1
|
Kolarski D, Szymanski W, Feringa BL. Spatiotemporal Control Over Circadian Rhythms With Light. Med Res Rev 2025. [PMID: 39757143 DOI: 10.1002/med.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Circadian rhythms are endogenous biological oscillators that synchronize internal physiological processes and behaviors with external environmental changes, sustaining homeostasis and health. Disruption of circadian rhythms leads to numerous diseases, including cardiovascular and metabolic diseases, cancer, diabetes, and neurological disorders. Despite the potential to restore healthy rhythms in the organism, pharmacological chronotherapy lacks spatial and temporal resolution. Addressing this challenge, chrono-photopharmacology, the approach that employs small molecules with light-controlled activity, enables the modulation of circadian rhythms when and where needed. Two approaches-relying on irreversible and reversible drug activation-have been proposed for this purpose. These methodologies are based on photoremovable protecting groups and photoswitches, respectively. Designing photoresponsive bioactive molecules requires meticulous structural optimization to obtain the desired chemical and photophysical properties, and the design principles, detailed guidelines and challenges are summarized here. In this review, we also analyze all the known circadian modulators responsive to light and dissect the rationale following their construction and application to control circadian biology from the protein level to living organisms. Finally, we present the strength of a reversible approach in allowing the modulation of the circadian period and the phase.
Collapse
Affiliation(s)
- Dušan Kolarski
- Max Planck Institute for Multidisciplinary Sciences, NanoBioPhotonics, Göttingen, Germany
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Motiei M, Abu-Dawud R, Relógio A, Assaf C. Circadian rhythms in haematological malignancies: therapeutic potential and personalised interventions. EBioMedicine 2024; 110:105451. [PMID: 39566400 PMCID: PMC11617894 DOI: 10.1016/j.ebiom.2024.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The circadian clock, a fundamental cellular mechanism, regulates the rhythmic expression of numerous genes and biological processes across various organs. Disruptions in this system, driven by genetic or environmental factors, have been reported to be involved in cancer progression. This review explores the role of the circadian clock in cancer hallmarks and its impact on cellular homeostasis within haematological malignancies. Drawing on findings from in vitro, in vivo, and clinical trials, this review highlights the potential of clock genes as diagnostic and prognostic biomarkers, and as therapeutic targets for optimising treatment timing. It discusses how circadian rhythms can enhance treatment efficacy through both pharmacological and non-pharmacological interventions, outlining strategies for optimising dosing schedules and implementing personalised chronobiological interventions, with a particular focus on haematological malignancies, including cutaneous lymphoma. Ongoing research holds promise for advancing personalised therapeutic approaches and ultimately improving cancer care standards.
Collapse
Affiliation(s)
- Marjan Motiei
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Raed Abu-Dawud
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine, and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Chalid Assaf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld 47805, Germany.
| |
Collapse
|
3
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Janoski JR, Aiello I, Lundberg CW, Finkielstein CV. Circadian clock gene polymorphisms implicated in human pathologies. Trends Genet 2024; 40:834-852. [PMID: 38871615 DOI: 10.1016/j.tig.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
Collapse
Affiliation(s)
- Jesse R Janoski
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Aiello
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Clayton W Lundberg
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Zou X, Ptáček LJ, Fu YH. The Genetics of Human Sleep and Sleep Disorders. Annu Rev Genomics Hum Genet 2024; 25:259-285. [PMID: 38669479 DOI: 10.1146/annurev-genom-121222-120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.
Collapse
Affiliation(s)
- Xianlin Zou
- Department of Neurology, University of California, San Francisco, California, USA; , ,
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Ying-Hui Fu
- Institute of Human Genetics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
7
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
8
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Dang T, Russel WA, Saad T, Dhawka L, Ay A, Ingram KK. Risk for Seasonal Affective Disorder (SAD) Linked to Circadian Clock Gene Variants. BIOLOGY 2023; 12:1532. [PMID: 38132358 PMCID: PMC10741218 DOI: 10.3390/biology12121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Molecular pathways affecting mood are associated with circadian clock gene variants and are influenced, in part, by the circadian clock, but the molecular mechanisms underlying this link are poorly understood. We use machine learning and statistical analyses to determine the circadian gene variants and clinical features most highly associated with symptoms of seasonality and seasonal affective disorder (SAD) in a deeply phenotyped population sample. We report sex-specific clock gene effects on seasonality and SAD symptoms; genotypic combinations of CLOCK3111/ZBTB20 and PER2/PER3B were significant genetic risk factors for males, and CRY2/PER3C and CRY2/PER3-VNTR were significant risk factors for females. Anxiety, eveningness, and increasing age were significant clinical risk factors for seasonality and SAD for females. Protective factors for SAD symptoms (in females only) included single gene variants: CRY1-GG and PER3-VNTR-4,5. Clock gene effects were partially or fully mediated by diurnal preference or chronotype, suggesting multiple indirect effects of clock genes on seasonality symptoms. Interestingly, protective effects of CRY1-GG, PER3-VNTR-4,5, and ZBTB20 genotypes on seasonality and depression were not mediated by chronotype, suggesting some clock variants have direct effects on depressive symptoms related to SAD. Our results support previous links between CRY2, PER2, and ZBTB20 genes and identify novel links for CLOCK and PER3 with symptoms of seasonality and SAD. Our findings reinforce the sex-specific nature of circadian clock influences on seasonality and SAD and underscore the multiple pathways by which clock variants affect downstream mood pathways via direct and indirect mechanisms.
Collapse
Affiliation(s)
- Thanh Dang
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (T.D.); (T.S.)
| | - William A. Russel
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (W.A.R.); (A.A.)
| | - Tazmilur Saad
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (T.D.); (T.S.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Luvna Dhawka
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (W.A.R.); (A.A.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (W.A.R.); (A.A.)
| |
Collapse
|
11
|
Witt RM, Byars KC, Decker K, Dye TJ, Riley JM, Simmons D, Smith DF. Current Considerations in the Diagnosis and Treatment of Circadian Rhythm Sleep-Wake Disorders in Children. Semin Pediatr Neurol 2023; 48:101091. [PMID: 38065634 PMCID: PMC10710539 DOI: 10.1016/j.spen.2023.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023]
Abstract
Circadian Rhythm Sleep-Wake Disorders (CRSWDs) are important sleep disorders whose unifying feature is a mismatch between the preferred or required times for sleep and wakefulness and the endogenous circadian drives for these. Their etiology, presentation, and treatment can be different in pediatric patients as compared to adults. Evaluation of these disorders must be performed while viewed through the lens of a patient's comorbid conditions. Newer methods of assessment promise to provide greater diagnostic clarity and critical insights into how circadian physiology affects overall health and disease states. Effective clinical management of CRSWDs is multimodal, requiring an integrated approach across disciplines. Therapeutic success depends upon appropriately timed nonpharmacologic and pharmacologic interventions. A better understanding of the genetic predispositions for and causes of CRSWDs has led to novel clinical opportunities for diagnosis and improved therapeutics.
Collapse
Affiliation(s)
- Rochelle M Witt
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kelly C Byars
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kristina Decker
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Thomas J Dye
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jessica M Riley
- Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Danielle Simmons
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David F Smith
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Otolaryngology- Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
12
|
Parlak GC, Baris I, Gul S, Kavakli IH. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2. J Biol Chem 2023; 299:105451. [PMID: 37951306 PMCID: PMC10731238 DOI: 10.1016/j.jbc.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Cryptochromes (CRYs) are essential components of the circadian clock, playing a pivotal role as transcriptional repressors. Despite their significance, the precise mechanisms underlying CRYs' involvement in the circadian clock remain incompletely understood. In this study, we identified a rare CRY2 variant, p.Ser420Phe, from the 1000 Genomes Project and Ensembl database that is located in the functionally important coiled-coil-like helix (CC-helix) region. Functional characterization of this variant at the cellular level revealed that p.Ser420Phe CRY2 had reduced repression activity on CLOCK:BMAL1-driven transcription due to its reduced affinity to the core clock protein PER2 and defective translocation into the nucleus. Intriguingly, the CRY2 variant exhibited an unexpected resistance to degradation via the canonical proteasomal pathway, primarily due to the loss of interactions with E3 ligases (FBXL3 and FBXL21), which suggests Ser-420 of CRY2 is required for the interaction with E3 ligases. Further studies revealed that wild-type and CRY2 variants are degraded by the lysosomal-mediated degradation pathway, a mechanism not previously associated with CRY2. Surprisingly, our complementation study with Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cells indicated that the CRY2 variant caused a 7 h shorter circadian period length in contrast to the observed prolonged period length in CRY2-/- cell lines. In summary, this study reveals a hitherto unknown degradation pathway for CRY2, shedding new light on the regulation of circadian rhythm period length.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Seref Gul
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Turkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkiye.
| |
Collapse
|
13
|
Lin L, Huang Y, Wang J, Guo X, Yu F, He D, Wu C, Guo L, Wu B. CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. Biochem Pharmacol 2023; 217:115843. [PMID: 37797722 DOI: 10.1016/j.bcp.2023.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
CYP2A5, an enzyme responsible for metabolism of diverse drugs, displays circadian rhythms in its expression and activity. However, the underlying mechanisms are not fully established. Here we aimed to investigate a potential role of CRY1/2 (circadian clock modulators) in circadian regulation of hepatic CYP2A5. Regulatory effects of CRY1/2 on CYP2A5 were determined using Cry1-null and Cry2-null mice, and validated using AML-12, Hepa1-6 and HepG2 cells. CYP2A5 activities both in vivo and in vitro were assessed using coumarin 7-hydroxylation as a probe reaction. mRNA and protein levels were detected by qPCR and western blotting, respectively. Regulatory mechanism was studied using a combination of luciferase reporter assays, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP). We found that ablation of Cry1 or Cry2 in mice reduced hepatic CYP2A5 expression (at both mRNA and protein levels) and blunted its diurnal rhythms. Consistently, these knockouts showed decreased CYP2A5 activity (characterised by coumarin 7-hydroxylation) and a loss of its time-dependency, as well as exacerbated coumarin-induced hepatotoxicity. Cell-based assays confirmed that CRY1/2 positively regulated CYP2A5 expression and rhythms. Based on combined luciferase reporter, ChIP and Co-IP assays, we unraveled that CRY1/2 interacted with E4BP4 protein to repress its inhibitory effect on Cyp2a5 transcription and expression. In conclusion, CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. These findings advance our understanding of circadian regulation of drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Luomin Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuwei Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyi Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaocao Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di He
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Ozcan O, Gul S, Kavakli IH. Dynamic regulation of the serine loop by distant mutations reveals allostery in cryptochrome1. J Biomol Struct Dyn 2023; 42:10417-10428. [PMID: 37705288 DOI: 10.1080/07391102.2023.2256882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Cryptochromes (CRYs) are essential components of the molecular clock that generates circadian rhythm. They inhibit BMAL1/CLOCK-driven transcription at the molecular level. There are two CRYs that have differential functions in the circadian clock in mammals. It is not precisely known how they achieve such differential functions. In this study, we performed molecular dynamic simulations on eight CRY mutants that have been experimentally shown to exhibit reduced repressor activities. Our results revealed that mutations in CRY1 affect the dynamic behavior of the serine loop and the availability of the secondary pocket, but not in CRY2. Further analysis of these CRY1 mutants indicated that the differential flexibility of the serine loop leads to changes in the volume of the secondary pocket. We also investigated the weak interactions between the amino acids in the serine loop and those in close proximity. Our findings highlighted the crucial roles of S44 and S45 in the dynamic behavior of the serine loop, specifically through their interactions with E382 in CRY1. Considering the clinical implications of altered CRY1 function, our study opens up new possibilities for the development of drugs that target the allosteric regulation of CRY1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Department of Biology Biotechnology Division, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
15
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
16
|
Birchard K, Driver HG, Ademidun D, Bedolla-Guzmán Y, Birt T, Chown EE, Deane P, Harkness BAS, Morrin A, Masello JF, Taylor RS, Friesen VL. Circadian gene variation in relation to breeding season and latitude in allochronic populations of two pelagic seabird species complexes. Sci Rep 2023; 13:13692. [PMID: 37608061 PMCID: PMC10444859 DOI: 10.1038/s41598-023-40702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Annual cues in the environment result in physiological changes that allow organisms to time reproduction during periods of optimal resource availability. Understanding how circadian rhythm genes sense these environmental cues and stimulate the appropriate physiological changes in response is important for determining the adaptability of species, especially in the advent of changing climate. A first step involves characterizing the environmental correlates of natural variation in these genes. Band-rumped and Leach's storm-petrels (Hydrobates spp.) are pelagic seabirds that breed across a wide range of latitudes. Importantly, some populations have undergone allochronic divergence, in which sympatric populations use the same breeding sites at different times of year. We investigated the relationship between variation in key functional regions of four genes that play an integral role in the cellular clock mechanism-Clock, Bmal1, Cry2 and Per2-with both breeding season and absolute latitude in these two species complexes. We discovered that allele frequencies in two genes, Clock and Bmal1, differed between seasonal populations in one archipelago, and also correlated with absolute latitude of breeding colonies. These results indicate that variation in these circadian rhythm genes may be involved in allochronic speciation, as well as adaptation to photoperiod at breeding locations.
Collapse
Affiliation(s)
- Katie Birchard
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Apex Resource Management Solutions, Ottawa, ON, K2A 3K2, Canada
| | - Hannah G Driver
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Dami Ademidun
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Tim Birt
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Erin E Chown
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Petra Deane
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Mascoma LLC, Lallemand Inc., Lebanon, NH, 03766, USA
| | - Bronwyn A S Harkness
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Environment and Climate Change Canada, Wildlife Research Division, Ottawa, ON, K1S 5B6, Canada
| | - Austin Morrin
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Sims Animal Hospital, Kingston, ON, K7K 7E9, Canada
| | - Juan F Masello
- Department of Animal Behaviour, University of Bielefeld, 33615, Bielefeld, Germany
| | - Rebecca S Taylor
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Environment and Climate Change Canada, Landscape Science and Technology Division, Ottawa, ON, K1S 5R1, Canada
| | - Vicki L Friesen
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
17
|
Zhang L, Malkemper EP. Cryptochromes in mammals: a magnetoreception misconception? Front Physiol 2023; 14:1250798. [PMID: 37670767 PMCID: PMC10475740 DOI: 10.3389/fphys.2023.1250798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Cryptochromes are flavoproteins related to photolyases that are widespread throughout the plant and animal kingdom. They govern blue light-dependent growth in plants, control circadian rhythms in a light-dependent manner in invertebrates, and play a central part in the circadian clock in vertebrates. In addition, cryptochromes might function as receptors that allow animals to sense the Earth's magnetic field. As cryptochromes are also present in mammals including humans, the possibility of a magnetosensitive protein is exciting. Here we attempt to provide a concise overview of cryptochromes in mammals. We briefly review their canonical role in the circadian rhythm from the molecular level to physiology, behaviour and diseases. We then discuss their disputed light sensitivity and proposed role in the magnetic sense in mammals, providing three mechanistic hypotheses. Specifically, mammalian cryptochromes could form light-induced radical pairs in particular cellular milieus, act as magnetoreceptors in darkness, or as secondary players in a magnetoreception signalling cascade. Future research can test these hypotheses to investigate if the role of mammalian cryptochromes extends beyond the circadian clock.
Collapse
Affiliation(s)
| | - E. Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior—caesar, Bonn, Germany
| |
Collapse
|
18
|
Rodríguez Ferrante G, Goldin AP, Sigman M, Leone MJ. A better alignment between chronotype and school timing is associated with lower grade retention in adolescents. NPJ SCIENCE OF LEARNING 2023; 8:21. [PMID: 37344483 DOI: 10.1038/s41539-023-00171-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Schools start early in the morning all over the world, contrasting with adolescents' late chronotype. Interestingly, lower academic performance (i.e. grades or qualifications) was associated with later chronotypes. However, it is unclear whether it is a direct effect of chronotype or because students attend school too early to perform at their best. Moreover, little is known about how this affects students' academic success beyond their grades. To address this gap in knowledge, we studied how school timing and chronotype affect grade retention (i.e. repeat a year) in a unique sample of students randomly assigned to one of three different school timings (starting at 07:45, 12:40, or 17:20). Even when controlling for academic performance, we found that later chronotypes exhibit higher odds of grade retention only in the morning, but not in later school timings. Altogether, ensuring a better alignment between school timing and students' biological rhythms might enhance future opportunities of adolescents.
Collapse
Affiliation(s)
- Guadalupe Rodríguez Ferrante
- Universidad Torcuato Di Tella, CONICET, Laboratorio de Neurociencia, C1428BIJ, Buenos Aires, Argentina.
- Universidad Nacional de Quilmes, CONICET, Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, B1876BXD, Bernal, Buenos Aires, Argentina.
| | - Andrea P Goldin
- Universidad Torcuato Di Tella, CONICET, Laboratorio de Neurociencia, C1428BIJ, Buenos Aires, Argentina
| | - Mariano Sigman
- Universidad Torcuato Di Tella, CONICET, Laboratorio de Neurociencia, C1428BIJ, Buenos Aires, Argentina
- Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - María Juliana Leone
- Universidad Nacional de Quilmes, CONICET, Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, B1876BXD, Bernal, Buenos Aires, Argentina
- Universidad Torcuato Di Tella, CONICET, Área de Educación, Escuela de Gobierno, C1428BIJ, Buenos Aires, Argentina
| |
Collapse
|
19
|
He QY, Dai N, Mao M, Ma J, Wen Q, Song DD, Liu Y, Li F. Insomnia and circadian rhythm: a bibliometrics study and visualization analysis via CiteSpace. Front Neurol 2023; 14:1184302. [PMID: 37396774 PMCID: PMC10308182 DOI: 10.3389/fneur.2023.1184302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
Objective The present study aimed to use CiteSpace to analyze the status of insomnia and circadian rhythm, identify the hot spots and trends, and provide a basis for future study. Method The Web of Science database was searched for studies related to insomnia and circadian from its inception to 14 April 2023. CiteSpace was used to generate online maps of collaboration between countries and authors and revealed hot spots and frontiers in insomnia and circadian rhythm. Results We searched 4,696 publications related to insomnia and circadian rhythm. Bruno Etain was the most prolific author with most publications, i.e., with 24 articles. The USA and the University of California were the leading country and the top institution in this field of study, with 1,672 and 269 articles, respectively. There was active cooperation between institutions, countries, and authors. Hot topics focused on circadian rhythm sleep disorders, circadian clock, light therapy, melatonin, and bipolar disorder. Conclusion Based on the CiteSpace results, we recommend a more active collaboration between various countries, institutions, and authors to conduct clinical and basic research related to insomnia and circadian rhythm. Ongoing research focuses on the interaction of insomnia with circadian rhythms and the corresponding pathways of clock genes and by extension, the role of circadian rhythms in disorders such as bipolar disorder. Modulation of circadian rhythms may be a hot spot for future insomnia therapies (such as light therapy and melatonin).
Collapse
Affiliation(s)
- Qing-Yun He
- Department of Diagnosis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Dai
- Research Institutes, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Mao
- Department of Ethnic Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Ma
- Department of Diagnosis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiao Wen
- Department of Brain Diseases, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dan-Dan Song
- Department of Diagnosis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- Scientific Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Li
- Department of Diagnosis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Baris I, Ozcan O, Kavakli IH. Single nucleotide polymorphisms (SNPs) in circadian genes: Impact on gene function and phenotype. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:17-37. [PMID: 37709375 DOI: 10.1016/bs.apcsb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Circadian rhythm is an endogenous timing system that allows an organism to anticipate and adapt to daily changes and regulate various physiological variables such as the sleep-wake cycle. This rhythm is governed by a molecular circadian clock mechanism, generated by a transcriptional and translational feedback loop (TTFL) mechanism. In mammals, TTFL is determined by the interaction of four main clock proteins: BMAL1, CLOCK, Cryptochromes (CRY), and Periods (PER). BMAL1 and CLOCK form dimers and initiate the transcription of clock-controlled genes (CCG) by binding an E-box element with the promotor genes. Among CCGs, PERs and CRYs accumulate in the cytosol and translocate into the nucleus, where they interact with the BMAL1/CLOCK dimer and inhibit its activity. Several epidemiological and genetic studies have revealed that circadian rhythm disruption causes various types of disease. In this chapter, we summarize the effect of core clock gene SNPs on circadian rhythm and diseases in humans.
Collapse
Affiliation(s)
- Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye; Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye.
| |
Collapse
|
21
|
Li W, Xiong X, Kiperman T, Ma K. Transcription repression of Cry2 via Per2 interaction promotes adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532323. [PMID: 36993226 PMCID: PMC10054956 DOI: 10.1101/2023.03.12.532323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The circadian clock is driven by a transcriptional-translational feedback loop, and Cryptochrome 2 (Cry2) represses CLOCK/Bmal1-induced transcription activation. Despite the established role of clock in adipogenic regulation, whether the Cry2 repressor activity functions in adipocyte biology remains unclear. Here we identify a critical cysteine residue of Cry2 that mediates interaction with Per2, and demonstrate that this mechanism is required for clock transcriptional repression that inhibits Wnt signaling to promote adipogenesis. Cry2 protein is enriched in white adipose depots and was robustly induced by adipocyte differentiation. Via site-directed mutagenesis, we identified that a conserved Cry2 Cysteine at 432 within the loop interfacing with Per2 mediates heterodimer complex formation that confers transcription repression. C432 mutation disrupted Per2 association without affecting Bmal1 binding, leading to loss of repression of clock transcription activation. In preadipocytes, whereas Cry2 enhanced adipogenic differentiation, the repression-defective C432 mutant suppressed this process. Furthermore, silencing of Cry2 attenuated, while stabilization of Cry2 by KL001 markedly augmented adipocyte maturation. Mechanistically, we show that transcriptional repression of Wnt pathway components underlies Cry2 modulation of adipogenesis. Collectively, our findings elucidate a Cry2-mediated repression mechanism that promotes adipocyte development, and implicate its potential as a clock intervention target for obesity.
Collapse
|
22
|
Calloni G, Vabulas RM. The structural and functional roles of the flavin cofactor FAD in mammalian cryptochromes. Front Mol Biosci 2023; 9:1081661. [PMID: 36660433 PMCID: PMC9845712 DOI: 10.3389/fmolb.2022.1081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The importance of circadian rhythms in human health and disease calls for a thorough understanding of the underlying molecular machinery, including its key components, the flavin adenine dinucleotide (FAD)-containing flavoproteins cryptochrome 1 and 2. Contrary to their Drosophila counterparts, mammalian cryptochromes are direct suppressors of circadian transcription and act independently of light. Light-independence poses the question regarding the role of the cofactor FAD in mammalian cryptochromes. The weak binding of the cofactor in vitro argues against its relevance and might be a functionless evolutionary remnant. From the other side, the FAD-binding pocket constitutes the part of mammalian cryptochromes directly related to their ubiquitylation by the ubiquitin ligase Fbxl3 and is the target for protein-stabilizing small molecules. Increased supplies of FAD stabilize cryptochromes in cell culture, and the depletion of the FAD precursor riboflavin with simultaneous knock-down of riboflavin kinase affects the expression of circadian genes in mice. This review presents the classical and more recent studies in the field, which help to comprehend the role of FAD for the stability and function of mammalian cryptochromes.
Collapse
Affiliation(s)
| | - R. Martin Vabulas
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: R. Martin Vabulas,
| |
Collapse
|
23
|
Abstract
Our physiology and behavior follow precise daily programs that adapt us to the alternating opportunities and challenges of day and night. Under experimental isolation, these rhythms persist with a period of approximately one day (circadian), demonstrating their control by an internal autonomous clock. Circadian time is created at the cellular level by a transcriptional/translational feedback loop (TTFL) in which the protein products of the Period and Cryptochrome genes inhibit their own transcription. Because the accumulation of protein is slow and delayed, the system oscillates spontaneously with a period of ∼24 hours. This cell-autonomous TTFL controls cycles of gene expression in all major tissues and these cycles underpin our daily metabolic programs. In turn, our innumerable cellular clocks are coordinated by a central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. When isolated in slice culture, the SCN TTFL and its dependent cycles of neural activity persist indefinitely, operating as "a clock in a dish". In vivo, SCN time is synchronized to solar time by direct innervation from specialized retinal photoreceptors. In turn, the precise circadian cycle of action potential firing signals SCN-generated time to hypothalamic and brain stem targets, which co-ordinate downstream autonomic, endocrine, and behavioral (feeding) cues to synchronize and sustain the distributed cellular clock network. Circadian time therefore pervades every level of biological organization, from molecules to society. Understanding its mechanisms offers important opportunities to mitigate the consequences of circadian disruption, so prevalent in modern societies, that arise from shiftwork, aging, and neurodegenerative diseases, not least Huntington's disease.
Collapse
Affiliation(s)
- Andrew P. Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
24
|
Yagi M, Miller S, Nagai Y, Inuki S, Sato A, Hirota T. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. F1000Res 2022; 11:1016. [PMID: 36226040 PMCID: PMC9523283 DOI: 10.12688/f1000research.124658.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Impairment of the circadian clock has been associated with numerous diseases, including sleep disorders and metabolic disease. Although small molecules that modulate clock function may form the basis of drug discovery of clock-related diseases, only a few compounds that selectively target core clock proteins have been identified. Three scaffolds were previously discovered as small-molecule activators of the clock protein Cryptochrome (CRY), and they have been providing powerful tools to understand and control the circadian clock system. Identifying new scaffolds will expand the possibilities of drug discovery. Methods: A methylbenzimidazole derivative TH401 identified from cell-based circadian screens was characterized. Effects of TH401 on circadian rhythms were evaluated in cellular assays. Functional assays and X-ray crystallography were used to elucidate the effects of the compound on CRY1 and CRY2 isoforms. Results: TH401 lengthened the period of circadian rhythms and stabilized both CRY1 and CRY2. The compound repressed Per2 reporter activity, which was reduced by Cry1 or Cry2 knockout and abolished by Cry1/Cry2 double knockout, indicating the dependence on CRY isoforms. Thermal shift assays showed slightly higher interaction of TH401 with CRY2 over CRY1. The crystal structure of CRY1 in complex with TH401 revealed a conformational change of the gatekeeper W399, which is involved in isoform-selectivity determination. Conclusions: The present study identified a new small molecule TH401 that targets both CRY isoforms. This compound has expanded the chemical diversity of CRY activators, and will ultimately aid in the development of therapeutics against circadian clock-related disorders.
Collapse
Affiliation(s)
- Moeri Yagi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan,
| |
Collapse
|
25
|
CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proc Natl Acad Sci U S A 2022; 119:e2203936119. [PMID: 36161947 PMCID: PMC9546630 DOI: 10.1073/pnas.2203936119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian cryptochrome isoforms, CRY1 and CRY2, are core circadian clock regulators that work redundantly. Recent studies revealed distinct roles of these closely related homologs in clock output pathways. Isoform-selective control of CRY1 and CRY2 is critical for further understanding their redundant and distinct roles. KL001 was the first identified small-molecule CRY modulator that activates both CRY1 and CRY2. SHP656 is an orally available KL001 derivative and has shown efficacy in blood glucose control and inhibition of glioblastoma stem cell (GSC) growth in animal models. However, CRY isoform selectivity of SHP656 was uncharacterized, limiting understanding of the roles of CRY1 and CRY2. Here, we report the elucidation of CRY2 selectivity of SHP656. SHP656 lengthened cellular circadian period in a CRY2-dependent manner and selectively interacted with CRY2. By determining the X-ray crystal structure of CRY2 in complex with SHP656 and performing molecular dynamics simulations, we elucidated compound interaction mechanisms. SHP656 binding was compatible with the intrinsic CRY2 gatekeeper W417 "in" orientation and also a close "further in" conformation. Perturbation of W417 interaction with the lid loop resulted in a reduced effect of SHP656 on CRY2, supporting an important role of gatekeeper orientation in isoform selectivity. We also identified the R form of SHP656 (called SHP1703) as the active isomer. Treatment with SHP1703 effectively reduced GSC viability. Our results suggest a direct role of CRY2 in glioblastoma antitumorigenesis and provide a rationale for the selective modulation of CRY isoforms in the therapeutic treatment of glioblastoma and other circadian clock-related diseases.
Collapse
|
26
|
Weedon MN, Jones SE, Lane JM, Lee J, Ollila HM, Dawes A, Tyrrell J, Beaumont RN, Partonen T, Merikanto I, Rich SS, Rotter JI, Frayling TM, Rutter MK, Redline S, Sofer T, Saxena R, Wood AR. The impact of Mendelian sleep and circadian genetic variants in a population setting. PLoS Genet 2022; 18:e1010356. [PMID: 36137075 PMCID: PMC9499244 DOI: 10.1371/journal.pgen.1010356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Rare variants in ten genes have been reported to cause Mendelian sleep conditions characterised by extreme sleep duration or timing. These include familial natural short sleep (ADRB1, DEC2/BHLHE41, GRM1 and NPSR1), advanced sleep phase (PER2, PER3, CRY2, CSNK1D and TIMELESS) and delayed sleep phase (CRY1). The association of variants in these genes with extreme sleep conditions were usually based on clinically ascertained families, and their effects when identified in the population are unknown. We aimed to determine the effects of these variants on sleep traits in large population-based cohorts. We performed genetic association analysis of variants previously reported to be causal for Mendelian sleep and circadian conditions. Analyses were performed using 191,929 individuals with data on sleep and whole-exome or genome-sequence data from 4 population-based studies: UK Biobank, FINRISK, Health-2000-2001, and the Multi-Ethnic Study of Atherosclerosis (MESA). We identified sleep disorders from self-report, hospital and primary care data. We estimated sleep duration and timing measures from self-report and accelerometery data. We identified carriers for 10 out of 12 previously reported pathogenic variants for 8 of the 10 genes. They ranged in frequency from 1 individual with the variant in CSNK1D to 1,574 individuals with a reported variant in the PER3 gene in the UK Biobank. No carriers for variants reported in NPSR1 or PER2 were identified. We found no association between variants analyzed and extreme sleep or circadian phenotypes. Using sleep timing as a proxy measure for sleep phase, only PER3 and CRY1 variants demonstrated association with earlier and later sleep timing, respectively; however, the magnitude of effect was smaller than previously reported (sleep midpoint ~7 mins earlier and ~5 mins later, respectively). We also performed burden tests of protein truncating (PTVs) or rare missense variants for the 10 genes. Only PTVs in PER2 and PER3 were associated with a relevant trait (for example, 64 individuals with a PTV in PER2 had an odds ratio of 4.4 for being "definitely a morning person", P = 4x10-8; and had a 57-minute earlier midpoint sleep, P = 5x10-7). Our results indicate that previously reported variants for Mendelian sleep and circadian conditions are often not highly penetrant when ascertained incidentally from the general population.
Collapse
Affiliation(s)
- Michael N. Weedon
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
| | - Samuel E. Jones
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacqueline M. Lane
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hanna M. Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Amy Dawes
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
| | - Jess Tyrrell
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
| | - Robin N. Beaumont
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
| | - Timo Partonen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilona Merikanto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerome I. Rotter
- Institute for Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation, Torrance, California, United States of America
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Timothy M. Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
| | - Martin K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andrew R. Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
27
|
Parlak GC, Camur BB, Gul S, Ozcan O, Baris I, Kavakli IH. The secondary pocket of cryptochrome 2 is important for the regulation of its stability and localization. J Biol Chem 2022; 298:102334. [PMID: 35933018 PMCID: PMC9442382 DOI: 10.1016/j.jbc.2022.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Human clock-gene variations contribute to the phenotypic differences observed in various behavioral and physiological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. However, little is known about the possible effects of identified variations at the molecular level. In this study, we performed a functional characterization at the cellular level of rare cryptochrome 2 (CRY2) missense variations that were identified from the Ensembl database. Our structural studies revealed that three variations (p.Pro123Leu, p.Asp406His, and p.Ser410Ile) are located at the rim of the secondary pocket of CRY2. We show that these variants were unable to repress CLOCK (circadian locomotor output cycles kaput)/BMAL1 (brain and muscle ARNT-like-1)-driven transcription in a cell-based reporter assay and had reduced affinity to CLOCK-BMAL1. Furthermore, our biochemical studies indicated that the variants were less stable than the WT CRY2, which could be rescued in the presence of period 2 (PER2), another core clock protein. Finally, we found that these variants were unable to properly localize to the nucleus and thereby were unable to rescue the circadian rhythm in a Cry1-/-Cry2-/- double KO mouse embryonic fibroblast cell line. Collectively, our data suggest that the rim of the secondary pocket of CRY2 plays a significant role in its nuclear localization independently of PER2 and in the intact circadian rhythm at the cellular level.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Bilge Bahar Camur
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.
| |
Collapse
|
28
|
Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals. Nat Commun 2022; 13:4652. [PMID: 35999195 PMCID: PMC9399252 DOI: 10.1038/s41467-022-32326-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
In mammals, the circadian clock consists of transcriptional and translational feedback loops through DNA cis-elements such as E-box and RRE. The E-box-mediated core feedback loop is interlocked with the RRE-mediated feedback loop, but biological significance of the RRE-mediated loop has been elusive. In this study, we established mutant cells and mice deficient for rhythmic transcription of Bmal1 gene by deleting its upstream RRE elements and hence disrupted the RRE-mediated feedback loop. We observed apparently normal circadian rhythms in the mutant cells and mice, but a combination of mathematical modeling and experiments revealed that the circadian period and amplitude of the mutants were more susceptible to disturbance of CRY1 protein rhythm. Our findings demonstrate that the RRE-mediated feedback regulation of Bmal1 underpins the E-box-mediated rhythm in cooperation with CRY1-dependent posttranslational regulation of BMAL1 protein, thereby conferring the perturbation-resistant oscillation and chronologically-organized output of the circadian clock.
Collapse
|
29
|
Protein interaction networks of the mammalian core clock proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:207-233. [PMID: 35871891 DOI: 10.1016/bs.apcsb.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism. The binding of CLOCK/BMAL1 heterodimer to the E-box of DNA located within the promoter region initiates transcription of clock control genes including the transcription of the other two core clock genes of Periods (Pers) and Cryptochromes (Crys). Then PERs and CRYs along with casein kinase 1ɛ/Δ translocate into the nucleus where they suppress CLOCK/BMAL1 transactivation and, in turn, clock-regulated gene expression. Various clock components must be operational to aid in their stabilization and period extension in circadian rhythm. In this review, we have highlighted the recent progress for the core clock interacting proteins to maintain and to stabilize circadian rhythm in mammals.
Collapse
|
30
|
Biscontin A, Zarantonello L, Russo A, Costa R, Montagnese S. Toward a Molecular Approach to Chronotype Assessment. J Biol Rhythms 2022; 37:272-282. [PMID: 35583112 DOI: 10.1177/07487304221099365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to develop a Polygenic Score-based model for molecular chronotype assessment. Questionnaire-based phenotypical chronotype assessment was used as a reference. In total, 54 extremely morning/morning (MM/M; 35 females, 39.7 ± 3.8 years) and 44 extremely evening/evening (EE/E; 20 females, 27.3 ± 7.7 years) individuals donated a buccal DNA sample for genotyping by sequencing of the entire genetic variability of 19 target genes known to be involved in circadian rhythmicity and/or sleep duration. Targeted genotyping was performed using the single primer enrichment technology and a specifically designed panel of 5526 primers. Among 2868 high-quality polymorphisms, a cross-validation approach lead to the identification of 83 chronotype predictive variants, including previously known and also novel chronotype-associated polymorphisms. A large (35 single-nucleotide polymorphisms [SNPs]) and also a small (13 SNPs) panel were obtained, both with an estimated predictive validity of approximately 80%. Potential mechanistic hypotheses for the role of some of the newly identified variants in modulating chronotype are formulated. Once validated in independent populations encompassing the whole range of chronotypes, the identified panels might become useful within the setting of both circadian public health initiatives and precision medicine.
Collapse
Affiliation(s)
| | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy.,Institute of Neuroscience, National Research Council, Padova, Italy.,Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
31
|
Rodríguez Ferrante G, Goldin AP, Sigman M, Leone MJ. Chronotype at the beginning of secondary school and school timing are both associated with chronotype development during adolescence. Sci Rep 2022; 12:8207. [PMID: 35581310 PMCID: PMC9114414 DOI: 10.1038/s41598-022-11928-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The misalignment between late chronotypes and early school start times affect health, performance and psychological well-being of adolescents. Here we test whether, and how, the baseline chronotype (i.e. chronotype at the beginning of secondary school) and the school timing affect the magnitude and the direction of the developmental change in chronotype during adolescence. We evaluated a sample of Argentinian students (n = 259) who were randomly assigned to attend school in the morning (07:45 a.m.–12:05 p.m.), afternoon (12:40 p.m.–05:00 p.m.) or evening (05:20 p.m.–09:40 p.m.) school timings. Importantly, chronotype and sleep habits were assessed longitudinally in the same group of students along secondary school (at 13–14 y.o. and 17–18 y.o.). Our results show that: (1) although chronotypes partially align with class time, this effect is insufficient to fully account for the differences observed in sleep-related variables between school timings; (2) both school timing and baseline chronotype are independently associated with the direction and the magnitude of change in chronotype, with greater delays related to earlier baseline chronotypes and later school timings. The practical implications of these results are challenging and should be considered in the design of future educational timing policies to improve adolescents’ well-being.
Collapse
Affiliation(s)
- Guadalupe Rodríguez Ferrante
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, CONICET, Av. Figueroa Alcorta, C1428BCW, CABA, C1428BIJ7350, Buenos Aires, Argentina.,Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque S. Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
| | - Andrea Paula Goldin
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, CONICET, Av. Figueroa Alcorta, C1428BCW, CABA, C1428BIJ7350, Buenos Aires, Argentina
| | - Mariano Sigman
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, CONICET, Av. Figueroa Alcorta, C1428BCW, CABA, C1428BIJ7350, Buenos Aires, Argentina.,Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - María Juliana Leone
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, CONICET, Av. Figueroa Alcorta, C1428BCW, CABA, C1428BIJ7350, Buenos Aires, Argentina. .,Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque S. Peña 352, B1876BXD Bernal, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Sun SY, Chen GH. Treatment of Circadian Rhythm Sleep-Wake Disorders. Curr Neuropharmacol 2022; 20:1022-1034. [PMID: 34493186 PMCID: PMC9886819 DOI: 10.2174/1570159x19666210907122933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/09/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythm sleep-wake disorders (CRSWDs) are a distinct class of sleep disorders caused by alterations to the circadian time-keeping system, its entrainment mechanisms, or a mismatch between the endogenous circadian rhythm and the external environment. The main clinical manifestations are insomnia and excessive daytime sleepiness that often lead to clinically meaningful distress or cause mental, physical, social, occupational, educational, or other functional impairment. CRSWDs are easily mistaken for insomnia or early waking up, resulting in inappropriate treatment. CRSWDs can be roughly divided into two categories, namely, intrinsic CRSWDs, in which sleep disturbances are caused by alterations to the endogenous circadian rhythm system due to chronic changes in the regulation or capture mechanism of the biological clock, and extrinsic circadian rhythm sleep-wake disorders, in which sleep disorders, such as jet lag or shift-work disorder, result from environmental changes that cause a mismatch between sleep-wakefulness times and internal circadian rhythms. Sleep diaries, actigraphy, and determination of day and night phase markers (dim light melatonin onset and core body temperature minimum) have all become routine diagnostic methods for CRSWDs. Common treatments for CRSWD currently include sleep health education, time therapy, light therapy, melatonin, and hypnotic drug therapy. Here, we review the progress in the epidemiology, etiology, diagnostic evaluation, diagnostic criteria, and treatment of intrinsic CRSWD, with emphasis on the latter, in the hope of bolstering the clinical diagnosis and treatment of CRSWDs.
Collapse
Affiliation(s)
- Shi-Yu Sun
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan 232007, Anhui, People's Republic of China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, P.R. China;,Address correspondence to this author at the Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, P.R. China; Tel/Fax:+86-551-82324252; E-mail:
| |
Collapse
|
33
|
Lee YY, Cal-Kayitmazbatir S, Francey LJ, Bahiru MS, Hayer KE, Wu G, Zeller MJ, Roberts R, Speers J, Koshalek J, Berres ME, Bittman EL, Hogenesch JB. duper is a null mutation of Cryptochrome 1 in Syrian hamsters. Proc Natl Acad Sci U S A 2022; 119:e2123560119. [PMID: 35471909 PMCID: PMC9170138 DOI: 10.1073/pnas.2123560119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The duper mutation is a recessive mutation that shortens the period length of the circadian rhythm in Syrian hamsters. These animals show a large phase shift when responding to light pulses. Limited genetic resources for the Syrian hamster (Mesocricetus auratus) presented a major obstacle to cloning duper. This caused the duper mutation to remain unknown for over a decade. In this study, we did a de novo genome assembly of Syrian hamsters with long-read sequencing data from two different platforms, Pacific Biosciences and Oxford Nanopore Technologies. Using two distinct ecotypes and a fast homozygosity mapping strategy, we identified duper as an early nonsense allele of Cryptochrome 1 (Cry1) leading to a short, unstable protein. CRY1 is known as a highly conserved component of the repressive limb of the core circadian clock. The genome assembly and other genomic datasets generated in this study will facilitate the use of the Syrian hamster in biomedical research.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Sibel Cal-Kayitmazbatir
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Michael Seifu Bahiru
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Program in Neuroscience & Behavior, University of Massachusetts Amherst, Amherst, MA 01003
| | - Katharina E. Hayer
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Molly J. Zeller
- University of Wisconsin Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706
| | - Robyn Roberts
- University of Wisconsin Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706
| | - James Speers
- University of Wisconsin Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706
| | - Justin Koshalek
- University of Wisconsin Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706
| | - Mark E. Berres
- University of Wisconsin Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706
| | - Eric L. Bittman
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Program in Neuroscience & Behavior, University of Massachusetts Amherst, Amherst, MA 01003
| | - John B. Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
34
|
Liu C, Tang X, Gong Z, Zeng W, Hou Q, Lu R. Circadian Rhythm Sleep Disorders: Genetics, Mechanisms, and Adverse Effects on Health. Front Genet 2022; 13:875342. [PMID: 35571019 PMCID: PMC9099045 DOI: 10.3389/fgene.2022.875342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Nearly all living organisms, from cyanobacteria to humans, have an internal circadian oscillation with a periodicity of approximately 24 h. In mammals, circadian rhythms regulate diverse physiological processes including the body temperature, energy metabolism, immunity, hormone secretion, and daily sleep-wake cycle. Sleep is tightly regulated by circadian rhythms, whereas a misalignment between the circadian rhythms and external environment may lead to circadian rhythm sleep disorders (CRSD). CRSD includes four main kinds of disorders: the advanced sleep-wake phase disorder (ASPD), the delayed sleep-wake phase disorder (DSPD), the irregular sleep-wake rhythm disorder and the non-24-h sleep-wake rhythm disorder. Recent studies have begun to shed light on the genetic basis of CRSD. Deciphering the genetic codes for ASPD and DSPD has so far been more successful than the other CRSDs, which allow for the development of animal models and understanding of the pathological mechanisms for these disorders. And studies from humans or animal models implicate CRSDs are associated with adverse health consequences, such as cancer and mental disorders. In this review, we will summarize the recent advances in the genetics, underlying mechanisms and the adverse effects on health of ASPD and DSPD.
Collapse
Affiliation(s)
| | - Xiangrong Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zishan Gong
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wang Zeng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Qiao Hou
- Department of Rehabilitation Medicine, Xiangya Third Hospital, Central South University, Changsha, China
- *Correspondence: Renbin Lu, ; Qiao Hou,
| | - Renbin Lu
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Renbin Lu, ; Qiao Hou,
| |
Collapse
|
35
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2834] [Impact Index Per Article: 944.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
36
|
A Zebrafish Model for a Rare Genetic Disease Reveals a Conserved Role for FBXL3 in the Circadian Clock System. Int J Mol Sci 2022; 23:ijms23042373. [PMID: 35216494 PMCID: PMC8875760 DOI: 10.3390/ijms23042373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The circadian clock, which drives a wide range of bodily rhythms in synchrony with the day–night cycle, is based on a molecular oscillator that ticks with a period of approximately 24 h. Timed proteasomal degradation of clock components is central to the fine-tuning of the oscillator’s period. FBXL3 is a protein that functions as a substrate-recognition factor in the E3 ubiquitin ligase complex, and was originally shown in mice to mediate degradation of CRY proteins and thus contribute to the mammalian circadian clock mechanism. By exome sequencing, we have identified a FBXL3 mutation in patients with syndromic developmental delay accompanied by morphological abnormalities and intellectual disability, albeit with a normal sleep pattern. We have investigated the function of FBXL3 in the zebrafish, an excellent model to study both vertebrate development and circadian clock function and, like humans, a diurnal species. Loss of fbxl3a function in zebrafish led to disruption of circadian rhythms of promoter activity and mRNA expression as well as locomotor activity and sleep–wake cycles. However, unlike humans, no morphological effects were evident. These findings point to an evolutionary conserved role for FBXL3 in the circadian clock system across vertebrates and to the acquisition of developmental roles in humans.
Collapse
|
37
|
Miller S, Hirota T. Structural and Chemical Biology Approaches Reveal Isoform-Selective Mechanisms of Ligand Interactions in Mammalian Cryptochromes. Front Physiol 2022; 13:837280. [PMID: 35153842 PMCID: PMC8831909 DOI: 10.3389/fphys.2022.837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptochromes (CRYs) are core components of the circadian feedback loop in mammals, which regulates circadian rhythmicity in a variety of physiological processes including sleep–wake cycles and metabolism. Dysfunction of CRY1 and CRY2 isoforms has been associated with a host of diseases, such as sleep phase disorder and metabolic diseases. Accumulating evidence for distinct roles of CRY1 and CRY2 has highlighted the need for CRY isoform-selective regulation; however, highly conserved sequences in CRY ligand-binding sites have hindered the design of isoform-selective compounds. Chemical biology approaches have been identifying small-molecule modulators of CRY proteins, which act in isoform-non-selective and also isoform-selective manners. In this review, we describe advances in our understanding of CRY isoform selectivity by comparing X-ray crystal structures of mammalian CRY isoforms in apo form and in complexes with compounds. We discuss how intrinsic conformational differences in identical residues of CRY1 and CRY2 contribute to unique interactions with different compound moieties for isoform selectivity.
Collapse
|
38
|
Circadian Rhythm Sleep-Wake Disorders. Respir Med 2022. [DOI: 10.1007/978-3-030-93739-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Razi Soofiyani S, Ahangari H, Soleimanian A, Babaei G, Ghasemnejad T, Safavi SE, Eyvazi S, Tarhriz V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene 2021; 804:145894. [PMID: 34418469 DOI: 10.1016/j.gene.2021.145894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Esmaeil Safavi
- Faculty of Veternary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sci 2021; 11:1259. [PMID: 34679324 PMCID: PMC8534132 DOI: 10.3390/brainsci11101259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is a universal, highly preserved process, essential for human and animal life, whose complete functions are yet to be unravelled. Familial recurrence is acknowledged for some sleep disorders, but definite data are lacking for many of them. Genetic studies on sleep disorders have progressed from twin and family studies to candidate gene approaches to culminate in genome-wide association studies (GWAS). Several works disclosed that sleep-wake characteristics, in addition to electroencephalographic (EEG) sleep patterns, have a certain degree of heritability. Notwithstanding, it is rare for sleep disorders to be attributed to single gene defects because of the complexity of the brain network/pathways involved. Besides, the advancing insights in epigenetic gene-environment interactions add further complexity to understanding the genetic control of sleep and its disorders. This narrative review explores the current genetic knowledge in sleep disorders in children, following the International Classification of Sleep Disorders-Third Edition (ICSD-3) categorisation.
Collapse
Affiliation(s)
- Greta Mainieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Angelica Montini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Antonio Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | |
Collapse
|
41
|
Iida M, Nakane Y, Yoshimura T, Hirota T. Effects of Cryptochrome-modulating compounds on circadian behavioral rhythms in zebrafish. J Biochem 2021; 171:501-507. [PMID: 34528676 DOI: 10.1093/jb/mvab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 02/02/2023] Open
Abstract
The circadian clock controls daily rhythms of various physiological processes, and impairment of its function causes many diseases including sleep disorders. Chemical compounds that regulate clock function are expected to be applied for treatment of circadian clock-related diseases. We previously identified small-molecule compounds KL001, KL101, and TH301 that lengthen the period of cellular circadian clock by directly targeting clock proteins Cryptochromes (CRYs) in mammals. KL001 targets both CRY1 and CRY2 isoforms, while KL101 and TH301 are isoform-selective compounds and require CRY C-terminal region for their effects. For further application of these compounds, the effects on locomotor activity rhythms at the organismal level need to be investigated. Here we used zebrafish larvae as an in vivo model system and found that KL001 lengthened the period of locomotor activity rhythms in a dose-dependent manner. In contrast, KL101 and TH301 showed no effect on the period. The amino acid sequences of CRY C-terminal regions are diverged in zebrafish and mammals, supporting the importance of this region for the effects of KL101 and TH301. This study demonstrated efficacy of CRY modulation for controlling circadian behavioral rhythms in organisms and suggested species-dependent differences in the effects of isoform-selective CRY-modulating compounds.
Collapse
Affiliation(s)
- Mui Iida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yusuke Nakane
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
42
|
Niiro A, Ohno SN, Yamagata KA, Yamagata K, Tomita K, Kuramoto E, Oda Y, Nakamura TJ, Nakamura W, Sugimura M. Diurnal Variation in Trigeminal Pain Sensitivity in Mice. Front Neurosci 2021; 15:703440. [PMID: 34408624 PMCID: PMC8365185 DOI: 10.3389/fnins.2021.703440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Management of time and circadian disruption is an extremely important factor in basic research on pain and analgesia. Although pain is known to vary throughout the day, the mechanism underlying this circadian variation remains largely unknown. In this study, we hypothesized that the process of pain transmission to the central nervous system (after receiving nociceptive stimuli from outside the body) would show day-night differences. Ten-week-old male mice were kept under a strict 12/12-h light/dark cycle for at least 10 days. Formalin was then injected into the second branch region of the trigeminal nerve and the duration of pain-related behaviors (PRBs) was assessed. Immunohistochemical staining was then performed, and the c-Fos-immunopositive cells in the trigeminal spinal tract subnucleus caudalis (Sp5C) were counted. The results showed that the duration of PRBs was longer and the number of c-Fos immunopositive cells in the Sp5C was higher at nighttime than during the day. In addition, the trigeminal ganglia (TG) were extracted from the mice and examined by quantitative real-time PCR to evaluate the daytime and nighttime expression of nociceptive receptors. The results showed that the mRNA expression of transient receptor potential ankyrin 1 in the TG was significantly higher at night than during the day. These results suggest that pain in the trigeminal nerve region is more intense at nighttime, when rodents are active, than during the daytime, partly due to differences in nociceptor expression.
Collapse
Affiliation(s)
- Ayako Niiro
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi N Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kanae A Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuaki Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiaki Oda
- Unit of Basic Medical Sciences, Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Wataru Nakamura
- Unit of Basic Medical Sciences, Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
43
|
Tsuzuki K, Shimizu Y, Suzuki J, Pu Z, Yamaguchi S, Fujikawa Y, Kato K, Ohashi K, Takefuji M, Bando YK, Ouchi N, Calvert JW, Shibata R, Murohara T. Adverse Effect of Circadian Rhythm Disorder on Reparative Angiogenesis in Hind Limb Ischemia. J Am Heart Assoc 2021; 10:e020896. [PMID: 34348468 PMCID: PMC8475022 DOI: 10.1161/jaha.121.020896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia. Methods and Results A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis. Conclusions Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.
Collapse
Affiliation(s)
- Kazuhito Tsuzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuuki Shimizu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Junya Suzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Zhongyue Pu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shukuro Yamaguchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Fujikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yasuko K. Bando
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rei Shibata
- Department of Advanced Cardiovascular TherapeuticsNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
44
|
Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation. Proc Natl Acad Sci U S A 2021; 118:2026191118. [PMID: 34172584 PMCID: PMC8255803 DOI: 10.1073/pnas.2026191118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The circadian clock is a biological timekeeper that operates through transcription-translation feedback loops in mammals. Cryptochrome 1 (CRY1) and Cryptochrome 2 (CRY2) are highly conserved core clock components having redundant and distinct functions. We recently identified the CRY1- and CRY2-selective compounds KL101 and TH301, respectively, which provide useful tools for the exploration of isoform-selective CRY regulation. However, intrinsic differences in the compound-binding FAD (flavin adenine dinucleotide) pockets between CRY1 and CRY2 are not well understood, partly because of nonoptimal properties of previously reported apo form structures in this particular region constituted by almost identical sequences. Here, we show unliganded CRY1 and CRY2 crystal structures with well-defined electron densities that are largely free of crystal contacts at the FAD pocket and nearby lid loop. We revealed conformational isomerism in key residues. In particular, CRY1 W399 and corresponding CRY2 W417 in the FAD pocket had distinct conformations ("out" for CRY1 and "in" for CRY2) by interacting with the lid loop residues CRY1 Q407 and CRY2 F424, respectively, resulting in different overall lid loop structures. Molecular dynamics simulations supported that these conformations were energetically favorable to each isoform. Isoform-selective compounds KL101 and TH301 preferred intrinsic "out" and "in" conformations of the tryptophan residue in CRY1 and CRY2, respectively, while the nonselective compound KL001 fit to both conformations. Mutations of lid loop residues designed to perturb their isoform-specific interaction with the tryptophan resulted in reversed responses of CRY1 and CRY2 to KL101 and TH301. We propose that these intrinsic structural differences of CRY1 and CRY2 can be targeted for isoform-selective regulation.
Collapse
|
45
|
Palm D, Uzoni A, Simon F, Fischer M, Coogan A, Tucha O, Thome J, Faltraco F. Evolutionary conservations, changes of circadian rhythms and their effect on circadian disturbances and therapeutic approaches. Neurosci Biobehav Rev 2021; 128:21-34. [PMID: 34102148 DOI: 10.1016/j.neubiorev.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
The circadian rhythm is essential for the interaction of all living organisms with their environments. Several processes, such as thermoregulation, metabolism, cognition and memory, are regulated by the internal clock. Disturbances in the circadian rhythm have been shown to lead to the development of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD). Interestingly, the mechanism of the circadian rhythms has been conserved in many different species, and misalignment between circadian rhythms and the environment results in evolutionary regression and lifespan reduction. This review summarises the conserved mechanism of the internal clock and its major interspecies differences. In addition, it focuses on effects the circadian rhythm disturbances, especially in cases of ADHD, and describes the possibility of recombinant proteins generated by eukaryotic expression systems as therapeutic agents as well as CRISPR/Cas9 technology as a potential tool for research and therapy. The aim is to give an overview about the evolutionary conserved mechanism as well as the changes of the circadian clock. Furthermore, current knowledge about circadian rhythm disturbances and therapeutic approaches is discussed.
Collapse
Affiliation(s)
- Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Adriana Uzoni
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frederick Simon
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Matthias Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Andrew Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Ireland
| | - Oliver Tucha
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| |
Collapse
|
46
|
Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021; 126:3-14. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023]
Abstract
Nearly all mammals display robust daily rhythms of physiology and behavior. These approximately 24-h cycles, known as circadian rhythms, are driven by a master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and affect biological processes ranging from metabolism to immune function. Perhaps the most overt output of the circadian clock is the sleep-wake cycle, the integrity of which is critical for health and homeostasis of the organism. In this review, we summarize our current understanding of the circadian regulation of sleep. We discuss the neural circuitry and molecular mechanisms underlying daily sleep timing, and the trajectory of circadian regulation of sleep across development. We conclude by proposing future research priorities for the field that will significantly advance our mechanistic understanding of the circadian regulation of sleep.
Collapse
Affiliation(s)
- Raymond E A Sanchez
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| | - Franck Kalume
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Philpott JM, Torgrimson MR, Harold RL, Partch CL. Biochemical mechanisms of period control within the mammalian circadian clock. Semin Cell Dev Biol 2021; 126:71-78. [PMID: 33933351 DOI: 10.1016/j.semcdb.2021.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
Genetically encoded biological clocks are found broadly throughout life on Earth, where they generate circadian (about a day) rhythms that synchronize physiology and behavior with the daily light/dark cycle. Although the genetic networks that give rise to circadian timing are now fairly well established, our understanding of how the proteins that constitute the molecular 'cogs' of this biological clock regulate the intrinsic timing, or period, of circadian rhythms has lagged behind. New studies probing the biochemical and structural basis of clock protein function are beginning to reveal how assemblies of dedicated clock proteins form and evolve through post-translational regulation to generate circadian rhythms. This review will highlight some recent advances providing important insight into the molecular mechanisms of period control in mammalian clocks with an emphasis on structural analyses related to CK1-dependent control of PER stability.
Collapse
Affiliation(s)
- Jonathan M Philpott
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Megan R Torgrimson
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Rachel L Harold
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; Center for Circadian Biology, UC San Diego, 9500 Gilman Drive, MC 0116, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
49
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3314] [Impact Index Per Article: 828.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
50
|
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov 2021; 20:287-307. [PMID: 33589815 DOI: 10.1038/s41573-020-00109-w] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The circadian clock evolved in diverse organisms to integrate external environmental changes and internal physiology. The clock endows the host with temporal precision and robust adaptation to the surrounding environment. When circadian rhythms are perturbed or misaligned, as a result of jet lag, shiftwork or other lifestyle factors, adverse health consequences arise, and the risks of diseases such as cancer, cardiovascular diseases or metabolic disorders increase. Although the negative impact of circadian rhythm disruption is now well established, it remains underappreciated how to take advantage of biological timing, or correct it, for health benefits. In this Review, we provide an updated account of the circadian system and highlight several key disease areas with altered circadian signalling. We discuss environmental and lifestyle modifications of circadian rhythm and clock-based therapeutic strategies, including chronotherapy, in which dosing time is deliberately optimized for maximum therapeutic index, and pharmacological agents that target core clock components and proximal regulators. Promising progress in research, disease models and clinical applications should encourage a concerted effort towards a new era of circadian medicine.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|