1
|
Cotten ML, Starich MR, He Y, Yin J, Yuan Q, Tjandra N. NMR chemical shift assignment of Drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:129-134. [PMID: 38822991 PMCID: PMC11511771 DOI: 10.1007/s12104-024-10178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly Drosophila melanogaster. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.
Collapse
Affiliation(s)
- Myriam L Cotten
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Mary R Starich
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Awuoche E, Smallenberger G, Bruzzese D, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620045. [PMID: 39484388 PMCID: PMC11527105 DOI: 10.1101/2024.10.24.620045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tsetse flies ( Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes ( Gff ). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma- mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the midgut tissue along with functional assays. Our findings reveal elevated oxidative stress in the midgut environment in the presence of Spiroplasma , evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like , homologous to Stomoxyns first discovered in the stable fly Stomoxys calcitrans . We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. Gff Stomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic Gff Stomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro . Reducing Gff Stomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo . Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma -infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, Gff Stomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the midgut and prevent gut colonization. We discuss the molecular characteristics of Gff Stomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics. Author Summary The tsetse fly, Glossina fuscipes fuscipes ( Gff ) is of high public health relevance. Gff exhibits strong innate resistance to trypanosomes, especially when infected with the endosymbiotic bacterium Spiroplasma . This study investigated how the bacterium Spiroplasma inside Gff enables them to be resistant to trypanosome infection. Our results indicate alterations in host lipid metabolism with reduction in levels of triglycerides, suggesting a potential metabolic barrier that limits the viability to parasite. In addition, we discovered a small peptide, stomoxyn, exclusively in Gff and related Palpalis tsetse species. We have shown that Gff synthetic Stomoxyn has antibacterial and antitrypanosomal properties and lowering Stomoxyn levels in Gff correlates with increased parasite prevalence. We suggest that strategies to increase Spiroplasma prevalence or enhance stomoxyn expression through paratransgenic approaches could be promising avenues for reducing trypanosomiasis transmission.
Collapse
|
3
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
4
|
Yi SC, Chen XH, Wu YH, Wu J, Wang JQ, Wang MQ. Identification of odorant-binding proteins and functional analysis of antenna-specific BhorOBP28 in Batocera horsfieldi (Hope). PEST MANAGEMENT SCIENCE 2024; 80:4055-4068. [PMID: 38567786 DOI: 10.1002/ps.8112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications. RESULTS In this research, 36 BhorOBPs genes were identified via transcriptome sequencing of adults' antennae from B. horsfieldi, and most BhorOBPs were predominantly expressed in chemosensory body parts. Through fluorescence competitive binding and fluorescence quenching assays, the antenna-specific BhorOBP28 was investigated and displayed strong binding affinities forming stable complexes with five volatiles, including (+)-α-Pinene, (+)-Limonene, β-Pinene, (-)-Limonene, and (+)-Longifolene, which could also elicit conformation changes when they were interacting with BhorOBP28. Batocera horsfieldi females exhibited a preference for (-)-Limonene, and a repellent response to (+)-Longifolene. Feeding dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of BhorOBP28, and could further impair B. horsfieldi attraction to (-)-Limonene and repellent activity of (+)-Longifolene. The analysis of site-directed mutagenesis revealed that Leu7, Leu72, and Phe121 play a vital role in selectively binding properties of BhorOBP28. CONCLUSION By modeling the molecular mechanism of olfactory recognition, these results demonstrate that BhorOBP28 is involved in the chemoreception of B. horsfieldi. The bacterial-expressed dsRNA delivery system gains new insights into potential population management strategies. Through the olfactory process concluded that discovering novel behavioral regulation and environmentally friendly control options for B. horsfieldi in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin-Hui Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Hang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Juan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Qing Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Pan Q, Yu SJ, Lei S, Zhang SH, Ding LL, Liu L, Li SC, Wang XF, Lou BH, Ran C. Bacterial Symbionts Contribute to Insecticide Susceptibility of Diaphorina citri via Changing the Expression Level of Host Detoxifying Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15164-15175. [PMID: 38938126 DOI: 10.1021/acs.jafc.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Insecticide susceptibility is mainly determined by the insect host, but symbiotic bacteria are also an important affecting factor. In this study, we investigate the relationship between the structure of gut bacterial symbionts and insecticide susceptibility in Diaphorina citri, the important carrier of Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). Our results indicated that antibiotic treatment significantly increased the susceptibility of D. citri to bifenthrin and thiamethoxam, and significantly decreased the relative abundance of Wolbachia and Profftella, enzyme activities of CarEs, and expression level of multiple CarE genes. The relative loads of Wolbachia and Profftella were positively correlated with DcitCCE13, DcitCCE14, DcitCCE15, and DcitCCE16. RNAi and prokaryotic expression revealed that DcitCCE15 is associated with bifenthrin metabolism. These results revealed that bacterial symbionts might regulate DcitCCE15 expression, which is involved in the susceptibility of D. citri to bifenthrin.
Collapse
Affiliation(s)
- Qi Pan
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Shi-Jiang Yu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Shuang Lei
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Shao-Hui Zhang
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Li-Li Ding
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Liu Liu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Si-Chen Li
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Xue-Feng Wang
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, Guangxi, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, Guangxi, China
| | - Chun Ran
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| |
Collapse
|
6
|
Alvarenga PH, Alves E Silva TL, Suzuki M, Nardone G, Cecilio P, Vega-Rodriguez J, Ribeiro JMC, Andersen JF. Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed Aedes aegypti Female and Male Mosquitoes. J Proteome Res 2024; 23:1471-1487. [PMID: 38576391 DOI: 10.1021/acs.jproteome.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition.
Collapse
Affiliation(s)
- Patricia H Alvarenga
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Thiago Luiz Alves E Silva
- Molecular Parasitology and Entomology Unit, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Motoshi Suzuki
- Protein and Chemistry Section, Research Technologies Branch, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Glenn Nardone
- Protein and Chemistry Section, Research Technologies Branch, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Joel Vega-Rodriguez
- Molecular Parasitology and Entomology Unit, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| |
Collapse
|
7
|
Wang JJ, Ma C, Yue Y, Yang J, Chen LX, Wang YT, Zhao CC, Gao X, Chen HS, Ma WH, Zhou Z. Identification of candidate chemosensory genes in Bactrocera cucurbitae based on antennal transcriptome analysis. Front Physiol 2024; 15:1354530. [PMID: 38440345 PMCID: PMC10910661 DOI: 10.3389/fphys.2024.1354530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
The melon fly, Bactrocera cucurbitae (Coquillett) (Tephritidae: Diptera), is an invasive pest that poses a significant threat to agriculture in Africa and other regions. Flies are known to use their olfactory systems to recognise environmental chemical cues. However, the molecular components of the chemosensory system of B. cucurbitae are poorly characterised. To address this knowledge gap, we have used next-generation sequencing to analyse the antenna transcriptomes of sexually immature B. cucurbitae adults. The results have identified 160 potential chemosensory genes, including 35 odourant-binding proteins (OBPs), one chemosensory protein (CSP), three sensory neuron membrane proteins (SNMPs), 70 odourant receptors (ORs), 30 ionotropic receptors (IRs), and 21 gustatory receptors (GRs). Quantitative real-time polymerase chain reaction quantitative polymerase chain reaction was used to validate the results by assessing the expression profiles of 25 ORs and 15 OBPs. Notably, high expression levels for BcucOBP5/9/10/18/21/23/26 were observed in both the female and male antennae. Furthermore, BcucOROrco/6/7/9/13/15/25/27/28/42/62 exhibited biased expression in the male antennae, whereas BcucOR55 showed biased expression in the female antennae. This comprehensive investigation provides valuable insights into insect olfaction at the molecular level and will, thus, help to facilitate the development of enhanced pest management strategies in the future.
Collapse
Affiliation(s)
- Jing Jing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yang Yue
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Li Xiang Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yi Ting Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | | | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hong Song Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
8
|
Spencer N, Santee M, Wetherhold A, Rio RVM. Draft genome sequence of Wigglesworthia glossinidia "palpalis gambiensis" isolate. Microbiol Resour Announc 2024; 13:e0091223. [PMID: 38206026 PMCID: PMC10868223 DOI: 10.1128/mra.00912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
The 0.719 Mb genome of the tsetse endosymbiont, Wigglesworthia glossinidia, from Glossina palpalis gambiensis is presented. This Wigglesworthia genome retains 611 protein-coding sequences and a 25.3% GC content. A cryptic plasmid is conserved, between Wigglesworthia isolates, suggesting functional significance. This genome adds a further dimension to characterize Wigglesworthia lineage-based differences.
Collapse
Affiliation(s)
- Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Mathilda Santee
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Adam Wetherhold
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Rita V. M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
10
|
Bing XL, Liang ZJ, Tian J, Gong X, Huang SQ, Chen J, Hong XY. The influence of Acetobacter pomorum bacteria on the developmental progression of Drosophila suzukii via gluconic acid secretion. Mol Ecol 2024; 33:e17202. [PMID: 37947376 DOI: 10.1111/mec.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zi-Jian Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xue Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shao-Qiu Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
12
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Mee L, Barribeau SM. Influence of social lifestyles on host-microbe symbioses in the bees. Ecol Evol 2023; 13:e10679. [PMID: 37928198 PMCID: PMC10620586 DOI: 10.1002/ece3.10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Microbiomes are increasingly recognised as critical for the health of an organism. In eusocial insect societies, frequent social interactions allow for high-fidelity transmission of microbes across generations, leading to closer host-microbe coevolution. The microbial communities of bees with other social lifestyles are less studied, and few comparisons have been made between taxa that vary in social structure. To address this gap, we leveraged a cloud-computing resource and publicly available transcriptomic data to conduct a survey of microbial diversity in bee samples from a variety of social lifestyles and taxa. We consistently recover the core microbes of well-studied corbiculate bees, supporting this method's ability to accurately characterise microbial communities. We find that the bacterial communities of bees are influenced by host location, phylogeny and social lifestyle, although no clear effect was found for fungal or viral microbial communities. Bee genera with more complex societies tend to harbour more diverse microbes, with Wolbachia detected more commonly in solitary tribes. We present a description of the microbiota of Euglossine bees and find that they do not share the "corbiculate core" microbiome. Notably, we find that bacteria with known anti-pathogenic properties are present across social bee genera, suggesting that symbioses that enhance host immunity are important with higher sociality. Our approach provides an inexpensive means of exploring microbiomes of a given taxa and identifying avenues for further research. These findings contribute to our understanding of the relationships between bees and their associated microbial communities, highlighting the importance of considering microbiome dynamics in investigations of bee health.
Collapse
Affiliation(s)
- Lauren Mee
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Seth M. Barribeau
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
14
|
Huang G, Liu Z, Gu S, Zhang B, Sun J. Identification and functional analysis of odorant-binding proteins of the parasitoid wasp Scleroderma guani reveal a chemosensory synergistic evolution with the host Monochamus alternatus. Int J Biol Macromol 2023; 249:126088. [PMID: 37532193 DOI: 10.1016/j.ijbiomac.2023.126088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Scleroderma guani is a generalist ectoparasitoid of wood-boring insects. The chemosensory genes expressed in its antennae play crucial roles in host-seeking. In the present study, we identified 14 OBP genes for the first time from the antennae transcriptomes and genomic data of S. guani. The expression profiles of 14 OBPs were tested by RT-qPCR, and the RT-qPCR results showed that SguaOBP2/5/6/11/12/13 were specifically highly expressed in the female antennae. Then we performed ligand binding assays to test the interactions between six selected SguaOBPs with host specific chemical compounds from M. alternatus and pines. The binding results indicated that SguaOBP12 had a higher binding affinity with longifolene, β-caryophyllene, α-pinene, β-pinene, myrcene, butylated hydroxytoluene, and 3-carene. SguaOBP11 had a high or medium binding affinity with them. Furthermore, both SguaOBP11 and SguaOBP12 had a medium binding affinity with the aggregation pheromone of Monochamus species, 2-undecyloxy-1-ethanol. Finally, by using molecular docking and RNAi, we further explored the molecular interactions and behavioral functions of SguaOBP11 and SguaOBP12 with these vital odor molecules. Our study contributes to the further understanding of chemical communications between S. guani and its host, and further exploration for its role as a more effective biological control agent.
Collapse
Affiliation(s)
- Guangzhen Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhudong Liu
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shaohua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Attardo GM, Benoit JB, Michalkova V, Kondragunta A, Baumann AA, Weiss BL, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. iScience 2023; 26:107108. [PMID: 37534171 PMCID: PMC10391724 DOI: 10.1016/j.isci.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023] Open
Abstract
Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.
Collapse
Affiliation(s)
- Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron A. Baumann
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Institute of Molecular Genetics (IGM), Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
17
|
Wang Z, Chang Z, Liu Z, Zhang S. Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts. INSECTS 2023; 14:638. [PMID: 37504644 PMCID: PMC10380252 DOI: 10.3390/insects14070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Chemical communication is widespread among insects and exploited to adjust their behavior, such as food and habitat seeking and preferences, recruitment, defense, and mate attraction. Recently, many studies have revealed that microbial symbionts could regulate host chemical communication by affecting the synthesis and perception of insect semiochemicals. In this paper, we review recent studies of the influence of microbial symbionts on insect chemoreception. Microbial symbionts may influence insect sensitivity to semiochemicals by regulating the synthesis of odorant-binding proteins or chemosensory proteins and olfactory or gustatory receptors and regulating host neurotransmission, thereby adjusting insect behavior. The manipulation of insect chemosensory behavior by microbial symbionts is conducive to their proliferation and dispersal and provides the impetus for insects to change their feeding habits and aggregation and dispersal behavior, which contributes to population differentiation in insects. Future research is necessary to reveal the material and information exchange between both partners to improve our comprehension of the evolution of chemoreception in insects. Manipulating insect chemoreception physiology by inoculating them with microbes could be utilized as a potential approach to managing insect populations.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenzhen Chang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
18
|
Wang Z, Yong H, Zhang S, Liu Z, Zhao Y. Colonization Resistance of Symbionts in Their Insect Hosts. INSECTS 2023; 14:594. [PMID: 37504600 PMCID: PMC10380809 DOI: 10.3390/insects14070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The symbiotic microbiome is critical in promoting insect resistance against colonization by exogenous microorganisms. The mechanisms by which symbionts contribute to the host's immune capacity is referred to as colonization resistance. Symbionts can protect insects from exogenous pathogens through a variety of mechanisms, including upregulating the expression of host immune-related genes, producing antimicrobial substances, and competitively excluding pathogens. Concordantly, insects have evolved fine-tuned regulatory mechanisms to avoid overactive immune responses against symbionts or specialized cells to harbor symbionts. Alternatively, some symbionts have evolved special adaptations, such as the formation of biofilms to increase their tolerance to host immune responses. Here, we provide a review of the mechanisms about colonization resistance of symbionts in their insect hosts. Adaptations of symbionts and their insect hosts that may maintain such symbiotic relationships, and the significance of such relationships in the coevolution of symbiotic systems are also discussed to provide insights into the in-depth study of the contribution of symbionts to host physiology and behavior.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzi Yong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yaru Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
19
|
Chantaphanwattana T, Houdelet C, Sinpoo C, Voisin SN, Bocquet M, Disayathanoowat T, Chantawannakul P, Bulet P. Proteomics and Immune Response Differences in Apis mellifera and Apis cerana Inoculated with Three Nosema ceranae Isolates. J Proteome Res 2023. [PMID: 37163710 DOI: 10.1021/acs.jproteome.3c00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nosema ceranae infects midgut epithelial cells of the Apis species and has jumped from its original host A. cerana to A. mellifera worldwide, raising questions about the response of the new host. We compared the responses of these two species to N. ceranae isolates from A. cerana, A. mellifera from Thailand and A. mellifera from France. Proteomics and transcriptomics results were combined to better understand the impact on the immunity of the two species. This is the first combination of omics analyses to evaluate the impact of N. ceranae spores from different origins and provides new insights into the differential immune responses in honeybees inoculated with N. ceranae from original A. cerana. No difference in the antimicrobial peptides (AMPs) was observed in A. mellifera, whereas these peptides were altered in A. cerana compared to controls. Inoculation of A. mellifera or A. cerana with N. ceranae upregulated AMP genes and cellular-mediated immune genes but did not significantly alter apoptosis-related gene expression. A. cerana showed a stronger immune response than A. mellifera after inoculation with different N. ceranae isolates. N. ceranae from A. cerana had a strong negative impact on the health of A. mellifera and A. cerana compared to other Nosema isolates.
Collapse
Affiliation(s)
- Thunyarat Chantaphanwattana
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, 50200 Chiang Mai, Thailand
- Graduate School, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Camille Houdelet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
- UMR1419 Nutrition, Métabolisme, Aquaculture (NuMéA), Aquapôle INRAE, 64310 Saint Pée sur Nivelle, France
| | - Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Sébastien N Voisin
- Plateforme BioPark d'Archamps, 218 Avenue Marie Curie, 74160 Archamps, France
- Phylogen S.A., 62 RN113, 30620 Bernis, France
| | - Michel Bocquet
- APIMEDIA, 82 Route de Proméry, Pringy, 74370 Annecy, France
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, 50200 Chiang Mai, Thailand
- Research Center in Deep Technology Associated with Beekeeping and Bee Products for Sustainable Development Goals, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Philippe Bulet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
- Plateforme BioPark d'Archamps, 218 Avenue Marie Curie, 74160 Archamps, France
| |
Collapse
|
20
|
Li X, Sun Y, Tian X, Wang C, Li Q, Li Q, Zhu S, Lan C, Zhang Y, Li X, Ding R, Zhu X. Sitobion miscanthi L type symbiont enhances the fitness and feeding behavior of the host grain aphid. PEST MANAGEMENT SCIENCE 2023; 79:1362-1371. [PMID: 36458953 DOI: 10.1002/ps.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Symbiotic bacteria affect physiology and ecology of insect hosts. The Sitobion miscanthi L type symbiont (SMLS) is a recently discovered and widely distributed secondary symbiont in the grain aphid Sitobion miscanthi Takahashi in China. RESULTS In this study, SMLS-infected (SI) and SMLS-uninfected (SU) aphid strains were obtained from field population. The artificially SMLS-re-infected (SRI) strain was established by injecting SU aphids with the SI strain hemolymph containing SMLS. The SRI and SU strains had identical genetic backgrounds and similar microbial community structures. Compared with the SU strain, adult longevity, survival rate, and fecundity were significantly greater in the SRI strain (biological fitness of 1.48). Moreover, the SRI strain spent more time ingesting phloem than the SU strain. A comparative transcriptome analysis indicated that reproduction- and longevity-related genes were more highly expressed in the SRI strain than in the SU strain. CONCLUSION The findings indicated that the infection with SMLS enhanced the Sitobion miscanthi fitness and feeding behavior. The beneficial effect of the SMLS on hosts could explain why it frequently infects the field populations in the grain aphid Sitobion miscanthi Takahashi in China. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Yulin Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xujun Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qiuchi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Saige Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruifeng Ding
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526941. [PMID: 36798169 PMCID: PMC9934574 DOI: 10.1101/2023.02.03.526941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Geoffrey D. Findlay
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
23
|
Li R, Shan S, Song X, Khashaveh A, Wang S, Yin Z, Lu Z, Dhiloo KH, Zhang Y. Plant volatile ligands for male-biased MmedOBP14 stimulate orientation behavior of the parasitoid wasp Microplitis mediator. Int J Biol Macromol 2022; 223:1521-1529. [PMID: 36400212 DOI: 10.1016/j.ijbiomac.2022.11.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
As an important class of chemosensory-associated proteins, odorant binding proteins (OBPs) play a key role in the perception of olfactory signals for insects. Parasitoid wasp Microplitis mediator relies on its sensitive olfactory system to locate host larvae of Noctuidae and Geometridae. In the present study, MmedOBP14, a male-biased OBP in M. mediator, was functionally investigated. In fluorescence competitive binding assays, the recombinant MmedOBP14 showed strong binding abilities to five plant volatiles: β-ionone, 3,4-dimethylacetophenone, 4-ethylacetophenone, acetophenone and ocimene. Homology modeling and molecular docking results indicated that the binding sites of all five ligands were similar and concentrated in the binding pocket of MmedOBP14. Except acetophenone, the remaining four ligands at 1, 10 and 100 μg/μL caused strong antennal electrophysiological responses in adults M. mediator, and males showed more obvious EAG responses to most ligands than females. In behavioral trials, males were attracted by low concentrations of MmedOBP14 ligands, whereas high doses of β-ionone and acetophenone had a repellent effect on males. Moreover, 1 μg/μL of 3,4-dimethylacetophenone showed the strongest attractiveness to female wasps. These findings suggest that MmedOBP14 may play a more important role in the perception of plant volatiles for male wasps to locate habitat, supplement nutrition and search partners.
Collapse
Affiliation(s)
- Ruijun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuan Song
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixuan Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China..
| |
Collapse
|
24
|
Diet Influences the Gut Microbial Diversity and Olfactory Preference of the German Cockroach Blattella germanica. Curr Microbiol 2022; 80:23. [PMID: 36460931 DOI: 10.1007/s00284-022-03123-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
The gut microbiota of insects has been proven to play a role in the host's nutrition and foraging. The German cockroach, Blattella germanica, is an important vector of various pathogens and causes severe allergic reactions in humans. Food bait is an effective and frequently used method of controlling this omnivorous insect. Thus, understanding the relationships among diet, gut microbiota, and olfactory preferences could be useful for optimizing this management strategy. In this study, B. germanica was exposed to different foods, i.e., high-fat diet, high-protein diet, high-starch diet, and dog food (as control). Then their gut microbial and olfactory responses were investigated. 16S rRNA gene sequencing confirmed that the gut microbiota significantly differed across the four treatments, especially in relation to bacteria associated with the metabolism and digestion of essential components. Behavioral tests and the antenna electrophysiological responses showed that insects had a greater preference for other types of diets compared with their long-term domesticated diet. Moreover, continuously providing a single-type diet could change almost all the OR genes' expression of B. germanica, especially BgORco, which was significantly repressed compared to control. These results indicate that diet can shape the gut microbiota diversity and drive the olfactory preference of B. germanica. The association between gut microbiota profiles and diets can be utilized in managing B. germanica according to their olfactory preference.
Collapse
|
25
|
Dieng MM, Augustinos AA, Demirbas-Uzel G, Doudoumis V, Parker AG, Tsiamis G, Mach RL, Bourtzis K, Abd-Alla AMM. Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations. Parasit Vectors 2022; 15:447. [PMID: 36447246 PMCID: PMC9707009 DOI: 10.1186/s13071-022-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Collapse
Affiliation(s)
- Mouhamadou M. Dieng
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Antonios A. Augustinos
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization-Demeter, 26442 Patras, Greece
| | - Güler Demirbas-Uzel
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Vangelis Doudoumis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Andrew G. Parker
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Roppersbergweg 15, 2381 Laab im Walde, Austria
| | - George Tsiamis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Robert L. Mach
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Kostas Bourtzis
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Adly M. M. Abd-Alla
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| |
Collapse
|
26
|
Weiss BL, Rio RVM, Aksoy S. Microbe Profile: Wigglesworthia glossinidia: the tsetse fly's significant other. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001242. [PMID: 36129743 PMCID: PMC10723186 DOI: 10.1099/mic.0.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Wigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia's genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly's vertebrate blood-specific diet. These Wigglesworthia-derived B-vitamins play essential nutritional roles to maintain tsetse's physiological homeostasis as well as that of other members of the fly's microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse's immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia. These amidases in turn exhibit antiparasitic activity and decrease tsetse's ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.
Collapse
Affiliation(s)
- Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Rita V. M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
27
|
McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. INSECT MOLECULAR BIOLOGY 2022; 31:85-100. [PMID: 34613655 DOI: 10.1111/imb.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives.
Collapse
Affiliation(s)
- C H McKenna
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - D Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - T L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, USA
| | - L Zheng
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R A Sherman
- BioTherapeutics, Education and Research (BTER) Foundation, Irvine, CA, USA
- Monarch Labs, Irvine, CA, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A M Tarone
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
28
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
29
|
Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hazem Elewa Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Naitore C, Villinger J, Kibet CK, Kalayou S, Bargul JL, Christoffels A, Masiga DK. The developmentally dynamic microRNA transcriptome of Glossina pallidipes tsetse flies, vectors of animal trypanosomiasis. BIOINFORMATICS ADVANCES 2021; 2:vbab047. [PMID: 36699416 PMCID: PMC9710702 DOI: 10.1093/bioadv/vbab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023]
Abstract
Summary MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Careen Naitore
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| | - Caleb K Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville 7530, South Africa
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| |
Collapse
|
31
|
Sharma A, Kumar R, Varadwaj PK. OBPred: feature-fusion-based deep neural network classifier for odorant-binding protein prediction. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06347-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Guo X, Xuan N, Liu G, Xie H, Lou Q, Arnaud P, Offmann B, Picimbon JF. An Expanded Survey of the Moth PBP/GOBP Clade in Bombyx mori: New Insight into Expression and Functional Roles. Front Physiol 2021; 12:712593. [PMID: 34776998 PMCID: PMC8582636 DOI: 10.3389/fphys.2021.712593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the expression profile and ontogeny (from the egg stage through the larval stages and pupal stages, to the elderly adult age) of four OBPs from the silkworm moth Bombyx mori. We first showed that male responsiveness to female sex pheromone in the silkworm moth B. mori does not depend on age variation; whereas the expression of BmorPBP1, BmorPBP2, BmorGOBP1, and BmorGOBP2 varies with age. The expression profile analysis revealed that the studied OBPs are expressed in non-olfactory tissues at different developmental stages. In addition, we tested the effect of insecticide exposure on the expression of the four OBPs studied. Exposure to a toxic macrolide insecticide endectocide molecule (abamectin) led to the modulated expression of all four genes in different tissues. The higher expression of OBPs was detected in metabolic tissues, such as the thorax, gut, and fat body. All these data strongly suggest some alternative functions for these proteins other than olfaction. Finally, we carried out ligand docking studies and reported that PBP1 and GOBP2 have the capacity of binding vitamin K1 and multiple different vitamins.
Collapse
Affiliation(s)
- Xia Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Xie
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qinian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Bioengineering, QILU University of Technology, Jinan, China
| |
Collapse
|
33
|
Scieuzo C, Nardiello M, Farina D, Scala A, Cammack JA, Tomberlin JK, Vogel H, Salvia R, Persaud K, Falabella P. Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach. INSECTS 2021; 12:814. [PMID: 34564254 PMCID: PMC8469849 DOI: 10.3390/insects12090814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Donatella Farina
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Jonathan A. Cammack
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Jeffery K. Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
34
|
Son JH, Weiss BL, Schneider DI, Dera KSM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abd-Alla AMM, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathog 2021; 17:e1009539. [PMID: 34529715 PMCID: PMC8478229 DOI: 10.1371/journal.ppat.1009539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.
Collapse
Affiliation(s)
- Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kiswend-sida M. Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Insectarium de Bobo-Dioulasso—Campagne d’Eradication de la mouche Tse´-tse´ et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Maria Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
35
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
36
|
Kwon H, Mohammed M, Franzén O, Ankarklev J, Smith RC. Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation. eLife 2021; 10:66192. [PMID: 34318744 PMCID: PMC8376254 DOI: 10.7554/elife.66192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes. Through functional assays relying on phagocytosis, phagocyte depletion, and RNA-FISH experiments, we define markers to accurately distinguish immune cell subtypes and provide evidence for immune cell maturation and differentiation. In addition, gene-silencing experiments demonstrate the importance of lozenge in defining the mosquito oenocytoid cell fate. Together, our scRNA-seq analysis provides an important foundation for future studies of mosquito immune cell biology and a valuable resource for comparative invertebrate immunology.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, United States
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Oscar Franzén
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Microbial Single Cell Genomics facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, United States
| |
Collapse
|
37
|
A new protein protects a symbiotic relationship. Proc Natl Acad Sci U S A 2021; 118:2109637118. [PMID: 34301876 DOI: 10.1073/pnas.2109637118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Li L, Zhang WB, Shan YM, Zhang ZR, Pang BP. Functional Characterization of Olfactory Proteins Involved in Chemoreception of Galeruca daurica. Front Physiol 2021; 12:678698. [PMID: 34177623 PMCID: PMC8221581 DOI: 10.3389/fphys.2021.678698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) play a fundamental role in insect olfaction. Galeruca daurica (Joannis) is a new pest with outbreak status in the Inner Mongolia grasslands, northern China. In this study, six olfactory protein genes (GdauOBP1, GdauOBP6, GdauOBP10, GdauOBP15, GdauCSP4, and GdauCSP5) were cloned by RACE and expressed by constructing a prokaryotic expression system. Their binding affinities to 13 compounds from host volatiles (Allium mongolicum) were determined by fluorescence-binding assay. In order to further explore the olfactory functions of GdauOBP15 and GdauCSP5, RNA interference (RNAi) and electroantennogram (EAG) experiments were conducted. Ligand-binding assays showed that the binding properties of the six recombinant proteins to the tested volatiles were different. GdauOBP6, GdauOBP15, GdauCSP4, and GdauCSP5 could bind several tested ligands of host plants. It was suspected that GdauOBP6, GdauOBP15, GdauCSP4, and GdauCSP5 were related to the host location in G. daurica. We also found that there were different EAG responses between males and females when the GdauOBP15 and GdauCSP5 genes were silenced by RNAi. The EAG response of G. daurica females to 2-hexenal was significantly decreased in dsRNA-OBP15-injected treatment compared to the control, and the dsRNA-CSP5-treated females significantly reduced EAG response to eight tested host volatiles (1,3-dithiane, 2-hexenal, methyl benzoate, dimethyl trisulfide, myrcene, hexanal, 1,3,5-cycloheptatriene, and p-xylene). However, the EAG response had no significant difference in males. Both GdauOBP15 and GdauCSP5 may have different functions between males and females in G. daurica and may play more important roles in females searching for host plants.
Collapse
Affiliation(s)
- Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Bing Zhang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan-Min Shan
- Inner Mongolia Forestry and Grassland Pest Control and Quarantine Station, Hohhot, China
| | - Zhuo-Ran Zhang
- Inner Mongolia Forestry and Grassland Pest Control and Quarantine Station, Hohhot, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
39
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
40
|
Chen P, De Schutter K, Van Damme EJM, Smagghe G. Can Plant Lectins Help to Elucidate Insect Lectin-Mediated Immune Response? INSECTS 2021; 12:insects12060497. [PMID: 34071763 PMCID: PMC8226959 DOI: 10.3390/insects12060497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Lectins are proteins that can recognize and selectively bind specific sugar structures. These proteins are present in all kingdoms of life, including plants, animals, fungi and microorganisms and play a role in a broad range of processes. The interactions between lectins and their target carbohydrates play a primordial role in plant and animal immune systems. Despite being the largest and most diverse taxa on earth, the study of lectins and their functions in insects is lagging behind. To study the role of insect lectins in the immune response, plant lectins could provide an interesting tool. Plant lectins have been well characterized and many of them possess immunomodulatory properties in vertebrate cells. The increasing knowledge on the immunomodulatory effects of plant lectins could complement the missing knowledge on the endogenous insect lectins and contribute to understanding the processes and mechanisms by which lectins participate in insect immunity. This review summarizes existing studies of immune responses stimulated by endogenous or exogenous lectins. Abstract Lectins are carbohydrate-binding proteins that recognize and selectively bind to specific sugar structures. This group of proteins is widespread in plants, animals, and microorganisms, and exerts a broad range of functions. Many plant lectins were identified as exogenous stimuli of vertebrate immunity. Despite being the largest and most diverse taxon on earth, the study of lectins and their functions in insects is lagging behind. In insects, research on lectins and their biological importance has mainly focused on the C-type lectin (CTL) family, limiting our global understanding of the function of insect lectins and their role in insect immunity. In contrast, plant lectins have been well characterized and the immunomodulatory effects of several plant lectins have been documented extensively in vertebrates. This information could complement the missing knowledge on endogenous insect lectins and contribute to understanding of the processes and mechanisms by which lectins participate in insect immunity. This review summarizes existing studies of immune responses stimulated by endogenous or exogenous lectins. Understanding how lectins modulate insect immune responses can provide insight which, in turn, can help to elaborate novel ideas applicable for the protection of beneficial insects and the development of novel pest control strategies.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (P.C.); (K.D.S.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (P.C.); (K.D.S.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (P.C.); (K.D.S.)
- Correspondence:
| |
Collapse
|
41
|
Smith DFQ, Camacho E, Thakur R, Barron AJ, Dong Y, Dimopoulos G, Broderick NA, Casadevall A. Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biol 2021; 19:e3001182. [PMID: 33979323 PMCID: PMC8115815 DOI: 10.1371/journal.pbio.3001182] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raviraj Thakur
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Alexander J. Barron
- Department of Biology, Johns Hopkins University, Baltimore Maryland, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nichole A. Broderick
- Department of Biology, Johns Hopkins University, Baltimore Maryland, United States of America
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021; 11:biom11040509. [PMID: 33808208 PMCID: PMC8067015 DOI: 10.3390/biom11040509] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
Collapse
|
43
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
44
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
45
|
Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 2020; 564:114-133. [PMID: 33162026 DOI: 10.1016/j.bbrc.2020.10.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.
Collapse
|
46
|
Kamareddine L, Najjar H, Sohail MU, Abdulkader H, Al-Asmakh M. The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells 2020; 9:cells9112401. [PMID: 33147801 PMCID: PMC7693214 DOI: 10.3390/cells9112401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the scientific committee has called for broadening our horizons in understanding host–microbe interactions and infectious disease progression. Owing to the fact that the human gut harbors trillions of microbes that exhibit various roles including the production of vitamins, absorption of nutrients, pathogen displacement, and development of the host immune system, particular attention has been given to the use of germ-free (GF) animal models in unraveling the effect of the gut microbiota on the physiology and pathophysiology of the host. In this review, we discuss common methods used to generate GF fruit fly, zebrafish, and mice model systems and highlight the use of these GF model organisms in addressing the role of gut-microbiota in gut-related disorders (metabolic diseases, inflammatory bowel disease, and cancer), and in activating host defense mechanisms and amending pathogenic virulence.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Muhammad Umar Sohail
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadil Abdulkader
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Correspondence: ; Tel.: +974-4403-4789
| |
Collapse
|
47
|
Wu W, Li S, Yang M, Lin Y, Zheng K, Akutse KS. Citronellal perception and transmission by Anopheles gambiae s.s. (Diptera: Culicidae) females. Sci Rep 2020; 10:18615. [PMID: 33122679 PMCID: PMC7596511 DOI: 10.1038/s41598-020-75782-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022] Open
Abstract
Anopheles gambiae s.s. is a key vector of Plasmodium parasites. Repellents, which may be a promising alternative to pesticides used to control malaria mosquitoes. Although citronellal is a known mosquito repellent, its repellency characteristics are largely unknown. Determining the specific odorant-binding proteins (OBPs) and odorant receptors (ORs) that detect and transfer the citronellal molecule in A. gambiae s.s. will help to define the mode of action of this compound. In this research, we assessed the repellent activity of citronellal in A. gambiae s.s. using a Y-tube olfactory meter, screened candidate citronellal-binding OBPs and ORs using reverse molecular docking, clarified the binding properties of predicted proteins for citronellal using fluorescence competition binding assay. Results showed that citronellal had a dosage effect on repelling A. gambiae s.s.. The 50% repellent rate was determined to be 4.02 nmol. Results of simulated molecular docking showed that the only proteins that bound tightly with citronellal were AgamOBP4 and AgamORC7. Fluorescence competitive binding assays confirmed the simulations. This research determined that citronellal was captured by AgamOBP4 and transmitted to AgamORC7 in A. gambiae s.s.. Our study will be beneficial in the further understanding the repellent mechanism of citronellal against A. gambiae s.s..
Collapse
Affiliation(s)
- Weijian Wu
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Shanshan Li
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Min Yang
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Yongwen Lin
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China.
| | - Kaibin Zheng
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
48
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
49
|
Liu XQ, Jiang HB, Liu Y, Fan JY, Ma YJ, Yuan CY, Lou BH, Wang JJ. Odorant binding protein 2 reduces imidacloprid susceptibility of Diaphorina citri. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104642. [PMID: 32711775 DOI: 10.1016/j.pestbp.2020.104642] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/24/2020] [Accepted: 06/19/2020] [Indexed: 05/12/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri, is the principal vector of Huanglongbing pathogen Candidatus Liberibacter asiaticus (CLas), which causes severe economic losses to citrus industry worldwide. Use of broad-spectrum insecticides to control D. citri has resulted in considerable resistance development. Specific chemosensory proteins such as odorant binding proteins (OBPs) are potentially involved in reduced insecticide susceptibility. However, functional data on the contribution of OBPs to reduced susceptibility of D. citri are unavailable. We found that DcitOBP2 was stably expressed in different developmental stages and highly expressed in the legs, head and cuticle of D. citri. Expression of DcitOBP2 was significantly induced by 12 to 48 h of imidacloprid exposure and ranged from a 1.34- to 2.44-fold increase. RNAi of DcitOBP2 increased the susceptibility of D. citri adults to imidacloprid. The purified recombinant protein of DcitOBP2 expressed in Escherichia coli showed strong in vitro binding activity (Kd = 62.39 nM) to imidacloprid using microscale thermophoresis technology (MST). DcitOBP2 also had strong binding ability to thiamethoxam and dinotefuran but it had no response to abamectin, fenpropathrin and chlorpyrifos. The results showed that DcitOBP2 can interact with several neonicotinoid insecticides. This suggests that DcitOBP2 is involved in the decreased susceptibility of D. citri to imidacloprid. Our data reveal a new function of insect OBPs as a buffering protein that helps insects survive insecticide exposure. Our investigation may also aid in the development of new methods for resistance management of D. citri.
Collapse
Affiliation(s)
- Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ya-Juan Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Chen-Yang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Citrus Biology, Guangxi Citrus Research Institute, Gulin, Guangxi 541004, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
50
|
Zhang YC, Gao SS, Xue S, Zhang KP, Wang JS, Li B. Odorant-Binding Proteins Contribute to the Defense of the Red Flour Beetle, Tribolium castaneum, Against Essential Oil of Artemisia vulgaris. Front Physiol 2020; 11:819. [PMID: 32982763 PMCID: PMC7488584 DOI: 10.3389/fphys.2020.00819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The function of odorant-binding proteins (OBPs) in insect chemodetection has been extensively studied. However, the role of OBPs in the defense of insects against exogenous toxic substances remains elusive. The red flour beetle, Tribolium castaneum, a major pest of stored grains, causes serious economic losses for the agricultural grain and food processing industries. Here, biochemical analysis showed that essential oil (EO) from Artemisia vulgaris, a traditional Chinese medicine, has a strong contact killing effect against larvae of the red flour beetle. Furthermore, one OBP gene, TcOBPC11, was significantly induced after exposure to EO. RNA interference (RNAi) against TcOBPC11 led to higher mortality compared with the controls after EO treatment, suggesting that this OBP gene is associated with defense of the beetle against EO and leads to a decrease in sensitivity to the EO. Tissue expression profiling showed that expression of TcOBPC11 was higher in the fat body, Malpighian tubule, and hemolymph than in other larval tissues, and was mainly expressed in epidermis, fat body, and antennae from the early adult. The developmental expression profile revealed that expression of TcOBPC11 was higher in late larval stages and adult stages than in other developmental stages. These data indicate that TcOBPC11 may be involved in sequestration of exogenous toxicants in the larvae of T. castaneum. Our results provide a theoretical basis for the degradation mechanism of exogenous toxicants and identify potential novel targets for controlling the beetle.
Collapse
Affiliation(s)
- Yuan-chen Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shan-shan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuang Xue
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kun-peng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jing-shun Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|