-022-34625-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Stress can cause overconsumption of palatable high caloric food. Despite the important role of stress eating in obesity and (binge) eating disorders, its underlying neural mechanisms remain unclear. Here we demonstrate in mice that stress alters lateral hypothalamic area (LHA) control over the ventral tegmental area (VTA), thereby promoting overconsumption of palatable food. Specifically, we show that glutamatergic LHA neurons projecting to the VTA are activated by social stress, after which their synapses onto dopamine neurons are potentiated via AMPA receptor subunit alterations. We find that stress-driven strengthening of these specific synapses increases LHA control over dopamine output in key target areas like the prefrontal cortex. Finally, we demonstrate that while inducing LHA-VTA glutamatergic potentiation increases palatable fat intake, reducing stress-driven potentiation of this connection prevents such stress eating. Overall, this study provides insights in the neural circuit adaptations caused by stress that drive overconsumption of palatable food.
Collapse
Affiliation(s)
- Louisa E. Linders
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lefkothea Patrikiou
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mariano Soiza-Reilly
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Evelien H. S. Schut
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bram F. van Schaffelaar
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard Böger
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge G. Wolterink-Donselaar
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mieneke C. M. Luijendijk
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roger A. H. Adan
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank J. Meye
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Faure P, Fayad SL, Solié C, Reynolds LM. Social Determinants of Inter-Individual Variability and Vulnerability: The Role of Dopamine. Front Behav Neurosci 2022; 16:836343. [PMID: 35386723 PMCID: PMC8979673 DOI: 10.3389/fnbeh.2022.836343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals differ in their traits and preferences, which shape their interactions, their prospects for survival and their susceptibility to diseases. These correlations are well documented, yet the neurophysiological mechanisms underlying the emergence of distinct personalities and their relation to vulnerability to diseases are poorly understood. Social ties, in particular, are thought to be major modulators of personality traits and psychiatric vulnerability, yet the majority of neuroscience studies are performed on rodents in socially impoverished conditions. Rodent micro-society paradigms are therefore key experimental paradigms to understand how social life generates diversity by shaping individual traits. Dopamine circuitry is implicated at the interface between social life experiences, the expression of essential traits, and the emergence of pathologies, thus proving a possible mechanism to link these three concepts at a neuromodulatory level. Evaluating inter-individual variability in automated social testing environments shows great promise for improving our understanding of the link between social life, personality, and precision psychiatry – as well as elucidating the underlying neurophysiological mechanisms.
Collapse
|
10
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
11
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Li Y, He Y, Fan H, Wang Z, Huang J, Wen G, Wang X, Xie Q, Qiu P. Brain-derived neurotrophic factor upregulates synaptic GluA1 in the amygdala to promote depression in response to psychological stress. Biochem Pharmacol 2021; 192:114740. [PMID: 34419429 DOI: 10.1016/j.bcp.2021.114740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Psychological stress impairs neuronal structure and function and leads to emotional disorders, but the underlying mechanisms have not yet been fully elucidated. The amygdala is closely correlated with emotional regulation. In the present study, we analyzed whether the amygdala plasticity is regulated by psychological stress and explored their regulatory mechanism. We established a mouse psychological stress model using an improved communication box, wherein mice were exposed to chronic fear and avoided physical stress interference. After the 14-day psychological stress paradigm, mice exhibited significantly increased depressive behaviors (decreased sucrose consumption in the sucrose preference test and longer immobility time in the forced swimming test). HPLC, ELISA, and molecular and morphological evidences showed that psychological stress increased the content of glutamate and the expression of glutamatergic neurons, upregulated the content of the stress hormone corticosterone, and activated the CREB/BDNF pathway in the amygdala. Furthermore, psychological stress induced an increased density of dendritic spines and LTD impairment in the amygdala. Importantly, virus-mediated silencing of BDNF in the basolateral amygdala (BLA) nuclei reversed the depression-like behaviors and the increase of synaptic GluA1 and its phosphorylation at Ser831 and Ser845 sites in psychologically stressed mice. This process was likely achieved through mTOR signaling activation. Finally, we treated primary amygdala neurons with corticosterone to mimic psychological stress; corticosterone-induced upregulation of GluA1 was prevented by BDNF and mTOR antagonists. Thus, activation of the CREB/BDNF pathway in the amygdala following psychological stress upregulates synaptic GluA1 via mTOR signaling, which dysregulates synaptic plasticity of the amygdala, eventually promoting depression.
Collapse
Affiliation(s)
- Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China; Department of Forensic Medicine, School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China; School of Basic Medicine and Life Science, Hainan Medical University, Haikou, PR China
| | - Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
13
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
14
|
Abstract
Learning to respond appropriately to one's surrounding environment is fundamental to survival. Importantly, however, individuals vary in how they respond to cues in the environment and this variation may be a key determinant of psychopathology. The ability of seemingly neutral cues to promote maladaptive behavior is a hallmark of several psychiatric disorders including, substance use disorder, post-traumatic stress disorder, eating disorders and obsessive-compulsive disorder. Thus, it is important to uncover the neural mechanisms by which such cues are able to attain inordinate control and promote psychopathological behavior. Here, we suggest that glucocorticoids play a critical role in this process. Glucocorticoids are primarily recognized as the main hormone secreted in response to stress but are known to exert their effects across the body and the brain, and to affect learning and memory, cognition and reward-related behaviors, among other things. Here we speculate that glucocorticoids act to facilitate a dopamine-dependent form of cue-reward learning that appears to be relevant to a number of psychiatric conditions. Specifically, we propose to utilize the sign-tracker/goal-tracker animal model as a means to capture individual variation in stimulus-reward learning and to isolate the role of glucocorticoid-dopamine interactions in mediating these individual differences. It is hoped that this framework will lead to the discovery of novel mechanisms that contribute to complex neuropsychiatric disorders and their comorbidity.
Collapse
Affiliation(s)
- Sofia A. Lopez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shelly B. Flagel
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Ghalandari-Shamami M, Nourizade S, Barati M, Yousefi B, Pashayi M, Ali Vafaei A, Kokhaei P, Rashidy-Pour A. Exercise and crocin prevent adolescent-stress induced impairment of spatial navigation and dendritic retraction in the hippocampal CA3 area in adult male rats. Brain Res 2021; 1754:147274. [PMID: 33422526 DOI: 10.1016/j.brainres.2020.147274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
Adolescent chronic stress has been shown to induce functional, biochemical and morphological modifications of the hippocampus, leading to stress-related disorders in adulthood. The present study investigated the effects of exercise, crocin and their combination on spatial learning and memory impairment and dendritic retraction of the CA3 pyramidal neurons induced by chronic adolescent stress in adult male rats. Rats were exposed to restraint stress 2 h/day for 10 days during postnatal days (PNDs) 30-40. Following this period, separate groups of animals were treated with crocin (25 and 50 mg/kg), exposed to running wheel, and or received the combined treatment during PNDs 41-55. Following the interventions, plasma levels of corticosterone, spatial learning and memory, apical dendritic length of CA3 pyramidal neurons and BDNF levels in the CA3 area were assessed. Findings showed that adolescent stress significantly increased corticosterone levels and caused a tendency to reduce CA3 BDNF levels. Adolescent stress also impaired spatial learning and memory, and retracted apical dendritic length of CA3 pyramidal neurons. Crocin, voluntary exercise, and their combination recovered stress-induced spatial learning and impairment and CA3 pyramidal neurons dendritic length retraction. All treatments also reduced significantly corticosterone levels and enhanced CA3 BDNF levels in the stress groups. Finally, these treatments even increased apical dendritic length of CA3 pyramidal neurons in the non-stress groups. These findings indicate that detrimental effects of adolescent stress on cognitive function and hippocampal morphology in adulthood could be restored by early interventions with physical activity and crocin treatment during adolescent period.
Collapse
Affiliation(s)
- Mohadeseh Ghalandari-Shamami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahla Nourizade
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehrnush Pashayi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
16
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
17
|
Warren BL, Mazei-Robison MS, Robison AJ, Iñiguez SD. Can I Get a Witness? Using Vicarious Defeat Stress to Study Mood-Related Illnesses in Traditionally Understudied Populations. Biol Psychiatry 2020; 88:381-391. [PMID: 32228871 PMCID: PMC7725411 DOI: 10.1016/j.biopsych.2020.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
The chronic social defeat stress model has been instrumental in shaping our understanding of neurobiology relevant to affect-related illnesses, including major depressive disorder. However, the classic chronic social defeat stress procedure is limited by its exclusive application to adult male rodents. We have recently developed a novel vicarious social defeat stress procedure wherein one mouse witnesses the physical defeat bout of a conspecific from the safety of an adjacent compartment. This witness mouse develops a similar behavioral phenotype to that of the mouse that physically experiences social defeat stress, modeling multiple aspects of major depressive disorder. Importantly, this new procedure allows researchers to perform vicarious social defeat stress in males or females and in juvenile mice, which typically are excluded from classic social defeat experiments. Here we discuss several recent advances made using this procedure and how its application provides a new preclinical approach to study the neurobiology of psychological stress-induced phenotypes.
Collapse
Affiliation(s)
- Brandon L Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | | | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
18
|
Cann C, Venniro M, Hope BT, Ramsey LA. Parametric investigation of social place preference in adolescent mice. Behav Neurosci 2020; 134:435-443. [PMID: 32672990 DOI: 10.1037/bne0000406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Social interaction promotes survival by helping animals to form stable and supportive groups. Additionally, maladaptive social behavior is a hallmark of disorders such as autism and schizophrenia. In many different animal species, including humans, social interaction can be inherently rewarding. Lately there has been growing interest in studying the neurobiological underpinnings of social interaction and learned social behavior in rodent behavioral models. One common procedure is conditioned place preference (CPP) to measure the rewarding effects of social interaction and social reward learning. Social CPP was originally used in rats but has been adapted recently for use in mice, enabling use of the vast array of genetic tools available in mice. Here we studied the role of age, sex, bedding, and prior social isolation on the expression of social CPP in male and female mice. We found that without social deprivation male mice display moderate and temporary social CPP during early adolescence but not adulthood. Early life social isolation increased social CPP in female but not male mice. In contrast, cocaine CPP was robust and long-lasting in male and female mice. Our results demonstrate that social CPP in mice is variable, occurring under only specific conditions, and that social isolation promotes social reward in female but not male mice. We discuss potential methodological and interpretive issues of the mouse social CPP model. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Courtney Cann
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program
| | - Marco Venniro
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program
| | - Bruce T Hope
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program
| |
Collapse
|
19
|
Rudolph ML, Neve RL, Hammer RP, Nikulina EM. Enhanced psychostimulant response, but not social avoidance, depends on GluA1 AMPA receptors in VTA dopamine neurons following intermittent social defeat stress in rats. Eur J Neurosci 2020; 55:2154-2169. [PMID: 32594591 PMCID: PMC9292348 DOI: 10.1111/ejn.14884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/01/2022]
Abstract
Evidence from both human and animal studies demonstrates the importance of social stress in the development of addiction‐related behaviour. In rats, intermittent social defeat stress causes long‐lasting psychostimulant cross‐sensitization. Our recent data reveal heightened expression of AMPA receptor (AMPAR) GluA1 subunit in rat ventral tegmental area (VTA), which occurs concurrently with social stress‐induced amphetamine (AMPH) cross‐sensitization. In addition, social stress in rats induced social avoidance behaviour. The present study evaluated the effects of intermittent social defeat stress on GluA1 expression in VTA dopamine (DA) neurons, then utilized Cre‐dependent virus‐mediated gene transfer to determine the functional role of homomeric GluA1‐AMPARs in these neurons. Social defeat stress exposure induced GluA1 expression in VTA DA neurons, as demonstrated by a greater density of GluA1/tyrosine hydroxylase (TH) double‐labelling in VTA neurons in stressed rats. Additionally, functional inactivation of VTA GluA1 AMPARs in DA neurons prevented stress‐induced cross‐sensitization, or augmented locomotor response to low dose AMPH challenge (1.0 mg/kg, i.p.), but had no effect on social stress‐induced social avoidance behaviour. Furthermore, wild‐type overexpression of GluA1 in VTA DA neurons had the opposite effect; locomotor‐activating effects of AMPH were significantly augmented, even in the absence of stress. Taken together, these results suggest that stress‐induced GluA1 expression in VTA DA neurons is necessary for psychostimulant cross‐sensitization, but not for social avoidance. This differential effect suggests that different neural pathways are implicated in these behaviours. These findings could lead to novel pharmacotherapies to help prevent stress‐induced susceptibility to substance abuse.
Collapse
Affiliation(s)
- Megan L Rudolph
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.,Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - Racheal L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA, USA
| | - Ronald P Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.,Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA.,Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA.,Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ella M Nikulina
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
20
|
Guevara CA, Matikainen-Ankney BA, Kezunovic N, LeClair K, Conway AP, Menard C, Flanigan ME, Pfau M, Russo SJ, Benson DL, Huntley GW. LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress. J Neurophysiol 2020; 123:2382-2389. [PMID: 32374202 DOI: 10.1152/jn.00137.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) risk is increased by stress and certain gene mutations, including the most prevalent PD-linked mutation LRRK2-G2019S. Both PD and stress increase risk for psychiatric symptoms, yet it is unclear how PD-risk genes alter neural circuitry in response to stress that may promote psychopathology. Here we show significant differences between adult G2019S knockin and wild-type (wt) mice in stress-induced behaviors, with an unexpected uncoupling of depression-like and hedonia-like responses in G2019S mice. Moreover, mutant spiny projection neurons in nucleus accumbens (NAc) lack an adaptive, stress-induced change in excitability displayed by wt neurons, and instead show stress-induced changes in synaptic properties that wt neurons lack. Some synaptic alterations in NAc are already evident early in postnatal life. Thus G2019S alters the magnitude and direction of behavioral responses to stress that may reflect unique modifications of adaptive plasticity in cells and circuits implicated in psychopathology in humans.NEW & NOTEWORTHY Depression is associated with Parkinson's disease (PD), and environmental stress is a risk factor for both. We investigated how LRRK2-G2019S PD mutation affects depression-like behaviors, synaptic function, and intrinsic neuronal excitability following stress. In response to stress, the mutation drives abnormal synaptic changes, prevents adaptive changes in intrinsic excitability, and leads to aberrant behaviors, thus defining new ways in which PD mutations derail adaptive plasticity in response to stress that may contribute to disease onset.
Collapse
Affiliation(s)
- Christopher A Guevara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bridget A Matikainen-Ankney
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nebojsa Kezunovic
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine LeClair
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander P Conway
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caroline Menard
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meghan E Flanigan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madeline Pfau
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deanna L Benson
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - George W Huntley
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
21
|
Gandolfi D, Bigiani A, Porro CA, Mapelli J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int J Mol Sci 2020; 21:E1805. [PMID: 32155701 PMCID: PMC7084224 DOI: 10.3390/ijms21051805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity is the cellular and molecular counterpart of learning and memory and, since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here, we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and characterized in different brain areas. In particular, we focus our attention on the molecular pathways involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we discuss, from the computational perspective, how IP can contribute to the emergence of functional properties of brain circuits.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
- Department of Brain and behavioral sciences, University of Pavia, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| |
Collapse
|
22
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
23
|
Peña CJ, Smith M, Ramakrishnan A, Cates HM, Bagot RC, Kronman HG, Patel B, Chang AB, Purushothaman I, Dudley J, Morishita H, Shen L, Nestler EJ. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat Commun 2019; 10:5098. [PMID: 31704941 PMCID: PMC6841985 DOI: 10.1038/s41467-019-13085-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Abuse, neglect, and other forms of early life stress (ELS) significantly increase risk for psychiatric disorders including depression. In this study, we show that ELS in a postnatal sensitive period increases sensitivity to adult stress in female mice, consistent with our earlier findings in male mice. We used RNA-sequencing in the ventral tegmental area, nucleus accumbens, and prefrontal cortex of male and female mice to show that adult stress is distinctly represented in the brain's transcriptome depending on ELS history. We identify: 1) biological pathways disrupted after ELS and associated with increased behavioral stress sensitivity, 2) putative transcriptional regulators of the effect of ELS on adult stress response, and 3) subsets of primed genes specifically associated with latent behavioral changes. We also provide transcriptomic evidence that ELS increases sensitivity to future stress through enhancement of known programs of cortical plasticity.
Collapse
Affiliation(s)
- Catherine Jensen Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Milo Smith
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah M Cates
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rosemary C Bagot
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - Hope G Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhakti Patel
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Austin B Chang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Immanuel Purushothaman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel Dudley
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hirofumi Morishita
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
24
|
A potential role for microglia in stress- and drug-induced plasticity in the nucleus accumbens: A mechanism for stress-induced vulnerability to substance use disorder. Neurosci Biobehav Rev 2019; 107:360-369. [PMID: 31550452 DOI: 10.1016/j.neubiorev.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Stress is an important risk factor for the development of substance use disorder (SUD). Exposure to both stress and drugs abuse lead to changes in synaptic plasticity and stress-induced alterations in synaptic plasticity may contribute to later vulnerability to SUD. Recent developmental neuroscience studies have identified microglia as regulators of synaptic plasticity. As both stress and drugs of abuse lead to microglial activation, we propose this as a potential mechanism underlying their ability to change synaptic plasticity. This review focuses on three components of synaptic plasticity: spine density, brain-derived neurotrophic factor (BDNF) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression. Their roles in addiction, stress, and development will be reviewed, as well as possible mechanisms by which microglia could regulate their function. Potential links between stress, vulnerability to addiction, and microglial activity will be explored.
Collapse
|
25
|
Tovar-Díaz J, Pomrenze MB, Kan R, Pahlavan B, Morikawa H. Cooperative CRF and α1 Adrenergic Signaling in the VTA Promotes NMDA Plasticity and Drives Social Stress Enhancement of Cocaine Conditioning. Cell Rep 2019. [PMID: 29514102 PMCID: PMC5877815 DOI: 10.1016/j.celrep.2018.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stressful events rapidly trigger activity-dependent synaptic plasticity, driving the formation of aversive memories. However, it remains unclear how stressful experience affects plasticity mechanisms to regulate appetitive learning, such as intake of addictive drugs. Using rats, we show that corticotropin-releasing factor (CRF) and α1 adrenergic receptor (α1AR) signaling enhance the plasticity of NMDA-receptor-mediated glutamatergic transmission in ventral tegmental area (VTA) dopamine (DA) neurons through distinct effects on inositol 1,4,5-triphosphate (IP3)-dependent Ca2+ signaling. We find that CRF amplifies IP3-Ca2+ signaling induced by stimulation of α1ARs, revealing a cooperative mechanism that promotes glutamatergic plasticity. In line with this, acute social defeat stress engages similar cooperative CRF and α1AR signaling in the VTA to enhance learning of cocaine-paired cues. These data provide evidence that CRF and α1ARs act in concert to regulate IP3-Ca2+ signaling in the VTA and promote learning of drug-associated cues.
Collapse
Affiliation(s)
- Jorge Tovar-Díaz
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew B Pomrenze
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | - Russell Kan
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Bahram Pahlavan
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Hitoshi Morikawa
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Mukhara D, Banks ML, Neigh GN. Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Front Behav Neurosci 2018; 12:309. [PMID: 30622460 PMCID: PMC6308626 DOI: 10.3389/fnbeh.2018.00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
The extant literature supports the role of stress in enhancing the susceptibility of drug abuse progressing to a substance use disorder diagnosis. However, the molecular mediators by which stress enhances the progression from cocaine abuse to cocaine use disorder via the mesolimbic pathway remain elusive. In this mini-review article, we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we review preclinical literature highlighting how stress modulates the mesolimbic pathway, including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter cocaine abuse-related effects. Taken together, stress enhances cocaine's abuse-related effects at multiple points along the VTA mesolimbic projection, and uniquely in the NAcs through a positive feedback type mechanism. Furthermore, we highlight future directions to elucidate the interaction between the prefrontal cortex (PFC) and key intermediaries including ΔFosB, cAMP response element binding protein (CREB) and cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-induced acceleration of the progression to a cocaine use disorder diagnosis.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew L. Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N. Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
27
|
García‐Pardo MP, Miñarro J, Llansola M, Felipo V, Aguilar MA. Role ofNMDAandAMPAglutamatergic receptors in the effects of social defeat on the rewarding properties ofMDMAin mice. Eur J Neurosci 2018; 50:2623-2634. [DOI: 10.1111/ejn.14190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- M. P. García‐Pardo
- Unidad de Investigación Psicobiología de las Drogodependencias Departamento de Psicobiología Facultad de Psicología Universidad de Valencia Avda. Blasco Ibáñez, 21 46010 Valencia Spain
- Unitat Predepartamental de Medicina Facultat de Ciències de la Salut Universitat Jaume I. Castelló de la Plana Castelló Spain
| | - J. Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias Departamento de Psicobiología Facultad de Psicología Universidad de Valencia Avda. Blasco Ibáñez, 21 46010 Valencia Spain
| | - M. Llansola
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - V. Felipo
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - M. A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias Departamento de Psicobiología Facultad de Psicología Universidad de Valencia Avda. Blasco Ibáñez, 21 46010 Valencia Spain
| |
Collapse
|
28
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
29
|
Shimamoto A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:271-313. [PMID: 30193707 DOI: 10.1016/bs.irn.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social confrontation is a form of social interaction in animals where two conspecific individuals confront each other in dispute over territory, during the formation of hierarchies, and during breeding seasons. Typically, a social confrontation involves a prevailing individual and a yielding individual. The prevailing individual often exhibits aggressive postures and launches attacks, whereas the yielding individual often adopts postures of defeat. The yielding or defeated animals experience a phenomenon known as social defeat stress, in which they show exaggerated stress as well as autonomic and endocrine responses that cause impairment of both the brain and body. In laboratory settings, one can reliably generate social defeat stress by allowing a naïve (or already defeated) animal to intrude into a home cage in which its resident has already established a territory or is nursing. This resident-intruder paradigm has been widely used in both males and females to study mechanisms in the brain that underlie the stress responses. Stress has profound effects on drug reward for cocaine, methamphetamine, alcohol, and opioids. Particularly, previous experiences with social defeat can exaggerate subsequent addiction-like behaviors. The extent of these addiction-like behaviors depends on the intensity, duration, frequency, and intermittency of the confrontation episodes. This chapter describes four types of social defeat stress: acute, repeated, intermittent, and chronic. Specifically, it focuses on social defeat stress models used in laboratories to study individual, sex, and animal strain differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
30
|
Kaneda K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleus contributes to the development of cocaine addiction. Eur J Neurosci 2018; 50:2239-2246. [DOI: 10.1111/ejn.13962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology Institute of Medical, Pharmaceutical and Health Sciences Kanazawa University Kanazawa 920‐1192 Japan
| |
Collapse
|
31
|
Xiao L, Priest MF, Kozorovitskiy Y. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife 2018; 7:33892. [PMID: 29676731 PMCID: PMC5910020 DOI: 10.7554/elife.33892] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
The experience of rewarding or aversive stimuli is encoded by distinct afferents to dopamine (DA) neurons of the ventral tegmental area (VTA). Several neuromodulatory systems including oxytocin regulate DA neuron excitability and synaptic transmission that process socially meaningful stimuli. We and others have recently characterized oxytocinergic modulation of activity in mouse VTA DA neurons, but the mechanisms underlying oxytocinergic modulation of synaptic transmission in DA neurons remain poorly understood. Here, we find that oxytocin application or optogenetic release decrease excitatory synaptic transmission, via long lasting, presynaptic, endocannabinoid-dependent mechanisms. Oxytocin modulation of excitatory transmission alters the magnitude of short and long-term depression. We find that only some glutamatergic projections to DA neurons express CB1 receptors. Optogenetic stimulation of three major VTA inputs demonstrates that oxytocin modulation is limited to projections that show evidence of CB1R transcripts. Thus, oxytocin gates information flow into reward circuits in a temporally selective and pathway-specific manner. The mammalian brain contains millions of nerve cells or neurons that communicate with each other via a process called neurotransmission. To send a message to its neighbor, a neuron releases a chemical called a neurotransmitter into the space between the cells. The neurotransmitter then binds to receiver proteins on the target cell. Another group of chemicals, known as neuromodulators, regulate this process, adjusting the way that neurons respond to neurotransmitters. In doing so, they help regulate many types of behavior in mammals. The neuromodulator oxytocin, for example, has earned the nickname ‘the love hormone’ because it promotes social behavior and bonding. It does this in part by altering the activity of neurons in a brain region called the ventral tegmental area (VTA). These neurons produce the brain’s main reward signal, dopamine, which is itself a neuromodulator. But exactly how oxytocin affects the activity of dopamine-producing neurons is unclear. By recording from individual neurons in slices of mouse brain tissue, Xiao et al. show that oxytocin filters inputs to dopamine neurons in the VTA. It does this by making the dopamine neurons release another group of reward signals, known as endocannabinoids. These are the brain’s own version of the chemicals found inside cannabis plants. The endocannabinoids bind to neurons that provide input to the VTA dopamine neurons. Some of these input neurons normally activate the VTA by releasing a neurotransmitter called glutamate. However, the binding of endocannabinoids decreases their ability to do this, and thereby lowers the activation of the VTA dopamine neurons. But not all glutamate neurons are sensitive to endocannabinoids. Moreover, oxytocin affects glutamate neurons that fire repeatedly less than it affects those that fire only occasionally. Oxytocin thus acts as a filter. It allows certain inputs – those that are repeatedly active and those that are insensitive to endocannabinoids – to continue activating VTA dopamine neurons. At the same time, it weakens the influence of other inputs. Dopamine release in the VTA drives drug abuse and addiction. Understanding how oxytocin affects VTA neurons may thus open up new avenues for the treatment of addiction disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Michael F Priest
- Department of Neurobiology, Northwestern University, Evanston, United States
| | | |
Collapse
|
32
|
Selectively Impaired Endocannabinoid-Dependent Long-Term Depression in the Lateral Habenula in an Animal Model of Depression. Cell Rep 2018; 20:289-296. [PMID: 28700932 DOI: 10.1016/j.celrep.2017.06.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Abnormal potentiation in the lateral habenula (LHb) has been suggested to mediate depression-like behaviors. However, the underlying mechanisms of the synaptic efficacy regulation of LHb synapses and the potential for their modulation are only poorly understood. Here, we report that long-term synaptic depression (LTD) occurs in the LHb upon both low-frequency stimulation (LFS) and moderate-frequency stimulation (MFS). LFS-induced LTD (LFS-LTD) is accompanied by a reduction in presynaptic release probability, which is endocannabinoid (eCB) signaling dependent. Surprisingly, exposure to an acute stressor completely masks the induction of LFS-LTD in the LHb while leaving the MFS-induced LTD intact. Pharmacological activation of cannabinoid receptor 1 (CB1R) or blockade of αCaMKII successfully restored LTD in the LHb in an animal model of depression. Thus, our findings reveal a form of synaptic strength regulation and a stress-induced shift of synaptic plasticity in the LHb.
Collapse
|
33
|
Gantz SC, Ford CP, Morikawa H, Williams JT. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu Rev Physiol 2018; 80:219-241. [PMID: 28938084 DOI: 10.1146/annurev-physiol-021317-121615] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the population of neurons in the ventral tegmental area (VTA) and substantia nigra (SN) has been examined at multiple levels. The results indicate that the projections, neurochemistry, and receptor and ion channel expression in this cell population vary widely. This review centers on the intrinsic properties and synaptic regulation that control the activity of dopamine neurons. Although all dopamine neurons fire action potentials in a pacemaker pattern in the absence of synaptic input, the intrinsic properties that underlie this activity differ considerably. Likewise, the transition into a burst/pause pattern results from combinations of intrinsic ion conductances, inhibitory and excitatory synaptic inputs that differ among this cell population. Finally, synaptic plasticity is a key regulator of the rate and pattern of activity in different groups of dopamine neurons. Through these fundamental properties, the activity of dopamine neurons is regulated and underlies the wide-ranging functions that have been attributed to dopamine.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hitoshi Morikawa
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | - John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97239, USA;
| |
Collapse
|
34
|
Ostroumov A, Dani JA. Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annu Rev Pharmacol Toxicol 2017; 58:547-566. [PMID: 28977763 DOI: 10.1146/annurev-pharmtox-010617-052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
35
|
Leonard MZ, DeBold JF, Miczek KA. Escalated cocaine "binges" in rats: enduring effects of social defeat stress or intra-VTA CRF. Psychopharmacology (Berl) 2017; 234:2823-2836. [PMID: 28725939 PMCID: PMC5709163 DOI: 10.1007/s00213-017-4677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Exposure to intermittent social defeat stress elicits corticotropin releasing factor (CRF) release into the VTA and induces long-term modulation of mesocorticolimbic dopamine activity in rats. These adaptations are associated with an intense cocaine-taking phenotype, which is prevented by CRF receptor antagonists. OBJECTIVE The present studies examine whether infusion of CRF into the VTA is sufficient to escalate cocaine-taking behavior, in the absence of social defeat experience. Additionally, we aimed to characterize changes in cocaine valuation that may promote binge-like cocaine intake. METHODS Male Long-Evans rats were microinjected into the VTA with CRF (50 or 500 ng/side), vehicle, or subjected to social defeat stress, intermittently over 10 days. Animals were then trained to self-administer IV cocaine (FR5). Economic demand for cocaine was evaluated using a within-session behavioral-economics threshold procedure, which was followed by a 24-h extended access "binge." RESULTS Rats that experienced social defeat or received intra-VTA CRF microinfusions (50 ng) both took significantly more cocaine than controls over the 24-h binge but showed distinct patterns of intake. Behavioral economic analysis revealed that individual demand for cocaine strongly predicts binge-like consumption, and demand elasticity (i.e. α) is augmented by intra-VTA CRF, but not by social defeat. The effects of CRF on cocaine-taking were also prevented by intra-VTA pretreatment with CP376395, but not Astressin-2B. CONCLUSIONS Repeated infusion of CRF into the VTA persistently alters cocaine valuation and intensifies binge-like drug intake in a CRF-R1-dependent manner. Conversely, the persistent pattern of cocaine bingeing induced by social defeat stress may suggest impaired inhibitory control, independent of reward valuation.
Collapse
Affiliation(s)
| | - Joseph F DeBold
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MA, USA.
- Department of Neuroscience, Tufts University, Boston, MA, USA.
| |
Collapse
|
36
|
Burke AR, McCormick CM, Pellis SM, Lukkes JL. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neurosci Biobehav Rev 2017; 76:280-300. [DOI: 10.1016/j.neubiorev.2017.01.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
|
37
|
Pignatelli M, Umanah GKE, Ribeiro SP, Chen R, Karuppagounder SS, Yau HJ, Eacker S, Dawson VL, Dawson TM, Bonci A. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning. Neuron 2017; 93:425-440. [DOI: 10.1016/j.neuron.2016.12.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/17/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
|