1
|
Lee CL, Lin YC, Kuo TH. The impact of social partners: investigating mixed-strain housing effects on aging in female mice. Biogerontology 2024; 25:1263-1274. [PMID: 39261412 DOI: 10.1007/s10522-024-10139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Aging is a multifaceted process characterized by the gradual decline of physiological functions and can be modulated by various internal and external factors. While social interactions have been shown to affect behaviors and physiology in different species, the impact of social partners on aging-related phenotypes and lifespan in mice remains understudied. To address this question, we investigated various aging-related traits and lifespan in two mouse strains, C57BL/6J and BALB/c, under two different housing conditions: mixed-strain and same-strain housing. Analyses using a Generalized Linear Model revealed significant differences between the two strains in several phenotypes, including metabolic, anxiety-like, and electrocardiographic traits. However, surprisingly, housing conditions did not significantly affect most of the examined parameters, including overall lifespan. Only 3 out of 25 traits-body weight change in a metabolic cage, running wheel activity, and survival days of a quartiles of mice with middle lifespans-were influenced by housing conditions in a strain-dependent manner. Together, our study suggested a minimal influence of co-housing with social partners from different genetic backgrounds on aging-related phenotypes. This result demonstrates the feasibility of mixed housing for mouse husbandry and, more importantly, provides valuable insights for future research on the social influences on the aging process in mice.
Collapse
Affiliation(s)
- Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Chiao Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
2
|
Lind MI, Mautz BS, Carlsson H, Hinas A, Gudmunds E, Maklakov AA. Sex-specific growth and lifespan effects of germline removal in the dioecious nematode Caenorhabditis remanei. Aging Cell 2024; 23:e14290. [PMID: 39082232 PMCID: PMC11561660 DOI: 10.1111/acel.14290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 11/15/2024] Open
Abstract
Germline regulates the expression of life-history traits and mediates the trade-off between reproduction and somatic maintenance. However, germline maintenance in itself can be costly, and the costs can vary between the sexes depending on the number of gametes produced across the lifetime. We tested this directly by germline ablation using glp-1 RNA interference (RNAi) in a dioecious nematode Caenorhabditis remanei. Germline removal strongly increased heat-shock resistance in both sexes, thus confirming the role of the germline in regulating somatic maintenance. However, germline removal resulted in increased lifespan only in males. High costs of mating strongly reduced lifespan in both sexes and obliterated the survival benefit of germline-less males even though neither sex produced any offspring. Furthermore, germline removal reduced male growth before maturation but not in adulthood, while female growth rate was reduced both before and especially after maturation. Thus, germline removal improves male lifespan without major growth costs, while germline-less females grow slower and do not live longer than reproductively functional counterparts in the absence of environmental stress. Overall, these results suggest that germline maintenance is costlier for males than for females in C. remanei.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- Department of Environmental and BiosciencesHalmstad UniversityHalmstadSweden
| | - Brian S. Mautz
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- Population Analytics & Insights, Data Sciences Analytics & InsightsInnovative Medicine Research & Development, Johnson & JohnsonSpring HousePennsylvaniaUSA
| | - Hanne Carlsson
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andrea Hinas
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Erik Gudmunds
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Alexei A. Maklakov
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
3
|
Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM. Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. NPJ Microgravity 2024; 10:79. [PMID: 39060303 PMCID: PMC11282318 DOI: 10.1038/s41526-024-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Spaceflight presents significant challenges to the physiological state of living organisms. This can be due to the microgravity environment experienced during long-term space missions, resulting in alterations in muscle structure and function, such as atrophy. However, a comprehensive understanding of the adaptive mechanisms of biological systems is required to devise potential solutions and therapeutic approaches for adapting to spaceflight conditions. This review examines the current understanding of the challenges posed by spaceflight on physiological changes, alterations in metabolism, dysregulation of pathways and the suitability and advantages of using the model organism Caenorhabditis elegans nematodes to study the effects of spaceflight. Research has shown that changes in the gene and protein composition of nematodes significantly occur across various larval stages and rearing environments, including both microgravity and Earth gravity settings, often mirroring changes observed in astronauts. Additionally, the review explores significant insights into the fundamental metabolic changes associated with muscle atrophy and growth, which could lead to the development of diagnostic biomarkers and innovative techniques to prevent and counteract muscle atrophy. These insights not only advance our understanding of microgravity-induced muscle atrophy but also lay the groundwork for the development of targeted interventions to mitigate its effects in the future.
Collapse
Affiliation(s)
- Laura J Beckett
- School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Volker Hessel
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Lukas Gerstweiler
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
4
|
Weng Y, Murphy CT. Male-specific behavioral and transcriptomic changes in aging C. elegans neurons. iScience 2024; 27:109910. [PMID: 38783998 PMCID: PMC11111838 DOI: 10.1016/j.isci.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Aging is a complex biological process with sexually dimorphic aspects. Although cognitive aging of Caenorhabditis elegans hermaphrodites has been studied, less is known about cognitive decline in males. We found that cognitive aging has both sex-shared and sex-dimorphic characteristics, and we identified neuron-specific age-associated sex-differential targets. In addition to sex-shared neuronal aging genes, males differentially downregulate mitochondrial metabolic genes and upregulate GPCR genes with age, while the X chromosome exhibits increased gene expression in hermaphrodites and altered dosage compensation complex expression with age, indicating possible X chromosome dysregulation that contributes to sexual dimorphism in cognitive aging. Finally, the sex-differentially expressed gene hrg-7, an aspartic-type endopeptidase, regulates male cognitive aging but does not affect hermaphrodites' behaviors. These results suggest that males and hermaphrodites exhibit different age-related neuronal changes. This study will strengthen our understanding of sex-specific vulnerability and resilience and identify pathways to target with treatments that could benefit both sexes.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Bhar S, Yoon CS, Mai K, Han J, Prajapati DV, Wang Y, Steffen CL, Bailey LS, Basso KB, Butcher RA. An acyl-CoA thioesterase is essential for the biosynthesis of a key dauer pheromone in C. elegans. Cell Chem Biol 2024; 31:1011-1022.e6. [PMID: 38183989 PMCID: PMC11102344 DOI: 10.1016/j.chembiol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/02/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the β-keto acyl-CoA side chain of an ascaroside intermediate during β-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The β-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.
Collapse
Affiliation(s)
- Subhradeep Bhar
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Chi-Su Yoon
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kevin Mai
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jungsoo Han
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dilip V Prajapati
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yuting Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Candy L Steffen
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
6
|
Schmeisser K, Kaptan D, Raghuraman BK, Shevchenko A, Rodenfels J, Penkov S, Kurzchalia TV. Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling. Commun Biol 2024; 7:121. [PMID: 38267699 PMCID: PMC10808130 DOI: 10.1038/s42003-024-05804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Damla Kaptan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Rodenfels
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life (PoL), Technical University Dresden, Dresden, Germany
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
7
|
Teuscher AC, Statzer C, Goyala A, Domenig SA, Schoen I, Hess M, Hofer AM, Fossati A, Vogel V, Goksel O, Aebersold R, Ewald CY. Longevity interventions modulate mechanotransduction and extracellular matrix homeostasis in C. elegans. Nat Commun 2024; 15:276. [PMID: 38177158 PMCID: PMC10766642 DOI: 10.1038/s41467-023-44409-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Dysfunctional extracellular matrices (ECM) contribute to aging and disease. Repairing dysfunctional ECM could potentially prevent age-related pathologies. Interventions promoting longevity also impact ECM gene expression. However, the role of ECM composition changes in healthy aging remains unclear. Here we perform proteomics and in-vivo monitoring to systematically investigate ECM composition (matreotype) during aging in C. elegans revealing three distinct collagen dynamics. Longevity interventions slow age-related collagen stiffening and prolong the expression of collagens that are turned over. These prolonged collagen dynamics are mediated by a mechanical feedback loop of hemidesmosome-containing structures that span from the exoskeletal ECM through the hypodermis, basement membrane ECM, to the muscles, coupling mechanical forces to adjust ECM gene expression and longevity via the transcriptional co-activator YAP-1 across tissues. Our results provide in-vivo evidence that coordinated ECM remodeling through mechanotransduction is required and sufficient to promote longevity, offering potential avenues for interventions targeting ECM dynamics.
Collapse
Affiliation(s)
- Alina C Teuscher
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Max Hess
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Alexander M Hofer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland
| | - Andrea Fossati
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Orcun Goksel
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, CH-8603, Switzerland.
| |
Collapse
|
8
|
Fedina TY, Cummins ET, Promislow DEL, Pletcher SD. The neuropeptide drosulfakinin enhances choosiness and protects males from the aging effects of social perception. Proc Natl Acad Sci U S A 2023; 120:e2308305120. [PMID: 38079545 PMCID: PMC10743377 DOI: 10.1073/pnas.2308305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
The motivation to reproduce is a potent natural drive, and the social behaviors that induce it can severely impact animal health and lifespan. Indeed, in Drosophila males, accelerated aging associated with reproduction arises not from the physical act of courtship or copulation but instead from the motivational drive to court and mate. To better understand the mechanisms underlying social effects on aging, we studied male choosiness for mates. We found that increased activity of insulin-producing cells (IPCs) of the fly brain potentiated choosiness without consistently affecting courtship activity. Surprisingly, this effect was not caused by insulins themselves, but instead by drosulfakinin (DSK), another neuropeptide produced in a subset of the IPCs, acting through one of the two DSK receptors, CCKLR-17D1. Activation of Dsk+ IPC neurons also decreased food consumption, while activation of Dsk+ neurons outside of IPCs affected neither choosiness nor feeding, suggesting an overlap between Dsk+neurons modulating choosiness and those influencing satiety. Broader activation of Dsk+ neurons (both within and outside of the IPCs) was required to rescue the detrimental effect of female pheromone exposure on male lifespan, as was the function of both DSK receptors. The same broad set of Dsk+ neurons was found to reinforce normally aversive feeding interactions, but only after exposure to female pheromones, suggesting that perception of the opposite sex gates rewarding properties of these neurons. We speculate that broad Dsk+ neuron activation is associated with states of satiety and social experience, which under stressful conditions is rewarding and beneficial for lifespan.
Collapse
Affiliation(s)
- Tatyana Y. Fedina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Easton T. Cummins
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
9
|
Angeles-Albores D, Aprison EZ, Dzitoyeva S, Ruvinsky I. A Caenorhabditis elegans Male Pheromone Feminizes Germline Gene Expression in Hermaphrodites and Imposes Life-History Costs. Mol Biol Evol 2023; 40:msad119. [PMID: 37210586 PMCID: PMC10244002 DOI: 10.1093/molbev/msad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Sex pheromones not only improve the reproductive success of the recipients, but also impose costs, such as a reduced life span. The underlying mechanisms largely remain to be elucidated. Here, we show that even a brief exposure to physiological amounts of the dominant Caenorhabditis elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome is the upregulation of genes expressed during oogenesis and the downregulation of genes associated with male gametogenesis. This result reveals a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function with the presence of potential mating partners. We also found that exposure to ascr#10 increased the risk of persistent intestinal infections in hermaphrodites due to pathological pharyngeal hypertrophy. Thus, our study reveals ways in which the male pheromone can not only have beneficial effects on the recipients' reproduction, but also cause harmful consequences that reduce life span.
Collapse
Affiliation(s)
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Garratt M, Neyt C, Ladyman SR, Pyrski M, Zufall F, Leinders-Zufall T. Sensory detection of female olfactory cues as a central regulator of energy metabolism and body weight in male mice. iScience 2023; 26:106455. [PMID: 37020965 PMCID: PMC10067763 DOI: 10.1016/j.isci.2023.106455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Olfactory stimuli from food influence energy balance, preparing the body for digestion when food is consumed. Social chemosensory cues predict subsequent energetic changes required for social interactions and could be an additional sensory input influencing energy balance. We show that exposure to female chemostimuli increases metabolic rate in male mice and reduces body weight and adipose tissue expansion when mice are fed a high-fat diet. These responses are linked to detection of female chemostimuli via G-protein Gαo-expressing vomeronasal sensory neurons. Males with Gαo deleted in the olfactory system are fertile but do not show changes in body weight when paired with females and show severely blunted changes in energy expenditure when exposed to female bedding. These results establish that metabolic and reproductive responses to females can be partly uncoupled in male mice and that detection of female chemostimuli is a central regulator of energy metabolism and lipid storage.
Collapse
|
11
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
12
|
Angeles-Albores D, Aprison EZ, Dzitoyeva S, Ruvinsky I. A C. elegans male pheromone feminizes germline gene expression in hermaphrodites and imposes life-history costs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528976. [PMID: 36824927 PMCID: PMC9949107 DOI: 10.1101/2023.02.17.528976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Sex pheromones improve reproductive success, but also impose costs. Here we show that even brief exposure to physiological amounts of the dominant C. elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome was the upregulation of genes expressed during oogenesis and downregulation of genes associated with male gametogenesis. Among the detrimental effects of ascr#10 on hermaphrodites is the increased risk of persistent infections caused by pathological pharyngeal hypertrophy. Our results reveal a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function to the presence of potential mating partners. They also show that the beneficial effects of the pheromone are accompanied by harmful consequences that reduce lifespan.
Collapse
Affiliation(s)
- David Angeles-Albores
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Current address: Altos Labs, Bay Area Institute of Science, Redwood Shores, CA 94065, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Burkhardt RN, Artyukhin AB, Aprison EZ, Curtis BJ, Fox BW, Ludewig AH, Palomino DF, Luo J, Chaturbedi A, Panda O, Wrobel CJJ, Baumann V, Portman DS, Lee SS, Ruvinsky I, Schroeder FC. Sex-specificity of the C. elegans metabolome. Nat Commun 2023; 14:320. [PMID: 36658169 PMCID: PMC9852247 DOI: 10.1038/s41467-023-36040-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.
Collapse
Affiliation(s)
- Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jintao Luo
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Victor Baumann
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
Shi C, Murphy CT. piRNAs regulate a Hedgehog germline-to-soma pro-aging signal. NATURE AGING 2023; 3:47-63. [PMID: 37118518 PMCID: PMC10154208 DOI: 10.1038/s43587-022-00329-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2022] [Indexed: 04/30/2023]
Abstract
The reproductive system regulates somatic aging through competing anti- and pro-aging signals. Germline removal extends somatic lifespan through conserved pathways including insulin and mammalian target-of-rapamycin signaling, while germline hyperactivity shortens lifespan through unknown mechanisms. Here we show that mating-induced germline hyperactivity downregulates piRNAs, in turn desilencing their targets, including the Hedgehog-like ligand-encoding genes wrt-1 and wrt-10, ultimately causing somatic collapse and death. Germline-produced Hedgehog signals require PTR-6 and PTR-16 receptors for mating-induced shrinking and death. Our results reveal an unconventional role of the piRNA pathway in transcriptional regulation of Hedgehog signaling and a new role of Hedgehog signaling in the regulation of longevity and somatic maintenance: Hedgehog signaling is controlled by the tunable piRNA pathway to encode the previously unknown germline-to-soma pro-aging signal. Mating-induced piRNA downregulation in the germline and subsequent Hedgehog signaling to the soma enable the animal to tune somatic resource allocation to germline needs, optimizing reproductive timing and survival.
Collapse
Affiliation(s)
- Cheng Shi
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| | - Coleen T Murphy
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Zhai C, Zhang N, Li X, Chen X, Sun F, Dong M. Fusion and expansion of vitellogenin vesicles during Caenorhabditis elegans intestinal senescence. Aging Cell 2022; 21:e13719. [PMID: 36199214 PMCID: PMC9649609 DOI: 10.1111/acel.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
Some of the most conspicuous aging phenotypes of C. elegans are related to post-reproductive production of vitellogenins (Vtg), which form yolk protein (YP) complexes after processing and lipid loading. Vtg/YP levels show huge increases with age, and inhibition of this extends lifespan, but how subcellular and organism-wide distribution of these proteins changes with age has not been systematically explored. Here, this has been done to understand how vitellogenesis promotes aging. The age-associated changes of intestinal vitellogenin vesicles (VVs), pseudocoelomic yolk patches (PYPs), and gonadal yolk organelles (YOs) have been characterized by immuno-electron microscopy. We find that from reproductive adult day 2 (AD 2) to post-reproductive AD 6 and AD 9, intestinal VVs expand from 0.2 to 3-4 μm in diameter or by >3000 times in volume, PYPs increase by >3 times in YP concentration and volume, while YOs in oocytes shrink slightly from 0.5 to 0.4 μm in diameter or by 49% in volume. In AD 6 and AD 9 worms, mislocalized YOs found in the hypodermis, uterine cells, and the somatic gonadal sheath can reach a size of 10 μm across in the former two tissues. This remarkable size increase of VVs and that of mislocalized YOs in post-reproductive worms are accompanied by extensive fusion between these Vtg/YP-containing vesicular structures in somatic cells. In contrast, no fusion is seen between YOs in oocytes. We propose that in addition to the continued production of Vtg, excessive fusion between VVs and mislocalized YOs in the soma worsen the aging pathologies seen in C. elegans.
Collapse
Affiliation(s)
- Chao Zhai
- School of Life SciencesPeking UniversityBeijingChina,National Institute of Biological SciencesBeijingChina
| | - Nan Zhang
- National Institute of Biological SciencesBeijingChina
| | - Xi‐Xia Li
- Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xi Chen
- Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Fei Sun
- Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina,National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina,University of the Chinese Academy of SciencesBeijingChina
| | - Meng‐Qiu Dong
- National Institute of Biological SciencesBeijingChina
| |
Collapse
|
16
|
Booth LN, Shi C, Tantilert C, Yeo RW, Miklas JW, Hebestreit K, Hollenhorst CN, Maures TJ, Buckley MT, Murphy CT, Brunet A. Males induce premature demise of the opposite sex by multifaceted strategies. NATURE AGING 2022; 2:809-823. [PMID: 37118502 PMCID: PMC10154206 DOI: 10.1038/s43587-022-00276-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/03/2022] [Indexed: 04/30/2023]
Abstract
Interactions between the sexes negatively impact health in many species. In Caenorhabditis, males shorten the lifespan of the opposite sex-hermaphrodites or females. Here we use transcriptomic profiling and targeted screens to systematically uncover conserved genes involved in male-induced demise in C. elegans. Some genes (for example, delm-2, acbp-3), when knocked down, are specifically protective against male-induced demise. Others (for example, sri-40), when knocked down, extend lifespan with and without males, suggesting general mechanisms of protection. In contrast, many classical long-lived mutants are impacted more negatively than wild type by the presence of males, highlighting the importance of sexual environment for longevity. Interestingly, genes induced by males are triggered by specific male components (seminal fluid, sperm and pheromone), and manipulating these genes in combination in hermaphrodites induces stronger protection. One of these genes, the conserved ion channel delm-2, acts in the nervous system and intestine to regulate lipid metabolism. Our analysis reveals striking differences in longevity in single sex versus mixed sex environments and uncovers elaborate strategies elicited by sexual interactions that could extend to other species.
Collapse
Affiliation(s)
- Lauren N Booth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Cheng Shi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Cindy Tantilert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason W Miklas
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katja Hebestreit
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Travis J Maures
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Buckley
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging and Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Aprison EZ, Dzitoyeva S, Angeles-Albores D, Ruvinsky I. A male pheromone that improves the quality of the oogenic germline. Proc Natl Acad Sci U S A 2022; 119:e2015576119. [PMID: 35576466 PMCID: PMC9173808 DOI: 10.1073/pnas.2015576119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | | | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
18
|
Goncalves J, Wan Y, Garcia LR. Stearoyl-CoA desaturases sustain cholinergic excitation and copulatory robustness in metabolically aging C. elegansmales. iScience 2022; 25:104082. [PMID: 35372802 PMCID: PMC8968053 DOI: 10.1016/j.isci.2022.104082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Regulated metabolism is required for behaviors as adults age. To understand how lipid usage affects motor coordination, we studied male Caenorhabditis elegans copulation as a model of energy-intensive behavior. Copulation performance drops after 48 h of adulthood. We found that 12–24 h before behavioral decline, males prioritize exploring and copulation behavior over feeding, suggesting that catabolizing stored metabolites, such as lipids, occurs during this period. Because fat-6/7-encoded stearoyl-CoA desaturases are essential for converting the ingested fatty acids to lipid storage, we examined the copulation behavior and neural calcium transients of fat-6(lf); fat-7(lf) mutants. In wild-type males, intestinal and epithelial fat-6/7 expression increases during the first 48 h of adulthood. The fat-6(lf); fat-7(lf) behavioral and metabolic defects indicate that in aging wild-type males, the increased expression of stearoyl-CoA desaturases in the epidermis may indirectly modulate the levels of EAG-family K+ channels in the reproductive cholinergic neurons and muscles. Tissue distribution of fat-6-encoded stearoyl-CoA desaturase changes in adulthood Markov modeling shows reduced feeding linked with more exploring in day 2 males fat-6(lf); fat-7(lf) disrupted behavior can be rescued by epidermal FAT-6 fat-6(lf); fat-7(lf) alters neural and muscular ERG and EAG K+ channel expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Toker IA, Lev I, Mor Y, Gurevich Y, Fisher D, Houri-Zeevi L, Antonova O, Doron H, Anava S, Gingold H, Hadany L, Shaham S, Rechavi O. Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans. Dev Cell 2022; 57:298-309.e9. [PMID: 35134343 PMCID: PMC8826646 DOI: 10.1016/j.devcel.2022.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
It is unknown whether transient transgenerational epigenetic responses to environmental challenges affect the process of evolution, which typically unfolds over many generations. Here, we show that in C. elegans, inherited small RNAs control genetic variation by regulating the crucial decision of whether to self-fertilize or outcross. We found that under stressful temperatures, younger hermaphrodites secrete a male-attracting pheromone. Attractiveness transmits transgenerationally to unstressed progeny via heritable small RNAs and the Argonaute Heritable RNAi Deficient-1 (HRDE-1). We identified an endogenous small interfering RNA pathway, enriched in endo-siRNAs that target sperm genes, that transgenerationally regulates sexual attraction, male prevalence, and outcrossing rates. Multigenerational mating competition experiments and mathematical simulations revealed that over generations, animals that inherit attractiveness mate more and their alleles spread in the population. We propose that the sperm serves as a "stress-sensor" that, via small RNA inheritance, promotes outcrossing in challenging environments when increasing genetic variation is advantageous.
Collapse
Affiliation(s)
- Itai Antoine Toker
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Itamar Lev
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Mor
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Gurevich
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Fisher
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leah Houri-Zeevi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Olga Antonova
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Kloock A, Peters L, Rafaluk-Mohr C. Sex Matters: Effects of Sex and Mating in the Presence and Absence of a Protective Microbe. Front Cell Infect Microbiol 2021; 11:713387. [PMID: 34692559 PMCID: PMC8529166 DOI: 10.3389/fcimb.2021.713387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
In most animals, female investment in offspring production is greater than for males. Lifetime reproductive success (LRS) is predicted to be optimized in females through extended lifespans to maximize reproductive events by increased investment in immunity. Males, however, maximize lifetime reproductive success by obtaining as many matings as possible. In populations consisting of mainly hermaphrodites, optimization of reproductive success may be primarily influenced by gamete and resource availability. Microbe-mediated protection (MMP) is known to affect both immunity and reproduction, but whether sex influences the response to MMP remains to be explored. Here, we investigated the sex-specific differences in survival, behavior, and timing of offspring production between feminized hermaphrodite (female) and male Caenorhabditis elegans following pathogenic infection with Staphylococcus aureus with or without MMP by Enterococcus faecalis. Overall, female survival decreased with increased mating. With MMP, females increased investment into offspring production, while males displayed higher behavioral activity. MMP was furthermore able to dampen costs that females experience due to mating with males. These results demonstrate that strategies employed under pathogen infection with and without MMP are sex dependent.
Collapse
Affiliation(s)
- Anke Kloock
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lena Peters
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
21
|
Scharf A, Pohl F, Egan BM, Kocsisova Z, Kornfeld K. Reproductive Aging in Caenorhabditis elegans: From Molecules to Ecology. Front Cell Dev Biol 2021; 9:718522. [PMID: 34604218 PMCID: PMC8481778 DOI: 10.3389/fcell.2021.718522] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aging animals display a broad range of progressive degenerative changes, and one of the most fascinating is the decline of female reproductive function. In the model organism Caenorhabditis elegans, hermaphrodites reach a peak of progeny production on day 2 of adulthood and then display a rapid decline; progeny production typically ends by day 8 of adulthood. Since animals typically survive until day 15 of adulthood, there is a substantial post reproductive lifespan. Here we review the molecular and cellular changes that occur during reproductive aging, including reductions in stem cell number and activity, slowing meiotic progression, diminished Notch signaling, and deterioration of germ line and oocyte morphology. Several interventions have been identified that delay reproductive aging, including mutations, drugs and environmental factors such as temperature. The detailed description of reproductive aging coupled with interventions that delay this process have made C. elegans a leading model system to understand the mechanisms that drive reproductive aging. While reproductive aging has dramatic consequences for individual fertility, it also has consequences for the ecology of the population. Population dynamics are driven by birth and death, and reproductive aging is one important factor that influences birth rate. A variety of theories have been advanced to explain why reproductive aging occurs and how it has been sculpted during evolution. Here we summarize these theories and discuss the utility of C. elegans for testing mechanistic and evolutionary models of reproductive aging.
Collapse
Affiliation(s)
- Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian M Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021; 184:4697-4712.e18. [PMID: 34363756 DOI: 10.1016/j.cell.2021.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.
Collapse
|
23
|
Qian KY, Zeng WX, Hao Y, Zeng XT, Liu H, Li L, Chen L, Tian FM, Chang C, Hall Q, Song CX, Gao S, Hu Z, Kaplan JM, Li Q, Tong XJ. Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner. eLife 2021; 10:e67170. [PMID: 33787493 PMCID: PMC8051947 DOI: 10.7554/elife.67170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.
Collapse
Affiliation(s)
- Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Lili Chen
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Fu-min Tian
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cindy Chang
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Chun-Xue Song
- Center for Brain Science, Shanghai Children's Medical CenterShanghaiChina
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical CenterShanghaiChina
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Research Center for Brain Science and Brain-Inspired IntelligenceShanghaiChina
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| |
Collapse
|
24
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
26
|
Abstract
Sexual interactions negatively impact health and longevity in many species across the animal kingdom. C. elegans has been established as a good model to study how mating and intense sexual interactions influence longevity of the individuals. In this chapter, we review the most recent discoveries in this field. We first describe the phenotypes caused by intense mating, including shrinking, fat loss, and glycogen loss. We then describe three major mechanisms underlying mating-induced killing: germline activation, seminal fluid transfer, and male pheromone-mediated toxicity. Next, we summarize the current knowledge of genetic pathways involved in regulating mating-induced death, including DAF-9/DAF-12 steroid signaling, Insulin/IGF-1 signaling (IIS), and TOR signaling. Finally, we discuss the possible fitness benefits of mating-induced death. Throughout this review, we compare and contrast mating-induced death between the sexes and among different species in an effort to discuss this phenomenon and underlying mechanisms from the evolutionary perspective. Further investigation using mated C. elegans will improve our understanding of sexual antagonism, as well as the coordination between reproduction and somatic longevity in response to various external signals. Due to the evolutionary conservation in many aspects of mating-induced death, what we learn from a short-lived mated worm could provide new strategies to improve our own fitness and longevity.
Collapse
Affiliation(s)
- Cheng Shi
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
27
|
Ou M, Chen K, Gao D, Wu Y, Chen Z, Luo Q, Liu H, Zhao J. Comparative transcriptome analysis on four types of gonadal tissues of blotched snakehead (Channa maculata). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100708. [PMID: 32674038 DOI: 10.1016/j.cbd.2020.100708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Blotched snakehead (Channa maculata) is an economically important freshwater fish in China, of which males grow much faster than females. To illuminate the molecular mechanism of sex differentiation and gonad development, RNA-Sequencing was performed to identify sex-related genes and pathway in gonads of 6-month-old normal XX females (XX-F), normal XY males (XY-M), XY sex reversal females (XY-F) and YY super-males (YY-M). The analysis showed that many differentially expressed genes (DEGs) had similar expression patterns in XY-F and XX-F, which were different from XY-M and YY-M. qRT-PCR indicated that Amh, Dmrt1, and Sox9 had relatively high expression in testes of XY-M and YY-M. Taking Amh as an example, there was a relative fold change of 1.0 in XX-F, 2.1 fold change in XY-F, 36.1 fold change in XY-M, and 26.0 fold change in YY-M. Cyp19a1a, Figla, and Foxl2 were highly expressive in ovaries of XX-F and XY-F. Taking Figla as an example, there was a relative fold change of 557 in XX-F, 304.5 fold change in XY-F, 5.6 fold change in XY-M, and 4.4 fold change in YY-M. KEGG analysis revealed many DEGs distributed in pathways related to sex differentiation, steroid hormone synthesis and growth, etc. Significant variation and trends in relative expression levels tested by qRT-PCR were consistent with those recorded by RNA-Sequencing. This is the first time that transcriptome of snakehead has been investigated systematically and in an integrated way. Large quantities of candidate genes involved in sex differentiation, gonad development and growth dimorphism were identified. The study provides useful resources for understanding sex differentiation and growth dimorphism, potentially assisting mono-sex production of snakehead in aquaculture.
Collapse
Affiliation(s)
- Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Dandan Gao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanduo Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
28
|
Wong SS, Yu J, Schroeder FC, Kim DH. Population Density Modulates the Duration of Reproduction of C. elegans. Curr Biol 2020; 30:2602-2607.e2. [PMID: 32442457 DOI: 10.1016/j.cub.2020.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.
Collapse
Affiliation(s)
- Spencer S Wong
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Goncalves J, Wan Y, Guo X, Rha K, LeBoeuf B, Zhang L, Estler K, Garcia LR. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. elegans Males. iScience 2020; 23:100990. [PMID: 32240955 PMCID: PMC7115159 DOI: 10.1016/j.isci.2020.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulated metabolism accelerates reduced decision-making and locomotor ability during aging. To identify mechanisms for delaying behavioral decline, we investigated how C. elegans males sustain their copulatory behavior during early to mid-adulthood. We found that in mid-aged males, gluco-/glyceroneogenesis, promoted by phosphoenolpyruvate carboxykinase (PEPCK), sustains competitive reproductive behavior. C. elegans' PEPCK paralogs, pck-1 and pck-2, increase in expression during the first 2 days of adulthood. Insufficient PEPCK expression correlates with reduced egl-2-encoded ether-a-go-go K+ channel expression and premature hyper-excitability of copulatory circuits. For copulation, pck-1 is required in neurons, whereas pck-2 is required in the epidermis. However, PCK-2 is more essential, because we found that epidermal PCK-2 likely supplements the copulation circuitry with fuel. We identified the subunit A of succinate dehydrogenase SDHA-1 as a potent modulator of PEPCK expression. We postulate that during mid-adulthood, reduction in mitochondrial physiology signals the upregulation of cytosolic PEPCK to sustain the male's energy demands. C. elegans upregulates pck-1- and pck-2-encoded PEPCK during early adulthood Loss of PEPCK causes premature male copulatory behavior decline Epidermal PEPCK is required to sustain the copulatory fitness Subunit A of succinate dehydrogenase antagonizes PEPCK expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Kyoungsun Rha
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Liusuo Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Kerolayne Estler
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
30
|
Murphy CT. Being open to the unexpected. Mol Biol Cell 2019; 30:2862-2864. [PMID: 31671037 PMCID: PMC6822587 DOI: 10.1091/mbc.e19-07-0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
I am grateful to have received the 2019 Women in Cell Biology Mid-Career Award from the American Society for Cell Biology. My lab has been studying aging and longevity regulation since 2005, but along the way we have had some surprises. These unexpected findings have morphed from detours to main directions, changing how I view biology. As I look back I've come to appreciate the importance and joy that can come from being open to these surprise interests and rigorously pursuing them.
Collapse
Affiliation(s)
- Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
31
|
Gao M, Li Y, Zhang W, Wei P, Wang X, Feng Y, Zhang X. Bx-daf-22 Contributes to Mate Attraction in the Gonochoristic Nematode Bursaphelenchus xylophilus. Int J Mol Sci 2019; 20:E4316. [PMID: 31484427 PMCID: PMC6747337 DOI: 10.3390/ijms20174316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022] Open
Abstract
Studying sex communication is necessary to develop new methods to control the population expansion of gonochoristic species Bursaphelenchus xylophilus, the pathogen of pine wilt disease (PWD). Small chemical signals called ascarosides have been reported to attract potential mates. However, they have not been studied in the sex attraction of B. xylophilus. Here, we confirmed the sex attraction of B. xylophilus using a chemotaxis assay. Then, we cloned the downstream ascaroside biosynthetic gene Bx-daf-22 and explored its function in the sex attraction of B. xylophilus through bioinformatics analysis and RNA interference. The secretions of females and males were the sources of sex attraction in B. xylophilus, and the attractiveness of females to males was stronger than that of males to females. Compared with daf-22 of Caenorhabditis elegans, Bx-daf-22 underwent gene duplication events, resulting in Bx-daf-22.1, Bx-daf-22.2, and Bx-daf-22.3. RNA interference revealed that the attractiveness of female secretions to males increased after all three Bx-daf-22 genes or Bx-daf-22.3 had been interfered. However, the reciprocal experiments had no effect on the attractiveness of male secretions to females. Thus, Bx-daf-22 genes, especially Bx-daf-22.3, may be crucial for the effectiveness of female sex attractants. Our studies provide fundamental information to help identify the specific components and signal pathways of sex attractants in B. xylophilus.
Collapse
Affiliation(s)
- Mengge Gao
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Wei Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Pengfei Wei
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
33
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
34
|
Sutphin GL. A new defense in the battle of the sexes. eLife 2019; 8:50140. [PMID: 31418689 PMCID: PMC6697443 DOI: 10.7554/elife.50140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Abstract
Young Caenorhabditis elegans hermaphrodites use their own sperm to protect against the negative consequences of mating.
Collapse
Affiliation(s)
- George L Sutphin
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
- BIO5 Institute, University of Arizona, Tucson, United States
| |
Collapse
|
35
|
Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019; 20:ijms20163898. [PMID: 31405082 PMCID: PMC6719183 DOI: 10.3390/ijms20163898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.
Collapse
|
36
|
Wu JJ, Zhou YL, Wang ZW, Li GH, Jin FP, Cui LL, Gao HT, Li XP, Zhou L, Gui JF. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes and Signaling Pathways Between Male and Female Red-Tail Catfish (Mystus wyckioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:463-474. [PMID: 30941640 DOI: 10.1007/s10126-019-09894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in the lower reaches of the Lancang River and the Mekong basin, and it shows a growth advantage in males. Here, RNA-seq was for the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively, in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19 differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad development.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guang-Hua Li
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Fang-Peng Jin
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Li-Li Cui
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Hai-Tao Gao
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Xin-Ping Li
- Xishuangbanna Native Fish Research and Breeding Center, Xishuangbanna, 666100, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
37
|
An excreted small molecule promotes C. elegans reproductive development and aging. Nat Chem Biol 2019; 15:838-845. [PMID: 31320757 PMCID: PMC6650165 DOI: 10.1038/s41589-019-0321-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in C. elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and depends on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout Metazoa.
Collapse
|
38
|
Booth LN, Maures TJ, Yeo RW, Tantilert C, Brunet A. Self-sperm induce resistance to the detrimental effects of sexual encounters with males in hermaphroditic nematodes. eLife 2019; 8:46418. [PMID: 31282863 PMCID: PMC6697445 DOI: 10.7554/elife.46418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
Sexual interactions have a potent influence on health in several species, including mammals. Previous work in C. elegans identified strategies used by males to accelerate the demise of the opposite sex (hermaphrodites). But whether hermaphrodites evolved counter-strategies against males remains unknown. Here we discover that young C. elegans hermaphrodites are remarkably resistant to brief sexual encounters with males, whereas older hermaphrodites succumb prematurely. Surprisingly, it is not their youthfulness that protects young hermaphrodites, but the fact that they have self-sperm. The beneficial effect of self-sperm is mediated by a sperm-sensing pathway acting on the soma rather than by fertilization. Activation of this pathway in females triggers protection from the negative impact of males. Interestingly, the role of self-sperm in protecting against the detrimental effects of males evolved independently in hermaphroditic nematodes. Endogenous strategies to delay the negative effect of mating may represent a key evolutionary innovation to maximize reproductive success. A nematode worm known as Caenorhabditis elegans is often used in the laboratory to study how animals grow and develop. There are two types of C. elegans worm: hermaphrodite individuals produce both female sex cells (eggs) and male sex cells (sperm), while male individuals only produce sperm. The hermaphrodite worms are able to reproduce without mating with another worm, allowing populations of C. elegans to grow rapidly when they are living in favorable conditions. However, when the hermaphrodites do mate with males they tend to produce more offspring. These offspring are also usually healthier because they receive a mixture of genetic material from two different parents. Although mating is beneficial for the survival of a species it can also harm an individual animal. Previous studies have shown that mating with male worms can accelerate aging of hermaphrodite worms and cause premature death. However, it remained unclear whether hermaphrodite worms have evolved any mechanisms to protect themselves after mating with a male. To address this question, Booth et al. used genetic techniques to study the lifespans of hermaphrodite worms. The experiments found that the hermaphrodites’ own sperm (known as self-sperm) regulated a sperm-sensing signaling pathway that protected them from the negative impact of mating with males. Hermaphrodites with self-sperm that mated with males lived for a similar length of time as hermaphrodites that did not mate. On the other hand, hermaphrodites that did not have self-sperm (because they were older or had a genetic mutation) had shorter lifespans after mating than worms that did not mate. Modulating the sperm-sensing signaling pathway in worms that lacked self-sperm was sufficient to protect them from the negative effects of mating with males. Further experiments found that the hermaphrodites of another nematode worm called C. briggsae – which evolved self-sperm independently of C. elegans – also protected themselves from the negative effects of mating with males in a similar way. This suggests that other animals may also have evolved similar mechanisms to protect themselves from harm when mating. A separate study by Shi et al. has found that the beneficial effects of self-sperm are mediated by a pathway linked to longevity that also exists in mammals. The results of both investigations combined suggest possible avenues for future research into the complex relationship between health, longevity, and reproduction.
Collapse
Affiliation(s)
- Lauren N Booth
- Department of Genetics, Stanford University, Stanford, United States
| | - Travis J Maures
- Department of Genetics, Stanford University, Stanford, United States
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, United States
| | - Cindy Tantilert
- Department of Genetics, Stanford University, Stanford, United States
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, United States.,Glenn Laboratories for the Biology of Aging at Stanford University, Stanford, United States
| |
Collapse
|
39
|
Shi C, Booth LN, Murphy CT. Insulin-like peptides and the mTOR-TFEB pathway protect Caenorhabditis elegans hermaphrodites from mating-induced death. eLife 2019; 8:46413. [PMID: 31282862 PMCID: PMC6697448 DOI: 10.7554/elife.46413] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023] Open
Abstract
Lifespan is shortened by mating, but these deleterious effects must be delayed long enough for successful reproduction. Susceptibility to brief mating-induced death is caused by the loss of protection upon self-sperm depletion. Self-sperm maintains the expression of a DAF-2 insulin-like antagonist, INS-37, which promotes the nuclear localization of intestinal HLH-30/TFEB, a key pro-longevity regulator. Mating induces the agonist INS-8, promoting HLH-30 nuclear exit and subsequent death. In opposition to the protective role of HLH-30 and DAF-16/FOXO, TOR/LET-363 and the IIS-regulated Zn-finger transcription factor PQM-1 promote seminal-fluid-induced killing. Self-sperm maintenance of nuclear HLH-30/TFEB allows hermaphrodites to resist mating-induced death until self-sperm are exhausted, increasing the chances that mothers will survive through reproduction. Mothers combat males' hijacking of their IIS pathway by expressing an insulin antagonist that keeps her healthy through the activity of pro-longevity factors, as long as she has her own sperm to utilize.
Collapse
Affiliation(s)
- Cheng Shi
- Department of Molecular Biology, Princeton University, Princeton, United States.,LSI Genomics, Princeton University, Princeton, United States
| | - Lauren N Booth
- Department of Genetics, Stanford University, Stanford, United States
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, United States.,LSI Genomics, Princeton University, Princeton, United States
| |
Collapse
|
40
|
Dai S, Zhang Y, Miao Y, Liu R, Pu Y, Yin L. Intergenerational reproductive toxicity of chlordecone in male Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11279-11287. [PMID: 30796669 DOI: 10.1007/s11356-019-04519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Chlordecone (CLD), also named Kepone, is a synthetic organochlorine pesticide. As one of the common persistent organic pollutants (POPs) in nature, CLD has a profound impact on the environment and human health. The study aims to investigate the reproductive toxicity effects of CLD on male Caenorhabditis elegans and on progeny. L1-stage male nematodes were exposed to the control group (M9 solution) and four dose groups (0.02, 0.2, 2, and 20 μg/L). After exposure for 48 h, the male nematodes were picked to mating experiment and progeny experiment that the number of progeny and the time of observation in male parent and in F1 generation were counted; the number of germ cells and the number of sperm in the meiotic division of male nematodes were counted by staining with dimercaptophenyl hydrazine (DAPI), and the nematode gland area was observed under the bright field of the microscope. In male nematodes, the results showed that a number of progeny were 351.20 ± 31.40, 321.60 ± 24.70, 307.30 ± 19.30, 240.10 ± 27.60, and 227.90 ± 22.70 (P < 0.05); the generation times were 55.80 ± 1.95 h, 56.40 ± 1.60 h, 56.70 ± 0.92 h, 60.80 ± 0.95 h, and 69.60 ± 1.97 h (P < 0.05); relative areas of gonad were (99.80 ± 6.27)%, (93.00 ± 1.70)%, (85.00 ± 1.70)%, (70.70 ± 9.81)%, and (60.00 ± 5.23)% (P < 0.05); DAPI staining results showed the number of germ cells in meiosis area were 191.00 ± 10.97, 181.10 ± 15.56, 177.00 ± 9.20, 147.50 ± 10.56, and 139.30 ± 23.79 (P < 0.05); the sperm numbers were 335.60 ± 21.31, 308.60 ± 19.60, 306.00 ± 11.23, 260.10 ± 27.41, and 255.00 ± 3.72 (P < 0.05). In the F1 generation, the progeny numbers were 328.10 ± 22.28, 167.50 ± 15.30, 150.00 ± 13.65, 131.30 ± 18.40, and 130.20 ± 16.17 (P < 0.05); the generation times were 55.50 ± 2.36, 71.10 ± 0.97, 70.90 ± 0.52, 74.10 ± 2.07, and 73.90 ± 1.35 h (P < 0.05). The groups are grouped in order as M9 solution, 0.02, 0.2, 2, and 20 μg/L. The results revealed that CLD caused decrease in progeny number, relative area of gonad, number of germ cells, and sperm number and prolonged the generation time in the male nematode. In offspring grown up without CLD, the effect of CLD on generation time and sperm number can still be observed on offspring. In conclusion, CLD induces male nematode reproductive toxicity and causes defects in offspring.
Collapse
Affiliation(s)
- Shuhao Dai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yan Miao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Stroustrup N. Measuring and modeling interventions in aging. Curr Opin Cell Biol 2018; 55:129-138. [PMID: 30099284 PMCID: PMC6284105 DOI: 10.1016/j.ceb.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Many dietary, pharmaceutical, and genetic interventions have been found to increase the lifespan of laboratory animals. Several are now being explored for clinical application. To understand the physiologic action and therapeutic potential of interventions in aging, researchers must build quantitative models. Do interventions delay the onset of aging? Slow it down? Merely ameliorate some of its symptoms? If interventions slow some aging mechanisms but accelerate others, can we detect or predict the systemic consequences? Statistical and analytic models provide a crucial framework in which to answer these questions and clarify the systems-level effect of molecular interventions in aging. This review provides a brief survey of approaches to modeling lifespan data and places them in the context of recent experimental work.
Collapse
Affiliation(s)
- Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
42
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|
43
|
C. elegans Eats Its Own Intestine to Make Yolk Leading to Multiple Senescent Pathologies. Curr Biol 2018; 28:2544-2556.e5. [PMID: 30100339 PMCID: PMC6108400 DOI: 10.1016/j.cub.2018.06.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Aging (senescence) is characterized by the development of numerous pathologies, some of which limit lifespan. Key to understanding aging is discovery of the mechanisms (etiologies) that cause senescent pathology. In C. elegans, a major senescent pathology of unknown etiology is atrophy of its principal metabolic organ, the intestine. Here we identify a cause of not only this pathology but also of yolky lipid accumulation and redistribution (a form of senescent obesity): autophagy-mediated conversion of intestinal biomass into yolk. Inhibiting intestinal autophagy or vitellogenesis rescues both visceral pathologies and can also extend lifespan. This defines a disease syndrome leading to multimorbidity and contributing to late-life mortality. Activation of gut-to-yolk biomass conversion by insulin/IGF-1 signaling (IIS) promotes reproduction and senescence. This illustrates how major, IIS-promoted senescent pathologies in C. elegans can originate not from damage accumulation but from direct effects of futile, continued action of a wild-type biological program (vitellogenesis). C. elegans consume their own intestine to synthesize yolk and promote reproduction This causes diseases of aging, including atrophy of the intestine and yolk steatosis Intestinal senescence in C. elegans is promoted by autophagy Here destructive run-on of wild-type biological programs causes senescent pathologies
Collapse
|
44
|
Hotzi B, Kosztelnik M, Hargitai B, Takács‐Vellai K, Barna J, Bördén K, Málnási‐Csizmadia A, Lippai M, Ortutay C, Bacquet C, Pasparaki A, Arányi T, Tavernarakis N, Vellai T. Sex-specific regulation of aging in Caenorhabditis elegans. Aging Cell 2018; 17:e12724. [PMID: 29493066 PMCID: PMC5946081 DOI: 10.1111/acel.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.
Collapse
Affiliation(s)
| | | | - Balázs Hargitai
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | | | - János Barna
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | - Kincső Bördén
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | | | - Mónika Lippai
- Department of Anatomy, Cell‐ and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Caroline Bacquet
- Institute of EnzymologyResearch Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Angela Pasparaki
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Tamás Arányi
- Institute of EnzymologyResearch Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
- BNMI (INSERM 1083/CNRS 6214)Université d'AngersAngersFrance
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Tibor Vellai
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
- MTA‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
45
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|
46
|
Yin D, Schwarz EM, Thomas CG, Felde RL, Korf IF, Cutter AD, Schartner CM, Ralston EJ, Meyer BJ, Haag ES. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 2018; 359:55-61. [PMID: 29302007 PMCID: PMC5789457 DOI: 10.1126/science.aao0827] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022]
Abstract
To reveal impacts of sexual mode on genome content, we compared chromosome-scale assemblies of the outcrossing nematode Caenorhabditis nigoni to its self-fertile sibling species, C. briggsaeC. nigoni's genome resembles that of outcrossing relatives but encodes 31% more protein-coding genes than C. briggsaeC. nigoni genes lacking C. briggsae orthologs were disproportionately small and male-biased in expression. These include the male secreted short (mss) gene family, which encodes sperm surface glycoproteins conserved only in outcrossing species. Sperm from mss-null males of outcrossing C. remanei failed to compete with wild-type sperm, despite normal fertility in noncompetitive mating. Restoring mss to C. briggsae males was sufficient to enhance sperm competitiveness. Thus, sex has a pervasive influence on genome content that can be used to identify sperm competition factors.
Collapse
Affiliation(s)
- Da Yin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rebecca L Felde
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ian F Korf
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Caitlin M Schartner
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Edward J Ralston
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Barbara J Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
47
|
|
48
|
Borne F, Kasimatis KR, Phillips PC. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS One 2017; 12:e0189679. [PMID: 29236762 PMCID: PMC5728554 DOI: 10.1371/journal.pone.0189679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 01/17/2023] Open
Abstract
Pheromone cues are an important component of intersexual communication, particularly in regards to mate choice. Caenorhabditis nematodes predominant rely on pheromone production for mate finding and mate choice. Here we describe a new microfluidic paradigm for studying mate choice in nematodes. Specifically, the Pheromone Arena allows for a constant flow of odorants, including pheromones and other small molecules, to be passed in real time from signaling worms to those making a choice without any physical contact. We validated this microfluidic paradigm by corroborating previous studies in showing that virgin C. remanei and C. elegans males have a strong preference for virgin females over mated ones. Moreover, our results suggest that the strength of attraction is an additive effect of male receptivity and female signal production. We also explicitly examine female choice and find that females are more attracted to virgin males. However, a female's mate choice is strongly dependent on her mating status.
Collapse
Affiliation(s)
- Flora Borne
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
49
|
Stefana MI, Driscoll PC, Obata F, Pengelly AR, Newell CL, MacRae JI, Gould AP. Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat Commun 2017; 8:1384. [PMID: 29123106 PMCID: PMC5680271 DOI: 10.1038/s41467-017-01740-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Early-life nourishment exerts long-term influences upon adult physiology and disease risk. These lasting effects of diet are well established but the underlying mechanisms are only partially understood. Here we show that restricting dietary yeast during Drosophila development can, depending upon the subsequent adult environment, more than double median lifespan. Developmental diet acts via a long-term influence upon the adult production of toxic molecules, which we term autotoxins, that are shed into the environment and shorten the lifespan of both sexes. Autotoxins are synthesised by oenocytes and some of them correspond to alkene hydrocarbons that also act as pheromones. This study identifies a mechanism by which the developmental dietary history of an animal regulates its own longevity and that of its conspecific neighbours. It also has important implications for the design of lifespan experiments as autotoxins can influence the regulation of longevity by other factors including diet, sex, insulin signalling and population density.
Collapse
Affiliation(s)
- M Irina Stefana
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fumiaki Obata
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Clare L Newell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alex P Gould
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
50
|
Affiliation(s)
- Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Simon Harvey
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| |
Collapse
|