1
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
2
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
3
|
Dolgova N, Uhlemann EME, Boniecki MT, Vizeacoumar FS, Ara A, Nouri P, Ralle M, Tonelli M, Abbas SA, Patry J, Elhasasna H, Freywald A, Vizeacoumar FJ, Dmitriev OY. MEMO1 binds iron and modulates iron homeostasis in cancer cells. eLife 2024; 13:e86354. [PMID: 38640016 PMCID: PMC11081632 DOI: 10.7554/elife.86354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.
Collapse
Affiliation(s)
- Natalia Dolgova
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Michal T Boniecki
- Protein Characterization and Crystallization Facility, University of SaskatchewanSaskatoonCanada
| | | | - Anjuman Ara
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Paria Nouri
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences UniversityPortlandUnited States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of WisconsinMadisonUnited States
| | - Syed A Abbas
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Jaala Patry
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Hussain Elhasasna
- Department of Pathology and Laboratory Medicine, University of SaskatchewanSaskatoonCanada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of SaskatchewanSaskatoonCanada
| | - Franco J Vizeacoumar
- Cancer Research Department, Saskatchewan Cancer AgencySaskatoonCanada
- Division of Oncology, University of SaskatchewanSaskatoonCanada
| | - Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| |
Collapse
|
4
|
Wei H, Weaver YM, Yang C, Zhang Y, Hu G, Karner CM, Sieber M, DeBerardinis RJ, Weaver BP. Proteolytic activation of fatty acid synthase signals pan-stress resolution. Nat Metab 2024; 6:113-126. [PMID: 38167727 PMCID: PMC10822777 DOI: 10.1038/s42255-023-00939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, UT Southwestern, Dallas, TX, USA
| | | | - Matthew Sieber
- Department of Physiology, UT Southwestern, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern, Dallas, TX, USA
| | | |
Collapse
|
5
|
Zhang X, Walke G, Wittung-Stafshede P. Memo1 reduces copper-mediated reactive oxygen species in breast cancer cells. J Inorg Biochem 2023; 247:112335. [PMID: 37487298 DOI: 10.1016/j.jinorgbio.2023.112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
The mediator of ERBB2-driven cell motility protein 1, Memo1, plays important roles in cancer signaling pathways. We recently reported Memo1 to coordinate reduced copper ions and protect them from reactive oxygen species (ROS) generation in vitro. We here assess if this Memo1 activity is at play in breast cancer cells. Copper additions to MDA-MB-231 cells promoted cell death, and this toxicity was exaggerated when Memo1 expression was reduced by silencing RNA. Using three different commercial ROS probes, we revealed that copper additions increased intracellular ROS levels, and these were further elevated when Memo1 expression was silenced. We propose that, in addition to other functions, Memo1 protects cancer cells from unwanted copper-mediated redox reactions. This may be a required safety mechanism in cancer cells as they have a high demand for copper.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gulshan Walke
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | |
Collapse
|
6
|
Shioda T, Takahashi I, Ikenaka K, Fujita N, Kanki T, Oka T, Mochizuki H, Antebi A, Yoshimori T, Nakamura S. Neuronal MML-1/MXL-2 regulates systemic aging via glutamate transporter and cell nonautonomous autophagic and peroxidase activity. Proc Natl Acad Sci U S A 2023; 120:e2221553120. [PMID: 37722055 PMCID: PMC10523562 DOI: 10.1073/pnas.2221553120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/04/2023] [Indexed: 09/20/2023] Open
Abstract
Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.
Collapse
Affiliation(s)
- Tatsuya Shioda
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
| | - Ittetsu Takahashi
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata951-8510, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo171-8501, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne50931, Germany
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka565-0871, Japan
| |
Collapse
|
7
|
Bartos K, Ramakrishnan SK, Braga-Lagache S, Hänzi B, Durussel F, Prakash Sridharan A, Zhu Y, Sheehan D, Hynes NE, Bonny O, Moor MB. Renal FGF23 signaling depends on redox protein Memo1 and promotes orthovanadate-sensitive protein phosphotyrosyl phosphatase activity. J Cell Commun Signal 2023; 17:705-722. [PMID: 36434320 PMCID: PMC10409928 DOI: 10.1007/s12079-022-00710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Memo1 deletion in mice causes premature aging and an unbalanced metabolism partially resembling Fgf23 and Klotho loss-of-function animals. We report a role for Memo's redox function in renal FGF23-Klotho signaling using mice with postnatally induced Memo deficiency in the whole body (cKO). Memo cKO mice showed impaired FGF23-driven renal ERK phosphorylation and transcriptional responses. FGF23 actions involved activation of oxidation-sensitive protein phosphotyrosyl phosphatases in the kidney. Redox proteomics revealed excessive thiols of Rho-GDP dissociation inhibitor 1 (Rho-GDI1) in Memo cKO, and we detected a functional interaction between Memo's redox function and oxidation at Rho-GDI1 Cys79. In isolated cellular systems, Rho-GDI1 did not directly affect FGF23-driven cell signaling, but we detected disturbed Rho-GDI1 dependent small Rho-GTPase protein abundance and activity in the kidney of Memo cKO mice. Collectively, this study reveals previously unknown layers in the regulation of renal FGF23 signaling and connects Memo with the network of small Rho-GTPases.
Collapse
Affiliation(s)
- Katalin Bartos
- Department of Nephrology and Hypertension, Bern University Hospital and Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- National Center of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Suresh Krishna Ramakrishnan
- National Center of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for Biomedical Research (DBMR), University of Berne, Berne, Switzerland
| | - Barbara Hänzi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Arjun Prakash Sridharan
- Proteomic Research Group, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Yao Zhu
- Proteomic Research Group, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - David Sheehan
- Proteomic Research Group, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research and University of Basel, Basel, Switzerland
| | - Olivier Bonny
- National Center of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Service of Nephrology, Department of Medicine, Hôpital Fribourgeois, Fribourg, Switzerland
| | - Matthias B Moor
- Department of Nephrology and Hypertension, Bern University Hospital and Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
- National Center of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland.
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Rosen RS, Yarmush ML. Current Trends in Anti-Aging Strategies. Annu Rev Biomed Eng 2023; 25:363-385. [PMID: 37289554 DOI: 10.1146/annurev-bioeng-120122-123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
9
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
10
|
Hu Y, Xu Z, Pan Q, Ma L. Casein kinase 1 gamma regulates oxidative stress response via interacting with the NADPH dual oxidase complex. PLoS Genet 2023; 19:e1010740. [PMID: 37099597 PMCID: PMC10166522 DOI: 10.1371/journal.pgen.1010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/08/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.
Collapse
Affiliation(s)
- Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhaofa Xu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- The Key Laboratory of Precision Molecular Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
A noncanonical response to replication stress protects genome stability through ROS production, in an adaptive manner. Cell Death Differ 2023; 30:1349-1365. [PMID: 36869180 PMCID: PMC10154342 DOI: 10.1038/s41418-023-01141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.
Collapse
|
12
|
Ke T, Santamaria A, Barbosa F, Rocha JBT, Skalny AV, Tinkov AA, Bowman AB, Aschner M. Developmental Methylmercury Exposure Induced and Age-Dependent Glutamatergic Neurotoxicity in Caenorhabditis elegans. Neurochem Res 2023; 48:920-928. [PMID: 36385214 DOI: 10.1007/s11064-022-03816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Developmental methylmercury (MeHg) exposures cause latent neurotoxic effects in adults; however, the mechanisms underlying the latent neurotoxicity are not fully understood. In the current study, we used C. elegans as an animal model to investigate the latent neurotoxic effects of developmental MeHg exposures on glutamatergic neurons. The young larvae stage 1 worms were exposed to MeHg (0.05 ~ 5 µM) for 48 h. The morphological and behavioral endpoints of glutamatergic neurons were compared when worms reached to adult stages including the young adult stage (day 1 adult) and the old adult stage (day 10 adult). Here, we showed that C. elegans glutamatergic neurons were morphologically intact following low or medium MeHg exposures (0.05 ~ 0.5 µM). The morphological damage of glutamatergic neurons appeared to be pronounced in day 10 adults developmentally exposed to 5 µM MeHg. Behavioral assays also showed an age-dependent latent effect of MeHg. In the nose touch response assay, only day 10 adult worms exhibited a functional decline following prior 5 µM MeHg exposure. Moreover, the disruption of NaCl memory appeared only in day 1 adults following MeHg exposures but not in day 10 adults. The expression of C. elegans homologs of mammalian vesicular glutamate transporter (eat-4) was repressed in day 1 adults, while the glutamate receptor homolog (glr-1) was upregulated in day 10 adults with 5 µM MeHg. In the comparison of age-dependent changes in the insulin-like pathway (daf-2/age-1/daf-16) following MeHg exposures, we showed that the daf-2/age-1/daf-16 pathway was mobilized in day 1 adults but repressed in day 10 adults. Collectively, our data supports a conclusion that MeHg-induced glutamatergic neurotoxicity exhibits an age-dependent pattern, possibly related to the prominent changes in age-dependent modulation in the glutamatergic neurotransmission and metabolic pathways.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Fernando Barbosa
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105900, Brazil
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- , Forchheimer Building, Room 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Md Jaffri J. Reactive Oxygen Species and Antioxidant System in Selected Skin Disorders. Malays J Med Sci 2023; 30:7-20. [PMID: 36875194 PMCID: PMC9984103 DOI: 10.21315/mjms2023.30.1.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/07/2021] [Indexed: 03/06/2023] Open
Abstract
The skin has a solid protective system that includes the stratum corneum as the primary barrier and a complete antioxidant defence system to maintain the skin's normal redox homeostasis. The epidermal and dermal cells are continuously exposed to physiological levels of reactive oxygen species (ROS) originating from cellular metabolic activities. Environmental insults, such as ultraviolet (UV) rays and air pollutants, also generate ROS that can contribute to structural damage of the skin. The antioxidant defence system ensures that the ROS level remains within the safe limit. In certain skin disorders, oxidative stress plays an important role, and there is an established interplay between oxidative stress and inflammation in the development of the condition. Lower levels of skin antioxidants indicate that oxidative stress may mediate the pathogenesis of the disorder. Accordingly, the total antioxidant level was also found to be lower in individuals with skin disorders in individuals with normal skin conditions. This review attempts to summarise the skin oxidant sources and antioxidant system. In addition, both skin and total antioxidant status of individuals with psoriasis, acne vulgaris, vitiligo and atopic dermatitis (AD), as well as their associations with the progression of these disorders will be reviewed.
Collapse
Affiliation(s)
- Juliana Md Jaffri
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
14
|
Shen WC, Yuh CH, Lu YT, Lin YH, Ching TT, Wang CY, Wang HD. Reduced Ribose-5-Phosphate Isomerase A-1 Expression in Specific Neurons and Time Points Promotes Longevity in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010124. [PMID: 36670987 PMCID: PMC9854458 DOI: 10.3390/antiox12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.
Collapse
Affiliation(s)
- Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Mioali Country 35053, Taiwan
| | - Yu-Ting Lu
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memory Hospital, Linkou Main Branch, Chang Gung University, Taoyuan 33305, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, HsinChu 300044, Taiwan
- Correspondence: ; Tel.: +886-3-5742470
| |
Collapse
|
15
|
Branicky R, Wang Y, Khaki A, Liu JL, Kramer-Drauberg M, Hekimi S. Stimulation of RAS-dependent ROS signaling extends longevity by modulating a developmental program of global gene expression. SCIENCE ADVANCES 2022; 8:eadc9851. [PMID: 36449615 PMCID: PMC9710873 DOI: 10.1126/sciadv.adc9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
We show that elevation of mitochondrial superoxide generation increases Caenorhabditis elegans life span by enhancing a RAS-dependent ROS (reactive oxygen species) signaling pathway (RDRS) that controls the expression of half of the genome as well as animal composition and physiology. RDRS stimulation mimics a program of change in gene expression that is normally observed at the end of postembryonic development. We further show that RDRS is regulated by negative feedback from the superoxide dismutase 1 (SOD-1)-dependent conversion of superoxide into cytoplasmic hydrogen peroxide, which, in turn, acts on a redox-sensitive cysteine (C118) of RAS. Preventing C118 oxidation by replacement with serine, or mimicking oxidation by replacement with aspartic acid, leads to opposite changes in the expression of the same large set of genes that is affected when RDRS is stimulated by mitochondrial superoxide. The identities of these genes suggest that stimulation of the pathway extends life span by boosting turnover and repair while moderating damage from metabolic activity.
Collapse
|
16
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
17
|
Repression of Memo1, a Novel Target of Human Papillomavirus Type 16 E7, Increases Cell Proliferation in Cervical Cancer Cells. J Virol 2022; 96:e0122922. [PMID: 36197110 PMCID: PMC9599245 DOI: 10.1128/jvi.01229-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus (HPV)-induced carcinogenesis is associated with unregulated expression of the oncoproteins E6 and E7. HPV E7 is a viral protein that lacks enzymatic activity; however, it can target several cellular proteins to induce cell transformation and promote uncontrolled proliferation. Although several E7 targets have been described, there are still gaps in the understanding of how this oncoprotein drives cells toward malignancy. Here, using a small HPV type 16 (HPV16) E7 peptide in a proteomic approach, we report Memo1 as a new E7 binding partner, interacting through the aspartic and glutamic acid residues (E80 and D81) in the C-terminal region of HPV16 E7. Furthermore, we demonstrate that HPV16 E7 targets Memo1 for proteasomal degradation through a Cullin2-dependent mechanism. In addition, we show that overexpression of Memo1 decreases cell transformation and proliferation and that reduction of Memo1 levels correlate with activation of Akt and an increase in invasion of HPV-positive cervical cancer cell lines. Our results show a novel HPV E7 interacting partner and describe novel functions of Memo1 in the context of HPV-induced malignancy. IMPORTANCE Although numerous targets have been reported to interact with the HPV E7 oncoprotein, the mechanisms involved in HPV-induced carcinogenesis and the maintenance of cell transformation are still lacking. Here, through pulldown assays using a peptide encompassing the C-terminal region of HPV16 E7, we report Memo1 as a novel E7 interactor. High levels of Memo1 correlated with reduced cell proliferation and, concordantly, knockdown of Memo1 resulted in Akt activation in HPV-positive cell lines. These results highlight new mechanisms used by HPV oncoproteins to modulate proliferation pathways in cervical cancer cells and increase our understanding of the link between Memo1 protein and cancer.
Collapse
|
18
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
19
|
Feldmeyer B, Gstöttl C, Wallner J, Jongepier E, Séguret A, Grasso DA, Bornberg-Bauer E, Foitzik S, Heinze J. Evidence for a conserved queen-worker genetic toolkit across slave-making ants and their ant hosts. Mol Ecol 2022; 31:4991-5004. [PMID: 35920076 DOI: 10.1111/mec.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialised morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in non-parasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of co-expressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - C Gstöttl
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - J Wallner
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - E Jongepier
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - A Séguret
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - D A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parma, Italy
| | - E Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - S Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - J Heinze
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Baek M, Jang W, Kim C. Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster. Cells 2022; 11:cells11132059. [PMID: 35805145 PMCID: PMC9265666 DOI: 10.3390/cells11132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Reducing the oxidative stress in neurons extends lifespan in Drosophila melanogaster, highlighting the crucial role of neuronal oxidative damage in lifespan determination. However, the source of the reactive oxygen species (ROS) that provoke oxidative stress in neurons is not clearly defined. Here, we identify dual oxidase (duox), a calcium-activated ROS-producing enzyme, as a lifespan determinant. Due to the lethality of duox homozygous mutants, we employed a duox heterozygote that exhibited normal appearance and movement. We found that duox heterozygous male flies, which were isogenized with control flies, demonstrated extended lifespan. Neuronal knockdown experiments further suggested that duox is crucial to oxidative stress in neurons. Our findings suggest duox to be a source of neuronal oxidative stress associated with animal lifespan.
Collapse
|
21
|
Statzer C, Meng J, Venz R, Bland M, Robida-Stubbs S, Patel K, Petrovic D, Emsley R, Liu P, Morantte I, Haynes C, Mair WB, Longchamp A, Filipovic MR, Blackwell TK, Ewald CY. ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1. Nat Commun 2022; 13:967. [PMID: 35181679 PMCID: PMC8857226 DOI: 10.1038/s41467-022-28599-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the master growth regulator mTORC1 (mechanistic target of rapamycin complex 1) slows ageing across phyla, in part by reducing protein synthesis. Various stresses globally suppress protein synthesis through the integrated stress response (ISR), resulting in preferential translation of the transcription factor ATF-4. Here we show in C. elegans that inhibition of translation or mTORC1 increases ATF-4 expression, and that ATF-4 mediates longevity under these conditions independently of ISR signalling. ATF-4 promotes longevity by activating canonical anti-ageing mechanisms, but also by elevating expression of the transsulfuration enzyme CTH-2 to increase hydrogen sulfide (H2S) production. This H2S boost increases protein persulfidation, a protective modification of redox-reactive cysteines. The ATF-4/CTH-2/H2S pathway also mediates longevity and increased stress resistance from mTORC1 suppression. Increasing H2S levels, or enhancing mechanisms that H2S influences through persulfidation, may represent promising strategies for mobilising therapeutic benefits of the ISR, translation suppression, or mTORC1 inhibition.
Collapse
Affiliation(s)
- Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Jin Meng
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Richard Venz
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Monet Bland
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stacey Robida-Stubbs
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Krina Patel
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Raffaella Emsley
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ianessa Morantte
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Cole Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - T Keith Blackwell
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Joslin Diabetes Center, Research Division, Boston, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland.
| |
Collapse
|
22
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
23
|
Williams EG, Pfister N, Roy S, Statzer C, Haverty J, Ingels J, Bohl C, Hasan M, Čuklina J, Bühlmann P, Zamboni N, Lu L, Ewald CY, Williams RW, Aebersold R. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst 2022; 13:43-57.e6. [PMID: 34666007 PMCID: PMC8776606 DOI: 10.1016/j.cels.2021.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of the BXD mouse population across age (7 to 24 months) and diet (low or high fat) to link molecular variations to metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels. Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating gene networks according to each independent variable, providing causal insight into dietary and aging effects. Candidates were cross-examined in an independent diversity outbred mouse liver dataset segregating for similar diets, with ∼80%-90% of diet-related candidate genes found in common across datasets. Together, we have developed a large multiomics resource for multivariate analysis of complex traits and demonstrate a methodology for moving from observational associations to causal connections.
Collapse
Affiliation(s)
- Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Niklas Pfister
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cyril Statzer
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Jack Haverty
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Casey Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Moaraj Hasan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Jelena Čuklina
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Peter Bühlmann
- Department of Mathematics, Seminar for Statistics, ETH Zürich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Collin Y Ewald
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; Faculty of Science, University of Zürich, Zurich, Switzerland
| |
Collapse
|
24
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
25
|
Venz R, Pekec T, Katic I, Ciosk R, Ewald CY. End-of-life targeted degradation of DAF-2 insulin/IGF-1 receptor promotes longevity free from growth-related pathologies. eLife 2021; 10:71335. [PMID: 34505574 PMCID: PMC8492056 DOI: 10.7554/elife.71335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Preferably, lifespan-extending therapies should work when applied late in life without causing undesired pathologies. Reducing insulin/insulin-like growth factor (IGF)-1 signaling (IIS) increases lifespan across species, but the effects of reduced IIS interventions in extreme geriatric ages remains unknown. Using the nematode Caenorhabditis elegans, we engineered the conditional depletion of the DAF-2/insulin/IGF-1 transmembrane receptor using an auxin-inducible degradation (AID) system. This allowed for the temporal and spatial reduction in DAF-2 protein levels at time points after which interventions such as RNAi become ineffective. Using this system, we found that AID-mediated depletion of DAF-2 protein surpasses the longevity of daf-2 mutants. Depletion of DAF-2 during early adulthood resulted in multiple adverse phenotypes, including growth retardation, germline shrinkage, egg retention, and reduced brood size. By contrast, AID-mediated depletion of DAF-2 post-reproduction, or specifically in the intestine in early adulthood, resulted in an extension of lifespan without these deleterious effects. Strikingly, at geriatric ages, when 75% of the population had died, AID-mediated depletion of DAF-2 protein resulted in a doubling in lifespan. Thus, we provide a proof-of-concept that even close to the end of an individual’s lifespan, it is possible to slow aging and promote longevity. The goal of geroscience, or research into old age, is to promote health during old age, and thus, to increase lifespan. In the body, the groups of biochemical reactions, or ‘pathways’, that allow an organism to sense nutrients, and regulate growth and stress, play major roles in ensuring healthy aging. Indeed, organisms that do not produce a working version of the insulin/IGF-1 receptor, a protein involved in one such pathway, show increased lifespan. In the worm Caenorhabditis elegans, mutations in the insulin/IGF-1 receptor can even double their lifespan. However, it is unclear whether this increase can be achieved once the organism has reached old age. To answer this question, Venz et al. genetically engineered the nematode worm C. elegans so that they could trigger the rapid degradation of the insulin/IGF-1 receptor either in the entire organism or in a specific tissue. Venz et al. started by aging several C. elegans worms for three weeks, until about 75% had died. At this point, they triggered the degradation of the insulin/IGF-1 receptor in some of the remaining worms, keeping the rest untreated as a control for the experiment. The results showed that the untreated worms died within a few days, while worms in which the insulin/IGF-1 receptor had been degraded lived for almost one more month. This demonstrates that it is possible to double the lifespan of an organism at the very end of life. Venz et al.’s findings suggest that it is possible to make interventions to extend an organism’s lifespan near the end of life that are as effective as if they were performed when the organism was younger. This sparks new questions regarding the quality of this lifespan extension: do the worms become younger with the intervention, or is aging simply slowed down?
Collapse
Affiliation(s)
- Richard Venz
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach-Zürich, Switzerland
| | - Tina Pekec
- University of Basel, Faculty of Natural Sciences, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poland.,University of Oslo, Department of Biosciences, Oslo, Norway
| | - Collin Yvès Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach-Zürich, Switzerland
| |
Collapse
|
26
|
Vertti-Quintero N, Berger S, Casadevall I Solvas X, Statzer C, Annis J, Ruppen P, Stavrakis S, Ewald CY, Gunawan R, deMello AJ. Stochastic and Age-Dependent Proteostasis Decline Underlies Heterogeneity in Heat-Shock Response Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102145. [PMID: 34196492 DOI: 10.1002/smll.202102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Significant non-genetic stochastic factors affect aging, causing lifespan differences among individuals, even those sharing the same genetic and environmental background. In Caenorhabditis elegans, differences in heat-shock response (HSR) are predictive of lifespan. However, factors contributing to the heterogeneity of HSR are still not fully elucidated. Here, the authors characterized HSR dynamics in isogenic C. elegans expressing GFP reporter for hsp-16.2 for identifying the key contributors of HSR heterogeneity. Specifically, microfluidic devices that enable cross-sectional and longitudinal measurements of HSR dynamics in C. elegans at different scales are developed: in populations, within individuals, and in embryos. The authors adapted a mathematical model of HSR to single C. elegans and identified model parameters associated with proteostasis-maintenance of protein homeostasis-more specifically, protein turnover, as the major drivers of heterogeneity in HSR dynamics. It is verified that individuals with enhanced proteostasis fidelity in early adulthood live longer. The model-based comparative analysis of protein turnover in day-1 and day-2 adult C. elegans revealed a stochastic-onset of age-related proteostasis decline that increases the heterogeneity of HSR capacity. Finally, the analysis of C. elegans embryos showed higher HSR and proteostasis capacity than young adults and established transgenerational contribution to HSR heterogeneity that depends on maternal age.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Biosystems, KU Leuven, Leuven, B-3001, Belgium
| | - Cyril Statzer
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Jillian Annis
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Peter Ruppen
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Collin Y Ewald
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Rudiyanto Gunawan
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
27
|
Physiological Dose of EGCG Attenuates the Health Defects of High Dose by Regulating MEMO-1 in Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546493. [PMID: 34257807 PMCID: PMC8249131 DOI: 10.1155/2021/5546493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
EGCG, as a dietary-derived antioxidant, has been extensively studied for its beneficial health effects. Nevertheless, it induces the transient increase in ROS and leads to the hormetic extension of lifespan. How exactly biology-benefiting effects with the minimum severe adverse are realized remains unclear. Here, we showed that physiological dose of EGCG could help moderate remission in health side effects exposed to high doses, including shortened lifespan, reduced body size, decreased pharyngeal pumping rate, and dysfunctional body movement in C. elegans. Furthermore, we found this result was caused by the physiological dose of EGCG to block the continued ROS accumulation and triggered acclimation responses after stressor removal. Also, in this process, we observed that EGCG downregulated the key redox protein MEMO-1 to activate the feedback loop of NADPH oxidase-mediated redox signaling. Our data indicates that the feedback signal induced by NADPH oxidase may contribute to the health-protective mechanism of dietary polyphenols in vivo.
Collapse
|
28
|
Survival upon Staphylococcus aureus mediated wound infection in Caenorhabditis elegans and the mechanism entailed. Microb Pathog 2021; 157:104952. [PMID: 34022354 DOI: 10.1016/j.micpath.2021.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Infection following injury is one of the major threats which causes huge economic burden in wound care management all over the world. Injury often results with poor healing when coupled by following infection. In contrast to this, we observed enhanced survival of wound infected worms compared to wounded worms in Caenorhabditis elegans wound model while infecting with Staphylococcus aureus. Hence, the study was intended to identify the mechanism for the enhanced survival of wound infected worms through LCMS/MS based high throughput proteomic analysis. Bioinformatics analyses of the identified protein players indicated differential enrichment of several pathways including MAPK signaling, oxidative phosphorylation and phosphatidylinositol signaling. Inhibition of oxidative phosphorylation and phosphatidylinositol signaling through chemical treatment showed complete reversal of the enhanced survival during wound infection nevertheless mutant of MAPK pathway did not reverse the same. Consequently, it was delineated that oxidative phosphorylation and phosphatidylinositol signaling are crucial for the survival. In this regard, elevated calcium signals and ROS including O- and H2O2 were observed in wounded and wound infected worms. Consequently, it was insinuated that presence of pathogen stress could have incited survival in wound infected worms with the aid of elevated ROS and calcium signals.
Collapse
|
29
|
Schiffers C, Lundblad LKA, Hristova M, Habibovic A, Dustin CM, Daphtary N, Aliyeva M, Seward DJ, Janssen-Heininger YMW, Wouters EFM, Reynaert NL, van der Vliet A. Downregulation of DUOX1 function contributes to aging-related impairment of innate airway injury responses and accelerated senile emphysema. Am J Physiol Lung Cell Mol Physiol 2021; 321:L144-L158. [PMID: 33951398 DOI: 10.1152/ajplung.00021.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen Dermatophagoides pteronyssinus, which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling. DUOX1 deficiency was also found to accelerate age-related airspace enlargement and decline in lung function but did not consistently affect other features of lung aging such as senescence-associated inflammation. Intriguingly, observations of age-related DUOX1 downregulation and enhanced airspace enlargement due to DUOX1 deficiency in C57BL/6J mice, which lack a functional mitochondrial nicotinamide nucleotide transhydrogenase (NNT), were much less dramatic in C57BL/6NJ mice with normal NNT function, although the latter mice also displayed impaired innate epithelial injury responses with advancing age. Overall, our findings indicate a marked aging-dependent decline in (DUOX1-dependent) innate airway injury responses to external nonmicrobial triggers, but the impact of aging on DUOX1 downregulation and its significance for age-related senile emphysema development was variable between different C57BL6 substrains, possibly related to metabolic alterations due to differences in NNT function.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lennart K A Lundblad
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
30
|
Oxidative Stress, Neuroinflammation, and NADPH Oxidase: Implications in the Pathogenesis and Treatment of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7086512. [PMID: 33953837 PMCID: PMC8068554 DOI: 10.1155/2021/7086512] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 01/17/2023]
Abstract
NADPH oxidase as an important source of intracellular reactive oxygen species (ROS) has gained enormous importance over the years, and the detailed structures of all the isoenzymes of the NADPH oxidase family and their regulation have been well explored. The enzyme has been implicated in a variety of diseases including neurodegenerative diseases. The present brief review examines the body of evidence that links NADPH oxidase with the genesis and progression of Alzheimer's disease (AD). In short, evidence suggests that microglial activation and inflammatory response in the AD brain is associated with increased production of ROS by microglial NADPH oxidase. Along with other inflammatory mediators, ROS take part in neuronal degeneration and enhance the microglial activation process. The review also evaluates the current state of NADPH oxidase inhibitors as potential disease-modifying agents for AD.
Collapse
|
31
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
33
|
Meng J, Fu L, Liu K, Tian C, Wu Z, Jung Y, Ferreira RB, Carroll KS, Blackwell TK, Yang J. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Nat Commun 2021; 12:1415. [PMID: 33658510 PMCID: PMC7930113 DOI: 10.1038/s41467-021-21686-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Post-translational changes in the redox state of cysteine residues can rapidly and reversibly alter protein functions, thereby modulating biological processes. The nematode C. elegans is an ideal model organism for studying cysteine-mediated redox signaling at a network level. Here we present a comprehensive, quantitative, and site-specific profile of the intrinsic reactivity of the cysteinome in wild-type C. elegans. We also describe a global characterization of the C. elegans redoxome in which we measured changes in three major cysteine redox forms after H2O2 treatment. Our data revealed redox-sensitive events in translation, growth signaling, and stress response pathways, and identified redox-regulated cysteines that are important for signaling through the p38 MAP kinase (MAPK) pathway. Our in-depth proteomic dataset provides a molecular basis for understanding redox signaling in vivo, and will serve as a valuable and rich resource for the field of redox biology. Reversible cysteine oxidative modifications have emerged as important mechanisms that alter protein function. Here the authors globally assess the cysteine reactivity and an array of cysteine oxidative modifications in C. elegans, providing insights into redox signaling at the organismal level.
Collapse
Affiliation(s)
- Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Innovation Institute of Medical School, Medical College, Qingdao University, Qingdao, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Renan B Ferreira
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China. .,Innovation Institute of Medical School, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol 2021; 9:628157. [PMID: 33644065 PMCID: PMC7905231 DOI: 10.3389/fcell.2021.628157] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is the greatest risk factor for a multitude of diseases including cardiovascular disease, neurodegeneration and cancer. Despite decades of research dedicated to understanding aging, the mechanisms underlying the aging process remain incompletely understood. The widely-accepted free radical theory of aging (FRTA) proposes that the accumulation of oxidative damage caused by reactive oxygen species (ROS) is one of the primary causes of aging. To define the relationship between ROS and aging, there have been two main approaches: comparative studies that measure outcomes related to ROS across species with different lifespans, and experimental studies that modulate ROS levels within a single species using either a genetic or pharmacologic approach. Comparative studies have shown that levels of ROS and oxidative damage are inversely correlated with lifespan. While these studies in general support the FRTA, this type of experiment can only demonstrate correlation, not causation. Experimental studies involving the manipulation of ROS levels in model organisms have generally shown that interventions that increase ROS tend to decrease lifespan, while interventions that decrease ROS tend to increase lifespan. However, there are also multiple examples in which the opposite is observed: increasing ROS levels results in extended longevity, and decreasing ROS levels results in shortened lifespan. While these studies contradict the predictions of the FRTA, these experiments have been performed in a very limited number of species, all of which have a relatively short lifespan. Overall, the data suggest that the relationship between ROS and lifespan is complex, and that ROS can have both beneficial or detrimental effects on longevity depending on the species and conditions. Accordingly, the relationship between ROS and aging is difficult to generalize across the tree of life.
Collapse
Affiliation(s)
- Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Finding MEMO-Emerging Evidence for MEMO1's Function in Development and Disease. Genes (Basel) 2020; 11:genes11111316. [PMID: 33172038 PMCID: PMC7694686 DOI: 10.3390/genes11111316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Although conserved throughout animal kingdoms, the protein encoded by the gene Mediator of ERBB2 Driven Cell Motility 1 or MEMO1, has only recently come into focus. True to its namesake, MEMO1 first emerged from a proteomic screen of molecules bound to the ERBB2 receptor and was found to be necessary for efficient cell migration upon receptor activation. While initially placed within the context of breast cancer metastasis—a pathological state that has provided tremendous insight into MEMO1′s cellular roles—MEMO1′s function has since expanded to encompass additional cancer cell types, developmental processes during embryogenesis and homeostatic regulation of adult organ systems. Owing to MEMO1′s deep conservation, a variety of model organisms have been amenable to uncovering biological facets of this multipurpose protein; facets ranging from the cellular (e.g., receptor signaling, cytoskeletal regulation, redox flux) to the organismal (e.g., mineralization and mineral homeostasis, neuro/gliogenesis, vasculogenesis) level. Although these facets emerge at the intersection of numerous biological and human disease processes, how and if they are interconnected remains to be resolved. Here, we review our current understanding of this ‘enigmatic’ molecule, its role in development and disease and open questions emerging from these previous studies.
Collapse
|
36
|
Combining Auxin-Induced Degradation and RNAi Screening Identifies Novel Genes Involved in Lipid Bilayer Stress Sensing in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:3921-3928. [PMID: 32958476 PMCID: PMC7642917 DOI: 10.1534/g3.120.401635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alteration of the lipid composition of biological membranes interferes with their function and can cause tissue damage by triggering apoptosis. Upon lipid bilayer stress, the endoplasmic reticulum mounts a stress response similar to the unfolded protein response. However, only a few genes are known to regulate lipid bilayer stress. We performed a suppressor screen that combined the auxin-inducible degradation (AID) system with conventional RNAi in C. elegans to identify members of the lipid bilayer stress response. AID-mediated degradation of the mediator MDT-15, a protein required for the upregulation of fatty acid desaturases, induced the activation of lipid bilayer stress-sensitive reporters. We screened through most C. elegans kinases and transcription factors by feeding RNAi. We discovered nine genes that suppressed the lipid bilayer stress response in C. elegans. These suppressor genes included drl-1/MAP3K3, gsk-3/GSK3, let-607/CREB3, ire-1/IRE1, and skn-1/NRF1,2,3. Our candidate suppressor genes suggest a network of transcription factors and the integration of multiple tissues for a centralized lipotoxicity response in the intestine. Thus, we demonstrated proof-of-concept for combining AID and RNAi as a new screening strategy and identified eight conserved genes that had not previously been implicated in the lipid bilayer stress response.
Collapse
|
37
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
38
|
Kramer-Drauberg M, Liu JL, Desjardins D, Wang Y, Branicky R, Hekimi S. ROS regulation of RAS and vulva development in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008838. [PMID: 32544191 PMCID: PMC7319342 DOI: 10.1371/journal.pgen.1008838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.
Collapse
Affiliation(s)
| | - Ju-Ling Liu
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - David Desjardins
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Coppa A, Guha S, Fourcade S, Parameswaran J, Ruiz M, Moser AB, Schlüter A, Murphy MP, Lizcano JM, Miranda-Vizuete A, Dalfó E, Pujol A. The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Free Radic Biol Med 2020; 152:797-809. [PMID: 32017990 PMCID: PMC7611262 DOI: 10.1016/j.freeradbiomed.2020.01.177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Adrenoleukodystrophy is a neurometabolic disorder caused by a defective peroxisomal ABCD1 transporter of very long-chain fatty acids (VLCFAs). Its pathogenesis is incompletely understood. Here we characterize a nematode model of X-ALD with loss of the pmp-4 gene, the worm orthologue of ABCD1. These mutants recapitulate the hallmarks of X-ALD: i) VLCFAs accumulation and impaired mitochondrial redox homeostasis and ii) axonal damage coupled to locomotor dysfunction. Furthermore, we identify a novel role for PMP-4 in modulating lipid droplet dynamics. Importantly, we show that the mitochondria targeted antioxidant MitoQ normalizes lipid droplets size, and prevents axonal degeneration and locomotor disability, highlighting its therapeutic potential. Moreover, PMP-4 acting solely in the hypodermis rescues axonal and locomotion abnormalities, suggesting a myelin-like role for the hypodermis in providing essential peroxisomal functions for the nematode nervous system.
Collapse
Affiliation(s)
- Andrea Coppa
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Ann B Moser
- Peroxisomal Diseases Laboratory, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | | | - Jose Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío /CSIC/ Universidad de Sevilla, E-41013, Sevilla, Spain
| | - Esther Dalfó
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain; ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain.
| |
Collapse
|
40
|
Nhan JD, Turner CD, Anderson SM, Yen CA, Dalton HM, Cheesman HK, Ruter DL, Uma Naresh N, Haynes CM, Soukas AA, Pukkila-Worley R, Curran SP. Redirection of SKN-1 abates the negative metabolic outcomes of a perceived pathogen infection. Proc Natl Acad Sci U S A 2019; 116:22322-22330. [PMID: 31611372 PMCID: PMC6825279 DOI: 10.1073/pnas.1909666116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1-dependent loss of somatic fat. These data define a SKN-1- and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity.
Collapse
Affiliation(s)
- James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Christian D Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Sarah M Anderson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Hans M Dalton
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Hilary K Cheesman
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Dana L Ruter
- Biology Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Nandhitha Uma Naresh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Alexander A Soukas
- Center for Human Genetic Research and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655;
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089;
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
41
|
In-Vivo Quantitative Image Analysis of Age-Related Morphological Changes of C. elegans Neurons Reveals a Correlation between Neurite Bending and Novel Neurite Outgrowths. eNeuro 2019; 6:ENEURO.0014-19.2019. [PMID: 31217194 PMCID: PMC6620389 DOI: 10.1523/eneuro.0014-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
The aging of the human brain in the absence of diseases is accompanied by subtle changes of neuronal morphology, such as dendrite restructuring, neuronal sprouting, and synaptic deteriorations, rather than neurodegeneration or gross deterioration. Similarly, the nervous system of Caenorhabditis elegans does not show neurodegeneration or gross deterioration during normal aging, but displays subtle alterations in neuronal morphology. The occurrence of these age-dependent abnormalities is stochastic and dynamic, which poses a major challenge to fully capture them for quantitative comparison. Here, we developed a semi-automated pipeline for quantitative image analysis of these features during aging. We employed and evaluated this pipeline herein to reproduce findings from previous studies using visual inspection of neuronal morphology. Importantly, our approach can also quantify additional features, such as soma volume, the length of neurite outgrowths, and their location along the aged neuron. We found that, during aging, the soma of neurons decreases in volume, whereas the number and length of neurite outgrowths from the soma both increase. Long-lived animals showed less decrease in soma volume, fewer and shorter neurite outgrowths, and protection against abnormal sharp bends preferentially localized at the distal part of the dendrites during aging. We found a correlation of sharp bends with neurite outgrowth, suggesting the hypothesis that sharp bends might proceed neurite outgrowths. Thus, our semi-automated pipeline can help researchers to obtain and analyze quantitative datasets of this stochastic process for comparison across genotypes and to identify correlations to facilitate the generation of novel hypothesis.
Collapse
|
42
|
Burroughs AM, Glasner ME, Barry KP, Taylor EA, Aravind L. Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. J Biol Chem 2019; 294:10211-10235. [PMID: 31092555 PMCID: PMC6664185 DOI: 10.1074/jbc.ra119.007595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
A diverse collection of enzymes comprising the protocatechuate dioxygenases (PCADs) has been characterized in several extradiol aromatic compound degradation pathways. Structural studies have shown a relationship between PCADs and the more broadly-distributed, functionally enigmatic Memo domain linked to several human diseases. To better understand the evolution of this PCAD-Memo protein superfamily, we explored their structural and functional determinants to establish a unified evolutionary framework, identifying 15 clearly-delineable families, including a previously-underappreciated diversity in five Memo clade families. We place the superfamily's origin within the greater radiation of the nucleoside phosphorylase/hydrolase-peptide/amidohydrolase fold prior to the last universal common ancestor of all extant organisms. In addition to identifying active-site residues across the superfamily, we describe three distinct, structurally-variable regions emanating from the core scaffold often housing conserved residues specific to individual families. These were predicted to contribute to the active-site pocket, potentially in substrate specificity and allosteric regulation. We also identified several previously-undescribed conserved genome contexts, providing insight into potentially novel substrates in PCAD clade families. We extend known conserved contextual associations for the Memo clade beyond previously-described associations with the AMMECR1 domain and a radical S-adenosylmethionine family domain. These observations point to two distinct yet potentially overlapping contexts wherein the elusive molecular function of the Memo domain could be finally resolved, thereby linking it to nucleotide base and aliphatic isoprenoid modification. In total, this report throws light on the functions of large swaths of the experimentally-uncharacterized PCAD-Memo families.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Margaret E Glasner
- the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, and
| | - Kevin P Barry
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Erika A Taylor
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - L Aravind
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,
| |
Collapse
|
43
|
Karakuzu O, Cruz MR, Liu Y, Garsin DA. Amplex Red Assay for Measuring Hydrogen Peroxide Production from Caenorhabditis elegans. Bio Protoc 2019; 9:e3409. [PMID: 32699812 DOI: 10.21769/bioprotoc.3409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reagents such as Amplex® Red have been developed for detecting hydrogen peroxide (H2O2) and are used to measure the release of H2O2 from biological samples such as mammalian leukocytes undergoing the oxidative burst. Caenorhabditis elegans is commonly used as a model host in the study of interactions with microbial pathogens and releases reactive oxygen species (ROS) as a component of its defense response. We adapted the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit to measure H2O2 output from live Caenorhabditis elegans exposed to microbial pathogens. The assay differs from other forms of ROS detection in the worm, like dihydrofluorescein dyes and genetically encoded probes such as HyPer, in that it generally detects released, extracellular ROS rather than intracellular ROS, though the distinction between the two is blurred by the fact that certain species of ROS, including H2O2, can cross membranes. The protocol involves feeding C. elegans on a lawn of the pathogen of interest for a period of time. The animals are then rinsed off the plates in buffer and washed to remove any microbes on their cuticle. Finally, the animals in buffer are distributed into 96-well plates and Amplex® Red and horseradish peroxidase (HRP) are added. Any H2O2 released into the buffer by the worms will react with the Amplex® Red reagent in a 1:1 ratio in the presence of HRP to produce the red fluorescent excitation product resorufin that can be measured fluorometrically or spectrophotometrically, and the amount of H2O2 released can be calculated by comparison to a standard curve. The assay is most appropriate for studies focused on released ROS, and its advantages include ease of use, the ability to use small numbers of animals in a plate reader assay in which measurements can be taken either fluorometrically or spectrophotometrically.
Collapse
Affiliation(s)
- Ozgur Karakuzu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, USA
| | - Melissa R Cruz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX, USA
| |
Collapse
|
44
|
WDR-23 and SKN-1/Nrf2 Coordinate with the BLI-3 Dual Oxidase in Response to Iodide-Triggered Oxidative Stress. G3-GENES GENOMES GENETICS 2018; 8:3515-3527. [PMID: 30166349 PMCID: PMC6222583 DOI: 10.1534/g3.118.200586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animals utilize conserved mechanisms to regulate oxidative stress. The C. elegans SKN-1 protein is homologous to the vertebrate Nrf (NF-E2-related factor) family of cap 'n' collar (CnC) transcription factors and functions as a core regulator of xenobiotic and oxidative stress responses. The WD40 repeat-containing protein WDR-23 is a key negative regulator of SKN-1 activity. We previously found that the oxidative stress induced by excess iodide can be relieved by loss of function in the BLI-3/TSP-15/DOXA-1 dual oxidase complex. To further understand the molecular mechanism of this process, we screened for new mutants that can survive in excess iodide and identified gain-of-function mutations in skn-1 and loss-of-function mutations in wdr-23 The SKN-1C isoform functions in the hypodermis to affect animal's response to excess iodide, while the SKN-1A isoform appears to play a minor role. wdr-23(lf) can interact with bli-3 mutations in a manner different from skn-1(gf) Transcriptome studies suggest that excess iodide causes developmental arrest largely independent of changes in gene expression, and wdr-23(lf) could affect the expression of a subset of genes by a mechanism different from SKN-1 activation. We propose that WDR-23 and SKN-1 coordinate with the BLI-3/TSP-15/DOXA-1 dual oxidase complex in response to iodide-triggered oxidative stress.
Collapse
|
45
|
Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging. Antioxidants (Basel) 2018; 7:antiox7100130. [PMID: 30274229 PMCID: PMC6210377 DOI: 10.3390/antiox7100130] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
An accumulating body of evidence suggests that transient or physiological reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases act as a redox signal to re-establish homeostasis. The capacity to re-establish homeostasis progressively declines during aging but is maintained in long-lived animals to promote healthy aging. In the model organism Caenorhabditis elegans, ROS generated by dual oxidases (Duox) are important for extracellular matrix integrity, pathogen defense, oxidative stress resistance, and longevity. The Duox enzymatic activity is tightly regulated and under cellular control. Developmental molting cycles, pathogen infections, toxins, mitochondrial-derived ROS, drugs, and small GTPases (e.g., RHO-1) can activate Duox (BLI-3) to generate ROS, whereas NADPH oxidase inhibitors and negative regulators, such as MEMO-1, can inhibit Duox from generating ROS. Three mechanisms-of-action have been discovered for the Duox/BLI-3-generated ROS: (1) enzymatic activity to catalyze crosslinking of free tyrosine ethyl ester in collagen bundles to stabilize extracellular matrices, (2) high ROS bursts/levels to kill pathogens, and (3) redox signaling activating downstream kinase cascades to transcription factors orchestrating oxidative stress and immunity responses to re-establish homeostasis. Although Duox function at the cell surface is well established, recent genetic and biochemical data also suggests a novel role for Duoxs at the endoplasmic reticulum membrane to control redox signaling. Evidence underlying these mechanisms initiated by ROS from NADPH oxidases, and their relevance for human aging, are discussed in this review. Appropriately controlling NADPH oxidase activity for local and physiological redox signaling to maintain cellular homeostasis might be a therapeutic strategy to promote healthy aging.
Collapse
|
46
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a key signaling molecule involved in the regulation of both physiological and pathological cellular processes. Genetically encoded HyPer probes are currently among the most effective approaches for monitoring H2O2 dynamics in various biological systems because they can be easily targeted to specific cells and organelles. Since its development in 2006, HyPer has proved to be a robust and powerful tool in redox biology research. Recent Advances: HyPer probes were used in a variety of models to study the role of H2O2 in various redox processes. HyPer has been increasingly used in the past few years for in vivo studies, which has already led to many important discoveries, for example, that H2O2 plays a key role in the regulation of signaling cascades involved in development and aging, inflammation, regeneration, photosynthetic signaling, and other biological processes. CRITICAL ISSUES In this review, we focus on the main achievements in the field of redox biology that have been obtained from in vivo experiments using HyPer probes. FUTURE DIRECTIONS Further in vivo studies of the role of H2O2 largely depend on the development of more suitable versions of HyPer for in vivo models: those having brighter fluorescence and a more stable signal in response to physiological changes in pH. Antioxid. Redox Signal. 29, 569-584.
Collapse
Affiliation(s)
- Dmitry S Bilan
- 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia .,2 Pirogov Russian National Research Medical University , Moscow, Russia
| | - Vsevolod V Belousov
- 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia .,2 Pirogov Russian National Research Medical University , Moscow, Russia .,3 Institute for Cardiovascular Physiology, Georg August University Göttingen , Göttingen, Germany
| |
Collapse
|
47
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
48
|
Moor MB, Haenzi B, Legrand F, Koesters R, Hynes NE, Bonny O. Renal Memo1 Differentially Regulates the Expression of Vitamin D-Dependent Distal Renal Tubular Calcium Transporters. Front Physiol 2018; 9:874. [PMID: 30038585 PMCID: PMC6046545 DOI: 10.3389/fphys.2018.00874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Ablation of the Mediator of ErbB2-driven Cell Motility 1 (Memo1) in mice altered calcium homeostasis and renal calcium transporter abundance by an unknown mechanism. Here, we investigated the role of intrarenal Memo in renal calcium handling. We have generated a mouse model of inducible kidney-specific Memo1 deletion. The Memo-deficient mice showed normal serum concentration and urinary excretion of calcium and phosphate, but elevated serum FGF23 concentration. They displayed elevated gene expression and protein abundance of the distal renal calcium transporters NCX1, TRPV5, and calbindin D28k. In addition, Claudin 14 gene expression was increased. When the mice were challenged by a vitamin D deficient diet, serum FGF23 concentration and TRPV5 membrane abundance were decreased, but NCX1 abundance remained increased. Collectively, renal distal calcium transport proteins (TRPV5 and Calbindin-D28k) in this model were altered by Memo- and vitamin-D dependent mechanisms, except for NCX1 which was vitamin D-independent. These findings highlight the existence of distinct regulatory mechanisms affecting TRPV5 and NCX1 membrane expression in vivo.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Haenzi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Finola Legrand
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
49
|
Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 2018; 17:259-273. [PMID: 29747066 PMCID: PMC6006678 DOI: 10.1016/j.redox.2018.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/∆ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/∆ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/∆ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/∆ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/∆ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/∆ and aged WT mice. Chronic treatment of Ercc1-/∆ mice with the mitochondrial-targeted radical scavenger XJB-5-131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline.
Collapse
Affiliation(s)
- Andria R Robinson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tania A Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xuesen Li
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeremy S Tilstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Chelsea H Feldman
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Siobhán Q Gregg
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Erin M Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marie-Céline Frantz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Harris Bell-Temin
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hannah Pope-Varsalona
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditi U Gurkar
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Luigi A Nasto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Paediatric Orthopaedics, G. Gaslini Children's Hospital, Genoa, Italy
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Heike Fuhrmann-Stroissnigg
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sara J McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Jamie B Harris
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Salony Maniar
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christy E Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nam V Vo
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lora H Rigatti
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Patricia L Opresko
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christin E Burd
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus OH 43210 USA
| | - Claudette M St Croix
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gary Siuzdak
- The Scripps Research Institute California, La Jolla, CA 92037, USA
| | - Nathan A Yates
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Biomedical Mass Spectrometry Center, Schools of the Health Sciences University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul D Robbins
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eric E Kelley
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - Laura J Niedernhofer
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
50
|
Chen YW, Ko WC, Chen CS, Chen PL. RIOK-1 Is a Suppressor of the p38 MAPK Innate Immune Pathway in Caenorhabditis elegans. Front Immunol 2018; 9:774. [PMID: 29719537 PMCID: PMC5913292 DOI: 10.3389/fimmu.2018.00774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 01/08/2023] Open
Abstract
Innate immunity is the primary defense mechanism against infection in metazoans. However, aberrant upregulation of innate immune-signaling pathways can also be detrimental to the host. The p38 MAPK/PMK-1 innate immune-signaling pathway has been demonstrated to play essential roles in cellular defenses against numerous infections in metazoans, including Caenorhabditis elegans. However, the negative regulators that maintain the homeostasis of this important innate immune pathway remain largely understudied. By screening a focused RNAi library against the kinome of C. elegans, we identified RIOK-1, a human RIO kinase homolog, as a novel suppressor of the p38 MAPK/PMK-1 signal pathway. We demonstrated that the suppression of riok-1 confers resistance to Aeromonas dhakensis infection in C. elegans. Using quantitative real time-PCR and riok-1 reporter worms, we found the expression levels of riok-1 to be significantly upregulated in worms infected with A. dhakensis. Our genetic epistasis analysis suggested that riok-1 acts on the upstream of the p38 MAPK/pmk-1 genetic pathway. Moreover, the suppression of riok-1 enhanced the p38 MAPK signal, suggesting that riok-1 is a negative regulator of this innate pathway in C. elegans. Our epistatic results put riok-1 downstream of skn-1, which encodes a p38 MAPK downstream transcription factor and serves as a feedback loop to the p38 MAPK pathway during an A. dhakensis infection. In conclusion, riok-1 is proposed as a novel innate immune suppressor and as a negative feedback loop model involving p38 MAPK, SKN-1, and RIOK-1 in C. elegans.
Collapse
Affiliation(s)
- Yi-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|