1
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412223. [PMID: 39691979 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | | | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Tengfang Ling
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Nagy PD, Pogany J, Kang Y. Novel exploitation of autophagy by tombusviruses. Virology 2024; 603:110363. [PMID: 39708618 DOI: 10.1016/j.virol.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Positive-strand (+)RNA viruses are major pathogens of humans, animals and plants. This review summarizes the complex interplay between the host autophagy pathway and Tomato bushy stunt virus (TBSV) replication. Recent discoveries with TBSV have revealed virus-driven exploitation of autophagy in multiple ways that contributes to the unique phospholipid composition of viral replication organellar (VROs) membranes. Viral replication protein-driven subversion of phagophore membranes, recruitment of ATG2 bulk lipid transfer protein to enrich phosphatidylethanolamine and phosphatidylserine in VROs, recruitment of VPS34 PI3K to produce PI(3)P; and ATG11-facilitated formation of stable viral membrane contact sites contributes to VRO membrane proliferation. Recruitment of autophagy core proteins to vir-NBR1 bodies within vir-condensates associated with VROs results in dampened antiviral degradation by autophagy. Overall, TBSV intricate interplay with the autophagy machinery highlights the importance of lipid dynamics in viral life cycles and points toward potential directions for therapeutic intervention.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| |
Collapse
|
3
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Hu T, Li C, Liu H, Su C, Wang Y, Li F, Zhou X. Geminivirus βV1 protein activates bZIP17/28-mediated UPR signaling to facilitate viral pathogenicity but its activity is attenuated by autophagic degradation in plants. PLANT COMMUNICATIONS 2024:101198. [PMID: 39604265 DOI: 10.1016/j.xplc.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/01/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
The unfolded protein response (UPR) is a vital cellular pathway that maintains endoplasmic reticulum (ER) homeostasis under conditions of ER stress and is associated with the degradation of misfolded proteins. However, the role of ER-associated degradation in plant-microbe interactions has yet to be explored. In this study, we identified a novel viral protein, βV1, encoded by the tomato yellow leaf curl betasatellite (TYLCCNB), which is localized to the ER and triggers ER aggregation. Transient expression of βV1 in Nicotiana benthamiana induces robust ER stress and activates the bZIP17/28 branch of the UPR signaling pathway. The induction of bZIP17/28 by βV1 is crucial for successful virus infection. Furthermore, we demonstrated that βV1 is unstable in N. benthamiana mesophyll cells, as it is targeted for autophagic degradation. The autophagy-related protein ATG18a, a key component of autophagosomes, participates in the degradation of βV1, thereby exerting an anti-viral role. Taken together, our results reveal a novel function of the βV1 protein and provide the first evidence for involvement of bZIP17/28 and ATG18a in ER-associated autophagic degradation during geminivirus infection. These findings significantly expand our understanding of the arms-race dynamics between plants and viruses.
Collapse
Affiliation(s)
- Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenlu Su
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Thanthrige N, Bhowmik SD, Williams B. 'Friend versus foe'-does autophagy help regulate symbiotic plant-microbe interactions and can it be manipulated to improve legume cultivation? FEBS Lett 2024. [PMID: 39582243 DOI: 10.1002/1873-3468.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
Autophagy is a genetically regulated, eukaryotic catabolic pathway that responds to internal and external cellular signals. In plants, it plays crucial roles in development, and responses to abiotic and biotic stresses. Due to its role in limiting the hypersensitive response, research on the molecular mechanisms of autophagic signalling pathways in plant-microbe interactions has primarily focused on plant-pathogen responses. Although there is substantially less information on the role of autophagy signalling in symbiotic plant-microbe interactions, there is accumulating evidence that it is also a key regulator of mutualistic plant-microbe interactions. Here, we review recent progress on the roles of autophagy in symbiotic plant interactions and discuss potential future research directions. Once understood, the central role that autophagy plays within pathogenic and symbiotic plant-microbe interactions has significant potential application for crop improvement. Manipulating autophagy in legume crops could help support crop growth with reduced levels of fertiliser application while maintaining yields with increased protein content in the harvest.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Australia
| | - Brett Williams
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Silva-Valencia S, Prol FV, Rodrigo I, Lisón P, Belda-Palazón B. TOR Inhibition Enhances Autophagic Flux and Immune Response in Tomato Plants Against PSTVd Infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14606. [PMID: 39544013 DOI: 10.1111/ppl.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
Viroids are small, non-coding RNA pathogens known for their ability to cause severe plant diseases. Despite their simple structure, viroids like Potato Spindle Tuber Viroid (PSTVd) can interfere with plant cellular processes, including transcriptional and post-transcriptional mechanisms, impacting plant growth and yield. In this study, we have investigated the role of the Target Of Rapamycin (TOR) signaling pathway in modulating viroid pathogenesis in tomato plants infected with PSTVd. Our findings reveal that PSTVd infection induces the accumulation of the selective autophagy receptor NBR1, potentially inhibiting autophagic flux. Pharmacological inhibition of TOR with AZD8055 mitigated PSTVd symptomatology by reducing viroid accumulation. Furthermore, TOR inhibition promoted the recovery of autophagic flux through NBR1. It primed the plant defense response, as evidenced by enhanced expression of the defense-related gene PR1b and S5H, a gene involved in the salicylic acid catabolism. These results suggest a novel role for TOR in regulating viroid-induced pathogenesis and highlight the potential of TOR inhibitors as tools for enhancing plant resistance against viroid infections.
Collapse
Affiliation(s)
- Samanta Silva-Valencia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
- Present address: Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
| | - Francisco Vázquez Prol
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
7
|
Azmat MA, Zaheer M, Shaban M, Arshad S, Hasan M, Ashraf A, Naeem M, Ahmad A, Munawar N. Autophagy: A New Avenue and Biochemical Mechanisms to Mitigate the Climate Change. SCIENTIFICA 2024; 2024:9908323. [PMID: 39430120 PMCID: PMC11490354 DOI: 10.1155/2024/9908323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Autophagy is a preserved process in eukaryotes that allows large material degeneration and nutrient recovery via vacuoles or lysosomes in cytoplasm. Autophagy starts from the moment of induction during the formation of a phagophore. Degradation may occur in the autophagosomes even without fusion with lysosome or vacuole, particularly in microautophagosomes. This process is arbitrated by the conserved machinery of basic autophagy-related genes (ATGs). In selective autophagy, specific materials are recruited by autophagosomes via receptors. Selective autophagy targets a vast variety of cellular components for degradation, i.e., old or damaged organelles, aggregates, and inactive or misfolded proteins. In optimal conditions, autophagy in plants ensures cellular homeostasis, proper plant growth, and fitness. Moreover, autophagy is essential during stress responses in plants and aids in survival of plants. Several biotic and abiotic stresses, i.e., pathogen infection, nutrient deficiency, plant senescence, heat stress, drought, osmotic stress, and hypoxia induce autophagy in plants. Cell death is not a stress, which induces autophagy but in contrast, sometimes it is a consequence of autophagy. In this way, autophagy plays a vital role in plant survival during harsh environmental conditions by maintaining nutrient concentration through elimination of useless cellular components. This review discussed the recent advances regarding regulatory functions of autophagy under normal and stressful conditions in plants and suggests future prospects in mitigating climate change. Autophagy in plants offers a viable way to increase plant resilience to climate change by increasing stress tolerance and nutrient usage efficiency.
Collapse
Affiliation(s)
- Muhammad Abubakkar Azmat
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | - Malaika Zaheer
- Department of Agricultural Biotechnology, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Muhammad Shaban
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | - Saman Arshad
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | | | - Alyan Ashraf
- Pakistan Environmental Protection Agency (Pak-EPA), Ministry of Climate Change and Environmental Coordination, Islamabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Aftab Ahmad
- Biochemistry/Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| |
Collapse
|
8
|
Wang L, Yu Z, Jiang M, Tian M, Zhou H, Zhao W, Andika IB, Shang Q, Sun L. An asymptomatic geminivirus activates autophagy and enhances plant defenses against diverse pathogens. STRESS BIOLOGY 2024; 4:42. [PMID: 39377848 PMCID: PMC11461731 DOI: 10.1007/s44154-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Zijie Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Mengge Jiang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Wanying Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiaoxia Shang
- College of Bioscience and Resource Environment, Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China.
| | - Liying Sun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Zhang X, Hong H, Yan J, Yuan Y, Feng M, Liu Q, Zhao Y, Yang T, Huang S, Wang C, Zhao R, Zuo W, Liu S, Ding Z, Huang C, Zhang Z, Kundu JK, Tao X. Autophagy plays an antiviral defence role against tomato spotted wilt orthotospovirus and is counteracted by viral effector NSs. MOLECULAR PLANT PATHOLOGY 2024; 25:e70012. [PMID: 39350560 PMCID: PMC11442783 DOI: 10.1111/mpp.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Autophagy, an intracellular degradation process, has emerged as a crucial innate immune response against various plant pathogens, including viruses. Tomato spotted wilt orthotospovirus (TSWV) is a highly destructive plant pathogen that infects over 1000 plant species and poses a significant threat to global food security. However, the role of autophagy in defence against the TSWV pathogen, and whether the virus counteracts this defence, remains unknown. In this study, we report that autophagy plays an important role in antiviral defence against TSWV infection; however, this autophagy-mediated defence is counteracted by the viral effector NSs. Transcriptome profiling revealed the up-regulation of autophagy-related genes (ATGs) upon TSWV infection. Blocking autophagy induction by chemical treatment or knockout/down of ATG5/ATG7 significantly enhanced TSWV accumulation. Notably, the TSWV nucleocapsid (N) protein, a major component of the viral replication unit, strongly induced autophagy. However, the TSWV nonstructural protein NSs was able to effectively suppress N-induced autophagy in a dose-dependent manner. Further investigation revealed that NSs inhibited ATG6-mediated autophagy induction. These findings provide new insights into the defence role of autophagy against TSWV, a representative segmented negative-strand RNA virus, as well as the tospoviral pathogen counterdefence mechanism.
Collapse
Affiliation(s)
- Xingwang Zhang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiaoling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yulong Yuan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qinhai Liu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yanxiao Zhao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tongqing Yang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruizhen Zhao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Wenyu Zuo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Suyu Liu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zixuan Ding
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Seed Laboratory, Yunnan Academy of Agricultural Sciences, China
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions-Centre for Plant Virus Research, Crop Research Institute, Prague, Czech Republic
- Laboratory of Virology-Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Zhang Y, Cai Y, Zhang B, Zhang YHPJ. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat Commun 2024; 15:7575. [PMID: 39217184 PMCID: PMC11366000 DOI: 10.1038/s41467-024-51940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Biofilm formation enhances bacterial survival and antibiotic tolerance, but the underlying mechanisms are incompletely understood. Here, we show that biofilm growth is accompanied by a reduction in bacterial energy metabolism and membrane potential, together with metabolic exchanges between the inner and outer regions in biofilms. More specifically, nutrient-starved cells in the interior supply amino acids to cells in the periphery, while peripheral cells experience a decrease in membrane potential and provide fatty acids to interior cells. Fatty acids facilitate the repair of starvation-induced membrane damage in inner cells and enhance their survival in the presence of antibiotics. Thus, metabolic exchanges between inner and outer cells contribute to survival of the nutrient-starved inner cells and contribute to antibiotic tolerance within the biofilm.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yukmi Cai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bing Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
11
|
Chen Y, Jia M, Ge L, Li Z, He H, Zhou X, Li F. A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400978. [PMID: 39189522 PMCID: PMC11348178 DOI: 10.1002/advs.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Indexed: 08/28/2024]
Abstract
Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.
Collapse
Affiliation(s)
- Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
12
|
Zheng X, Yuan J, Wan Y, Tang Y, Cao H, Wang J, Qian K, Zhang Y, Chen S, Xu B, Zhang Y, Liang P, Wu Q. Dual Guardians of Immunity: FoRab10 and FoRab29 in Frankliniella occidentalis Confer Resistance to Tomato Spotted Wilt Orthotospovirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16661-16673. [PMID: 39021284 DOI: 10.1021/acs.jafc.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanran Wan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sirui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Lozano-Durán R. Viral Recognition and Evasion in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:655-677. [PMID: 39038248 DOI: 10.1146/annurev-arplant-060223-030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University Tübingen, Tübingen, Germany;
| |
Collapse
|
14
|
Shree A, Pal S, Verma PK. Structural diversification of fungal cell wall in response to the stress signaling and remodeling during fungal pathogenesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:733-747. [PMID: 38846457 PMCID: PMC11150350 DOI: 10.1007/s12298-024-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
Fungi are one of the most diverse organisms found in our surroundings. The heterotrophic lifestyle of fungi and the ever-changing external environmental factors pose numerous challenges for their survival. Despite all adversities, fungi continuously develop new survival strategies to secure nutrition and space from their host. During host-pathogen interaction, filamentous phytopathogens in particular, effectively infect their hosts by maintaining polarised growth at the tips of hyphae. The fungal cell wall, being the prime component of host contact, plays a crucial role in fortifying the intracellular environment against the harsh external environment. Structurally, the fungal cell wall is a highly dynamic yet rigid component, responsible for maintaining cellular morphology. Filamentous pathogens actively maintain their dynamic cell wall to compensate rapid growth on the host. Additionally, they secrete effectors to dampen the sophisticated mechanisms of plant defense and initiate various downstream signaling cascades to repair the damage inflicted by the host. Thus, the fungal cell wall serves as a key modulator of fungal pathogenicity. The fungal cell wall with their associated signaling mechanisms emerge as intriguing targets for host immunity. This review comprehensively examines and summarizes the multifaceted findings of various research groups regarding the dynamics of the cell wall in filamentous fungal pathogens during host invasion.
Collapse
Affiliation(s)
- Ankita Shree
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Surabhi Pal
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
15
|
Zheng X, Li Y, Liu Y. Plant Immunity against Tobamoviruses. Viruses 2024; 16:530. [PMID: 38675873 PMCID: PMC11054417 DOI: 10.3390/v16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
16
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Kang Y, Lin W, Nagy PD. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy. PLoS Pathog 2024; 20:e1012085. [PMID: 38484009 DOI: 10.1371/journal.ppat.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/26/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
18
|
Wang Y, Zhang Y, Fan J, Li H, Chen Q, Yin H, Qi K, Xie Z, Zhu N, Sun X, Zhang S. Physiological and autophagy evaluation of different pear varieties (Pyrus spp.) in response to Botryosphaeria dothidea infection. TREE PHYSIOLOGY 2024; 44:tpad139. [PMID: 38051648 DOI: 10.1093/treephys/tpad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Ring rot disease is one of the most common diseases in pear orchards. To better understand the physiology, biochemistry and autophagic changes of different pear varieties after Botryosphaeria dothidea (B.dothidea) infection, we evaluated eight different pear varieties for B. dothidea resistance. The susceptible varieties had larger spot diameters, lower chlorophyll contents and higher malondialdehyde contents than the resistant varieties. In disease-resistant varieties, reactive oxygen species (ROS) levels were relatively lower, while the ROS metabolism (antioxidant enzyme activities and the ascorbic acid-glutathione cycle) was also maintained at higher levels, and it induced a significant upregulation of related gene expression. In addition, autophagy, as an important evaluation index, was found to have more autophagic activity in disease-resistant varieties than in susceptible varieties, suggesting that pathogen infestation drives plants to increase autophagy to defend against pathogens. In summary, the results of this study reveal that different resistant pear varieties enhance plant resistance to the disease through a series of physio-biochemical changes and autophagic activity after inoculation with B. dothidea. This study provides clear physiological and biochemical traits for pear disease resistance selection, potential genetic resources and material basis for pear disease control and disease resistance, breeding and points out the direction for research on the mechanism of pear resistance to B. dothidea.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Ye Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaqi Fan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Hongxiang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| | - Qiming Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhihua Xie
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Nan Zhu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| |
Collapse
|
19
|
Chen X, He Y, Wu Z, Lu X, Yin Z, Zhao L, Huang H, Meng Y, Fan Y, Guo L, Wang D, Wang J, Wang S, Chen C, Wang X, Ye W. Systematic analysis and expression of Gossypium ATG8 family reveals the roles of GhATG8f responding to salt stress in cotton. PLANT CELL REPORTS 2024; 43:58. [PMID: 38321189 DOI: 10.1007/s00299-023-03137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024]
Abstract
KEY MESSAGE Comprehensive analysis of Gossypium ATG8 family indicates that GhATG8f could improve salt tolerance of cotton by increasing SOD, POD and CAT activity and proline accumulation. In plants, autophagy is regulated by several genes that play important roles in initiating and controlling the process. ATG8, functioning as a protein similar to ubiquitin, is involved in crucial tasks throughout the autophagosome formation process. In this research, we conducted an extensive and all-encompassing investigation of 64 ATG8 genes across four varieties of cotton. According to the subcellular localization prediction results, 49 genes were found in the cytoplasm, 6 genes in the chloroplast, 1 gene in the peroxisome, 5 genes in the nucleus, and 3 genes in the extracellular region. Phylogenetic analysis categorized a total of 5 subfamilies containing sixty-four ATG8 genes. The expression of the majority of GhATG8 genes was induced by salt, drought, cold, and heat stresses, as revealed by RNA-seq and real-time PCR. Analysis of cis-elements in the promoters of GhATG8 genes revealed the predominant presence of responsive elements for plant hormones and abiotic stress, suggesting that GhATG8 genes might have significant functions in abiotic stress response. Furthermore, we additionally performed a gene interaction network analysis for the GhATG8 proteins. The salt stress resistance of cotton was reduced due to the downregulation of GhATG8f expression, resulting in decreased activity of CAT, SOD, and POD enzymes, as well as decreased fresh weight and proline accumulation. In summary, our research is the initial exploration of ATG8 gene components in cotton, providing a basis for future investigations into the regulatory mechanisms of ATG8 genes in autophagy and their response to abiotic stress.
Collapse
Affiliation(s)
- Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, 415101, Hunan, China
| | - Zhe Wu
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiupin Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
20
|
Huang X, Wang J, Chen S, Liu S, Li Z, Wang Z, Chen B, Zhang C, Zhang Y, Wu J, Yang X, Xie Q, Li F, An H, Huang J, Li H, Liu C, Wu X, Liu DX, Yang X, Zhou G, Zhang T. Rhabdovirus encoded glycoprotein induces and harnesses host antiviral autophagy for maintaining its compatible infection. Autophagy 2024; 20:275-294. [PMID: 37656054 PMCID: PMC10813567 DOI: 10.1080/15548627.2023.2252273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Xiuqin Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junkai Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Siping Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Siying Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhanbiao Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhiyi Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Biao Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yifei Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinhui Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaorong Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Faqiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guohui Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Cao T, Haxim Y, Liu X, Yang Q, Hawar A, Waheed A, Li X, Zhang D. ScATG8 Gene Cloned from Desert Moss Syntrichia caninervis Exhibits Multiple Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 13:59. [PMID: 38202370 PMCID: PMC10780840 DOI: 10.3390/plants13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Syntrichia caninervis is the dominant species of biological soil crust in the desert, including the Gurbantunggut Desert in China. It is widely distributed in drylands and considered to be a new model of vegetative desiccation tolerance moss. Here, we cloned an ATG8 gene from S. caninervis and confirmed its function under multiple abiotic stresses, both in situ and in Physcomitrium patens. The results showed that the ScATG8 gene encoded a protein with a highly conserved ATG8 functional domain. ScATG8 gene was increasingly expressed under different abiotic stresses. Under desiccation stress, the overexpression of ScATG8 enhanced the tolerance of S. caninervis and its ability to scavenge ROS. In addition, ScATG8 overexpression promoted the growth of P. patens under multiple stress conditions. Thus, ScATG8 may be a multifunctional gene, and it plays a critical role in the survival of S. caninervis under various abiotic stresses. Our results provide new insights into the function of ATG8 in enabling desiccation tolerance and open up more possibilities for subsequent plant molecular breeding and the mining of the resistance genes of S. caninervis and other moss species.
Collapse
Affiliation(s)
- Ting Cao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Amangul Hawar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (T.C.); (Y.H.); (X.L.); (Q.Y.); (A.H.); (A.W.); (X.L.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
22
|
Chen D, Zhang HY, Hu SM, Tian MY, Zhang ZY, Wang Y, Sun LY, Han CG. The P1 protein of wheat yellow mosaic virus exerts RNA silencing suppression activity to facilitate virus infection in wheat plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1717-1736. [PMID: 37751381 DOI: 10.1111/tpj.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meng-Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li-Ying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
23
|
Liu W, Wei T, Wang X. Plant reoviruses hijack autophagy in insect vectors. Trends Microbiol 2023; 31:1251-1261. [PMID: 37453843 DOI: 10.1016/j.tim.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Plant reoviruses, transmitted only by insect vectors, seriously threaten global cereal production. Understanding how insect vectors efficiently transmit the viruses is key to controlling the viral diseases. Autophagy commonly plays important roles in plant host defense against virus infection, but recent studies have shown that plant reoviruses can hijack the autophagy pathway in insect cells to enable their persistence in the insect and continued transmission to plants. Here, we summarize and discuss new insights on viral activation, evasion, regulation, and manipulation of autophagy within the insect vectors and the role of autophagy in virus survival in insect vectors. Deeper knowledge of the functions of autophagy in vectors may lead to novel strategies for blocking transmission of insect-borne plant viruses.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
24
|
Ji C, Zhou J, Yang D, Yuan B, Tang R, Liu Y, Xi D. ATG8f Interacts with Chilli Veinal Mottle Virus 6K2 Protein to Limit Virus Infection. Viruses 2023; 15:2324. [PMID: 38140565 PMCID: PMC10747504 DOI: 10.3390/v15122324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Autophagy, as a conserved protein degradation pathway in plants, has also been reported to be intricately associated with antiviral defense mechanisms. However, the relationship between chilli veinal mottle virus (ChiVMV) and autophagy has not been investigated in the existing research. Here, we reveal that ChiVMV infection caused the accumulation of autophagosomes in infected Nicotiana benthamiana leaves and the upregulation of autophagy-related genes (ATGs). Moreover, the changes in gene expression were correlated with the development of symptoms. Treatment with autophagy inhibitors (3-MA or E-64D) could increase the infection sites and facilitate virus infection, whereas treatment with the autophagy activator (Rapamycin) limited virus infection. Then, ATG8f was identified to interact with ChiVMV 6K2 protein directly in vitro and in vivo. The silencing of ATG8f promoted virus infection, whereas the overexpression of ATG8f inhibited virus infection. Furthermore, the expression of 6K2-GFP in ATG8f- or ATG7-silenced plants was significantly higher than that in control plants. Rapamycin treatment reduced the accumulation of 6K2-GFP in plant cells, whereas treatment with the inhibitor of the ubiquitin pathway (MG132), 3-MA, or E-64D displayed little impact on the accumulation of 6K2-GFP. Thus, our results demonstrated that ATG8f interacts with the ChiVMV 6K2 protein, promoting the degradation of 6K2 through the autophagy pathway.
Collapse
Affiliation(s)
- Chenglong Ji
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (C.J.)
| | - Jingya Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (C.J.)
| | - Daoyong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (C.J.)
| | - Bowen Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (C.J.)
| | - Rongxia Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (C.J.)
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (C.J.)
| |
Collapse
|
25
|
Yang M, Ismayil A, Gao T, Ye Z, Yue N, Wu J, Zheng X, Li Y, Wang Y, Hong Y, Liu Y. Cotton leaf curl Multan virus C4 protein suppresses autophagy to facilitate viral infection. PLANT PHYSIOLOGY 2023; 193:708-720. [PMID: 37073495 DOI: 10.1093/plphys/kiad235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Autophagy plays an important role in plant antiviral defense. Several plant viruses are reported to encode viral suppressor of autophagy (VSA) to prevent autophagy for effective virus infection. However, whether and how other viruses, in particular DNA viruses, also encode VSAs to affect viral infection in plants is unknown. Here, we report that the C4 protein encoded by Cotton leaf curl Multan geminivirus (CLCuMuV) inhibits autophagy by binding to the autophagy negative regulator eukaryotic translation initiation factor 4A (eIF4A) to enhance the eIF4A-Autophagy-related protein 5 (ATG5) interaction. By contrast, the R54A or R54K mutation in C4 abolishes its capacity to interact with eIF4A, and neither C4R54A nor C4R54K can suppress autophagy. However, the R54 residue is not essential for C4 to interfere with transcriptional gene silencing or post-transcriptional gene silencing. Moreover, plants infected with mutated CLCuMuV-C4R54K develop less severe symptoms with decreased levels of viral DNA. These findings reveal a molecular mechanism underlying how the DNA virus CLCuMuV deploys a VSA to subdue host cellular antiviral autophagy defense and uphold viral infection in plants.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Teng Gao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Zihan Ye
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ning Yue
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jie Wu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiyin Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
26
|
Shi H, Yang Z, Huang J, Wu H, Fu S, Li W, Zou X, Zhou C, Wang X. An effector of 'Candidatus Liberibacter asiaticus' manipulates autophagy to promote bacterial infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4670-4684. [PMID: 37166404 DOI: 10.1093/jxb/erad176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.
Collapse
Affiliation(s)
- Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jie Huang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Haodi Wu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Xiuping Zou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| |
Collapse
|
27
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
28
|
Sun H, Jing X, Wang C, Wang P, Huang Z, Sun B, Li P, Li H, Zhang C. The Great Game between Plants and Viruses: A Focus on Protein Homeostasis. Int J Mol Sci 2023; 24:12582. [PMID: 37628763 PMCID: PMC10454472 DOI: 10.3390/ijms241612582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Plant viruses are tiny pathogenic obligate parasites that cause significant damage to global crop production. They exploit and manipulate the cellular components of host plants to ensure their own survival. In response, plants activate multiple defense signaling pathways, such as gene silencing and plant hormone signaling, to hinder virus propagation. Growing evidence suggests that the regulation of protein homeostasis plays a vital role in the ongoing battle between plants and viruses. The ubiquitin-proteasome-degradation system (UPS) and autophagy, as two major protein-degradation pathways, are widely utilized by plants and viruses in their arms race. One the one hand, these pathways act as essential components of plant's antiviral defense system by facilitating the degradation of viral proteins; on the other hand, viruses exploit the UPS and autophagy to create a favorable intracellular environment for viral infection. This review aims to provide a comprehensive summary of the events involved in protein homeostasis regulation during viral infection in plants. Gaining knowledge in this area will enhance our understanding of the complex interplay between plants and viruses.
Collapse
Affiliation(s)
- Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ziting Huang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
29
|
Zou J, Chen X, Liu C, Guo M, Kanwar MK, Qi Z, Yang P, Wang G, Bao Y, Bassham DC, Yu J, Zhou J. Autophagy promotes jasmonate-mediated defense against nematodes. Nat Commun 2023; 14:4769. [PMID: 37553319 PMCID: PMC10409745 DOI: 10.1038/s41467-023-40472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China.
| |
Collapse
|
30
|
González-Fuente M. Different battle, same strategy: DNA viruses also block plant autophagy. PLANT PHYSIOLOGY 2023; 192:2591-2592. [PMID: 37141318 PMCID: PMC10400024 DOI: 10.1093/plphys/kiad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Manuel González-Fuente
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, USA
- Faculty of Biology & Biotechnology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
31
|
Kumar S, Gupta N, Chakraborty S. Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Arch Virol 2023; 168:196. [PMID: 37386317 DOI: 10.1007/s00705-023-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, βC1, and βV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.
Collapse
Affiliation(s)
- Sunil Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
32
|
Tong X, Zhao JJ, Feng YL, Zou JZ, Ye J, Liu J, Han C, Li D, Wang XB. A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors. Nat Commun 2023; 14:3852. [PMID: 37385991 PMCID: PMC10310818 DOI: 10.1038/s41467-023-39426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Selective autophagy is a double-edged sword in antiviral immunity and regulated by various autophagy receptors. However, it remains unclear how to balance the opposite roles by one autophagy receptor. We previously identified a virus-induced small peptide called VISP1 as a selective autophagy receptor that facilitates virus infections by targeting components of antiviral RNA silencing. However, we show here that VISP1 can also inhibit virus infections by mediating autophagic degradation of viral suppressors of RNA silencing (VSRs). VISP1 targets the cucumber mosaic virus (CMV) 2b protein for degradation and attenuates its suppression activity on RNA silencing. Knockout and overexpression of VISP1 exhibit compromised and enhanced resistance against late infection of CMV, respectively. Consequently, VISP1 induces symptom recovery from CMV infection by triggering 2b turnover. VISP1 also targets the C2/AC2 VSRs of two geminiviruses and enhances antiviral immunity. Together, VISP1 induces symptom recovery from severe infections of plant viruses through controlling VSR accumulation.
Collapse
Affiliation(s)
- Xin Tong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Jia-Jia Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Ya-Lan Feng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jing-Ze Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jian Ye
- State Key laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
33
|
Kim H, Kawakubo S, Takahashi H, Masuta C. Two mutually exclusive evolutionary scenarios for allexiviruses that overcome host RNA silencing and autophagy by regulating viral CRP expression. PLoS Pathog 2023; 19:e1011457. [PMID: 37379324 DOI: 10.1371/journal.ppat.1011457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The genus Allexivirus currently includes eight virus species that infect allium plants. Previously, we showed that there are two distinct groups of allexiviruses (deletion [D]-type and insertion [I]-type) based on the presence or absence of a 10- to 20-base insert (IS) between the coat protein (CP) and cysteine rich protein (CRP) genes. In the present study of CRPs to analyze their functions, we postulated that evolution of allexiviruses may have been largely directed by CRPs and thus proposed two evolutionary scenarios for allexiviruses based mainly on the presence or absence of IS and determined by how the allexiviruses challenge host resistance mechanisms (RNA silencing and autophagy). We found that both CP and CRP are RNA silencing suppressors (RSS), that they can inhibit each other's RSS activity in the cytoplasm, and that CRP becomes a target of host autophagy in the cytoplasm but not CP. To mitigate CRP interference with CP, and to increase the CP's RSS activity, allexiviruses developed two strategies: confinement of D-type CRP in the nucleus and degradation of I-type CRP by autophagy in the cytoplasm. Here, we demonstrate that viruses of the same genus achieve two completely different evolutionary scenarios by controlling expression and subcellular localization of CRP.
Collapse
Affiliation(s)
- Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Kita 9, Nishi 9, Sapporo, Japan
| | - Shusuke Kawakubo
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Kita 9, Nishi 9, Sapporo, Japan
| | - Haruna Takahashi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Kita 9, Nishi 9, Sapporo, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Kita 9, Nishi 9, Sapporo, Japan
| |
Collapse
|
34
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
He H, Ge L, Li Z, Zhou X, Li F. Pepino mosaic virus antagonizes plant m 6A modification by promoting the autophagic degradation of the m 6A writer HAKAI. ABIOTECH 2023; 4:83-96. [PMID: 37581026 PMCID: PMC10423194 DOI: 10.1007/s42994-023-00097-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/01/2023] [Indexed: 08/16/2023]
Abstract
Autophagy plays an active anti-viral role in plants. Increasing evidence suggests that viruses can inhibit or manipulate autophagy, thereby winning the arms race between plants and viruses. Here, we demonstrate that overexpression of an m6A writer from Solanum lycopersicum, SlHAKAI, could negatively regulate pepino mosaic virus (PepMV) infection, inhibit viral RNA and protein accumulations by affecting viral m6A levels in tomato plants and vice versa. The PepMV-encoded RNA-dependent RNA polymerase (RdRP) directly interacts with SlHAKAI and reduces its protein accumulation. The RdRP-mediated decreased protein accumulation of SlHAKAI is sensitive to the autophagy inhibitor 3-methyladenine and is compromised by knocking down a core autophagy gene. Furthermore, PepMV RdRP could interact with an essential autophagy-related protein, SlBeclin1. RdRP, SlHAKAI, and SlBeclin1 interaction complexes form bright granules in the cytoplasm. Silencing of Beclin1 in Nicotiana benthamiana plants abolishes the RdRP-mediated degradation of SlHAKAI, indicating the requirement of Beclin1 in this process. This study uncovers that the PepMV RdRP exploits the autophagy pathway by interacting with SlBeclin1 to promote the autophagic degradation of the SlHAKAI protein, thereby inhibiting the m6A modification-mediated plant defense responses. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00097-6.
Collapse
Affiliation(s)
- Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
36
|
Shen C, Wei C, Wu Y. Barley yellow dwarf Virus-GAV movement protein activating wheat TaATG6-Mediated antiviral autophagy pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107771. [PMID: 37247558 DOI: 10.1016/j.plaphy.2023.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Barley yellow dwarf virus-GAV (BYDV-GAV) is a highly destructive virus that is transmitted by aphids and can cause substantial yield losses in crops such as wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa). Autophagy is an evolutionarily conserved degradation process that eliminates damaged or harmful intracellular substances during stress conditions or specific developmental processes. However, the mechanism of autophagy involved in disease resistance in wheat remains unknown. In this study, we demonstrate that BYDV-GAV infection could induces the upregulation of genes related to the autophagy pathway in wheat, accompanied by the production of autophagosomes. Furthermore, we confirmed the direct interaction between the viral movement protein (MP) and wheat autophagy-related gene 6 (TaATG6) both in vivo and in vitro. Through yeast function complementation experiments, we determined that TaATG6 can restore the autophagy function in a yeast mutant, atg6. Additionally, we identified the interaction between TaATG6 and TaATG8, core factors of the autophagic pathway, using the yeast two-hybrid system. TaATG6 and TaATG8-silenced wheat plants exhibited a high viral content. Overall, our findings suggest that wheat can recognize BYDV-GAV infection and activate the MP-TaATG6-TaATG8 regulatory network of defense responses through the induction of the autophagy pathway.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, 725000, Ankang, China.
| | - Caiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| |
Collapse
|
37
|
Shang K, Xiao L, Zhang X, Zang L, Zhao D, Wang C, Wang X, Zhou T, Zhu C, Zhu X. Tomato chlorosis virus p22 interacts with NbBAG5 to inhibit autophagy and regulate virus infection. MOLECULAR PLANT PATHOLOGY 2023; 24:425-435. [PMID: 36828802 PMCID: PMC10098061 DOI: 10.1111/mpp.13311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 05/03/2023]
Abstract
Tomato chlorosis virus (ToCV) is a member of the genus Crinivirus in the family Closteroviridae. It has a wide host range and wide distribution, causing serious harm to the vegetable industry. The autophagy pathway plays an important role in plant resistance to virus infection. Viruses and plant hosts coevolve in defence and antidefence processes around autophagy. In this study, the interaction between ToCV p22 and Nicotiana benthamiana B-cell lymphoma2-associated athanogenes5 Nicotiana benthamiana (NbBAG5) was examined. Through overexpression and down-regulation of NbBAG5, results showed that NbBAG5 could negatively regulate ToCV infection. NbBAG5 was found to be localized in mitochondria and can change the original localization of ToCV p22, which is colocalized in mitochondria. NbBAG5 inhibited the expression of mitophagy-related genes and the number of autophagosomes, thereby regulating viral infection by affecting mitophagy. In summary, this study demonstrated that ToCV p22 affects autophagy by interacting with NbBAG5, established the association between viral infection, BAG proteins family, and the autophagy pathway, and explained the molecular mechanism by which ToCV p22 interacts with NbBAG5 to inhibit autophagy to regulate viral infection.
Collapse
Affiliation(s)
- Kaijie Shang
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Li Xiao
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Xianping Zhang
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Lianyi Zang
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Dan Zhao
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Chenchen Wang
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Xipan Wang
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Tao Zhou
- State Key Laboratory for Agro‐Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Changxiang Zhu
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Xiaoping Zhu
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| |
Collapse
|
38
|
Cao B, Ge L, Zhang M, Li F, Zhou X. Geminiviral C2 proteins inhibit active autophagy to facilitate virus infection by impairing the interaction of ATG7 and ATG8. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1328-1343. [PMID: 36639894 DOI: 10.1111/jipb.13452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections. Here we report that geminiviruses counteract activated autophagy-mediated antiviral defense in plant cells through the C2 proteins they encode. We found that, in Nicotiana benthamiana plants, tomato leaf curl Yunnan virus (TLCYnV) infection upregulated the transcription levels of autophagy-related genes (ATGs). Overexpression of NbATG5, NbATG7, or NbATG8a in N. benthamiana plants decreased TLCYnV accumulation and attenuated viral symptoms. Interestingly, transgenic overexpression of NbATG7 promoted the growth of N. benthamiana plants and enhanced plant resistance to TLCYnV. We further revealed that the C2 protein encoded by TLCYnV directly interacted with the ubiquitin-activating domain of ATG7. This interaction competitively disrupted the ATG7-ATG8 binding in N. benthamiana and Solanum lycopersicum plants, thereby inhibiting autophagy activity. Furthermore, we uncovered that the C2-mediated autophagy inhibition mechanism was conserved in three other geminiviruses. In summary, we discovered a novel counter-defensive strategy employed by geminiviruses that enlists their C2 proteins as disrupters of ATG7-ATG8 interactions to defeat antiviral autophagy.
Collapse
Affiliation(s)
- Buwei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
39
|
Majumdar A, Sharma A, Belludi R. Natural and Engineered Resistance Mechanisms in Plants against Phytoviruses. Pathogens 2023; 12:619. [PMID: 37111505 PMCID: PMC10143959 DOI: 10.3390/pathogens12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Plant viruses, as obligate intracellular parasites, rely exclusively on host machinery to complete their life cycle. Whether a virus is pathogenic or not depends on the balance between the mechanisms used by both plants and viruses during the intense encounter. Antiviral defence mechanisms in plants can be of two types, i.e., natural resistance and engineered resistance. Innate immunity, RNA silencing, translational repression, autophagy-mediated degradation, and resistance to virus movement are the possible natural defence mechanisms against viruses in plants, whereas engineered resistance includes pathogen-derived resistance along with gene editing technologies. The incorporation of various resistance genes through breeding programmes, along with gene editing tools such as CRISPR/Cas technologies, holds great promise in developing virus-resistant plants. In this review, different resistance mechanisms against viruses in plants along with reported resistance genes in major vegetable crops are discussed.
Collapse
Affiliation(s)
- Anik Majumdar
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| | - Abhishek Sharma
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Rakesh Belludi
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| |
Collapse
|
40
|
Chen Q, Zhang Y, Yang H, Wang X, Ren J, Jia D, Chen H, Wei T. GAPDH mediates plant reovirus-induced incomplete autophagy for persistent viral infection in leafhopper vector. Autophagy 2023; 19:1100-1113. [PMID: 36036160 PMCID: PMC10012898 DOI: 10.1080/15548627.2022.2115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is a conserved mechanism launched by host organisms to fight against virus infection. Double-membraned autophagosomes in arthropod vectors can be remodeled by arboviruses to accommodate virions and facilitate persistent viral propagation, but the underlying mechanism is unknown. Rice gall dwarf virus (RGDV), a plant nonenveloped double-stranded RNA virus, induces the formation of virus-containing double-membraned autophagosomes to benefit persistent viral propagation in leafhopper vectors. In this study, it was found that the capsid protein P2 of RGDV alone induced autophagy. P2 specifically interacted with GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and ATG4B both in vitro and in vivo. Furthermore, the GAPDH-ATG4B complex could be recruited to virus-induced autophagosomes. Silencing of GAPDH or ATG4B expression suppressed ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, P2 could directly recruit the GAPDH-ATG4B complex to induce the formation of initial autophagosomes. Furthermore, such autophagosomes were modified to evade fusion with lysosomes for degradation, and thus could be persistently exploited by viruses to facilitate efficient propagation. GAPDH bound to ATG14 and inhibited the interaction of ATG14 with SNAP29, thereby preventing ATG14-SNARE proteins from mediating autophagosome-lysosome fusion. Taken together, these results highlight how RGDV activates GAPDH to initiate autophagosome formation and block autophagosome degradation, finally facilitating persistent viral propagation in insect vectors. The findings reveal a positive regulation of immune response in insect vectors during viral infection.
Collapse
Affiliation(s)
- Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuele Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hengsong Yang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xin Wang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiping Ren
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Zhao W, Wang L, Li L, Zhou T, Yan F, Zhang H, Zhu Y, Andika IB, Sun L. Coat protein of rice stripe virus enhances autophagy activity through interaction with cytosolic glyceraldehyde-3-phosphate dehydrogenases, a negative regulator of plant autophagy. STRESS BIOLOGY 2023; 3:3. [PMID: 37676568 PMCID: PMC10441990 DOI: 10.1007/s44154-023-00084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 09/08/2023]
Abstract
Viral infection commonly induces autophagy, leading to antiviral responses or conversely, promoting viral infection or replication. In this study, using the experimental plant Nicotiana benthamiana, we demonstrated that the rice stripe virus (RSV) coat protein (CP) enhanced autophagic activity through interaction with cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (GAPC2), a negative regulator of plant autophagy that binds to an autophagy key factor, autophagy-related protein 3 (ATG3). Competitive pull-down and co-immunoprecipitation (Co-IP)assays showed that RSV CP activated autophagy by disrupting the interaction between GAPC2 and ATG3. An RSV CP mutant that was unable to bind GAPC2 failed to disrupt the interaction between GAPC2 and ATG3 and therefore lost its ability to induce autophagy. RSV CP enhanced the autophagic degradation of a viral movement protein (MP) encoded by a heterologous virus, citrus leaf blotch virus (CLBV). However, the autophagic degradation of RSV-encoded MP and RNA-silencing suppressor (NS3) proteins was inhibited in the presence of CP, suggesting that RSV CP can protect MP and NS3 against autophagic degradation. Moreover, in the presence of MP, RSV CP could induce the autophagic degradation of a remorin protein (NbREM1), which negatively regulates RSV infection through the inhibition of viral cell-to-cell movement. Overall, our results suggest that RSV CP induces a selective autophagy to suppress the antiviral factors while protecting RSV-encoded viral proteins against autophagic degradation through an as-yet-unknown mechanism. This study showed that RSV CP plays dual roles in the autophagy-related interaction between plants and viruses.
Collapse
Affiliation(s)
- Wanying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lipeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, 312362, China
| | - Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
42
|
Zhang J, Ma M, Liu Y, Ismayil A. Plant Defense and Viral Counter-Defense during Plant-Geminivirus Interactions. Viruses 2023; 15:v15020510. [PMID: 36851725 PMCID: PMC9964946 DOI: 10.3390/v15020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Geminiviruses are the largest family of plant viruses that cause severe diseases and devastating yield losses of economically important crops worldwide. In response to geminivirus infection, plants have evolved ingenious defense mechanisms to diminish or eliminate invading viral pathogens. However, increasing evidence shows that geminiviruses can interfere with plant defense response and create a suitable cell environment by hijacking host plant machinery to achieve successful infections. In this review, we discuss recent findings about plant defense and viral counter-defense during plant-geminivirus interactions.
Collapse
Affiliation(s)
- Jianhang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengyuan Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence:
| |
Collapse
|
43
|
Yang T, Peng Q, Lin H, Xi D. Alpha-momorcharin preserves catalase activity to inhibit viral infection by disrupting the 2b-CAT interaction in Solanum lycopersicum. MOLECULAR PLANT PATHOLOGY 2023; 24:107-122. [PMID: 36377585 PMCID: PMC9831283 DOI: 10.1111/mpp.13279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many host factors of plants are used by viruses to facilitate viral infection. However, little is known about how alpha-momorcharin (αMMC) counters virus-mediated attack strategies in tomato. Our present research revealed that the 2b protein of cucumber mosaic virus (CMV) directly interacted with catalases (CATs) and inhibited their activities. Further analysis revealed that transcription levels of catalase were induced by CMV infection and that virus accumulation increased in CAT-silenced or 2b-overexpressing tomato plants compared with that in control plants, suggesting that the interaction between 2b and catalase facilitated the accumulation of CMV in hosts. However, both CMV accumulation and viral symptoms were reduced in αMMC transgenic tomato plants, indicating that αMMC engaged in an antiviral role in the plant response to CMV infection. Molecular experimental analysis demonstrated that αMMC interfered with the interactions between catalases and 2b in a competitive manner, with the expression of αMMC inhibited by CMV infection. We further demonstrated that the inhibition of catalase activity by 2b was weakened by αMMC. Accordingly, αMMC transgenic plants exhibited a greater ability to maintain redox homeostasis than wild-type plants when infected with CMV. Altogether, these results reveal that αMMC retains catalase activity to inhibit CMV infection by subverting the interaction between 2b and catalase in tomato.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life SciencesJianghan UniversityWuhanChina
| | - Qiding Peng
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Honghui Lin
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Dehui Xi
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
44
|
Wleklik K, Borek S. Vacuolar Processing Enzymes in Plant Programmed Cell Death and Autophagy. Int J Mol Sci 2023; 24:ijms24021198. [PMID: 36674706 PMCID: PMC9862320 DOI: 10.3390/ijms24021198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been indicated in various types of plant PCD related to development, senescence, and environmental stress responses. Another pathway induced during such processes is autophagy, which leads to the degradation of cellular components and metabolite salvage, and it is presumed that VPEs may be involved in the degradation of autophagic bodies during plant autophagy. As both PCD and autophagy occur under similar conditions, research on the relationship between them is needed, and VPEs, as key vacuolar proteases, seem to be an important factor to consider. They may even constitute a potential point of crosstalk between cell death and autophagy in plant cells. This review describes new insights into the role of VPEs in plant PCD, with an emphasis on evidence and hypotheses on the interconnections between autophagy and cell death, and indicates several new research opportunities.
Collapse
|
45
|
Zhang X, Wan Q, Rui P, Lu Y, Sun Z, Chen J, Wang Y, Yan F. Rice stripe virus p2 protein interacts with ATG5 and is targeted for degradation by autophagy. Front Microbiol 2023; 14:1191403. [PMID: 37187544 PMCID: PMC10175675 DOI: 10.3389/fmicb.2023.1191403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy can be induced by viral infection and plays antiviral roles in plants, but the underlying mechanism is not well understood. In our previous reports, we have demonstrated that the plant ATG5 plays an essential role in activating autophagy in rice stripe virus (RSV)-infected plants. We also showed that eIF4A, a negative factor of autophagy, interacts with and inhibits ATG5. We here found that RSV p2 protein interacts with ATG5 and can be targeted by autophagy for degradation. Expression of p2 protein induced autophagy and p2 protein was shown to interfere with the interaction between ATG5 and eIF4A, while eIF4A had no effect on the interaction between ATG5 and p2. These results indicate an additional information on the induction of autophagy in RSV-infected plants.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Plant Protection College, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qionglian Wan
- Plant Protection College, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- Plant Protection College, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Jianping Chen,
| | - Yunyue Wang
- Plant Protection College, Yunnan Agricultural University, Kunming, China
- Yunyue Wang,
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- *Correspondence: Fei Yan,
| |
Collapse
|
46
|
Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance. Cells 2022; 12:cells12010149. [PMID: 36611943 PMCID: PMC9818243 DOI: 10.3390/cells12010149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded βC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of βC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sβC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of βC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sβC1 protein of SiYVB restored these functions of βC1 protein. Thus, the dynamic phosphorylation of serine-33 in βC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission.
Collapse
|
47
|
Yang M, Ismayil A, Jiang Z, Wang Y, Zheng X, Yan L, Hong Y, Li D, Liu Y. A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO J 2022; 41:e108713. [PMID: 34888888 PMCID: PMC8762549 DOI: 10.15252/embj.2021108713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Asigul Ismayil
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan Wang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Xiyin Zheng
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Liming Yan
- MOE Key Laboratory of Protein ScienceSchool of MedicineTsinghua UniversityBeijingChina
| | - Yiguo Hong
- Research Centre for Plant RNA SignalingCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Dawei Li
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yule Liu
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| |
Collapse
|
48
|
Zhang M, Cao B, Zhang H, Fan Z, Zhou X, Li F. Geminivirus satellite-encoded βC1 activates UPR, induces bZIP60 nuclear export, and manipulates the expression of bZIP60 downstream genes to benefit virus infection. SCIENCE CHINA LIFE SCIENCES 2022:10.1007/s11427-022-2196-y. [DOI: 10.1007/s11427-022-2196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
|
49
|
Gorovits R, Shteinberg M, Anfoka G, Czosnek H. Exploiting Virus Infection to Protect Plants from Abiotic Stresses: Tomato Protection by a Begomovirus. PLANTS (BASEL, SWITZERLAND) 2022; 11:2944. [PMID: 36365396 PMCID: PMC9657025 DOI: 10.3390/plants11212944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Tomato cultivation is threatened by environmental stresses (e.g., heat, drought) and by viral infection (mainly viruses belonging to the tomato yellow leaf curl virus family-TYLCVs). Unlike many RNA viruses, TYLCV infection does not induce a hypersensitive response and cell death in tomato plants. To ensure a successful infection, TYLCV preserves a suitable cellular environment where it can reproduce. Infected plants experience a mild stress, undergo adaptation and become partially "ready" to exposure to other environmental stresses. Plant wilting and cessation of growth caused by heat and drought is suppressed by TYLCV infection, mainly by down-regulating the heat shock transcription factors, HSFA1, HSFA2, HSFB1 and consequently, the expression of HSF-regulated stress genes. In particular, TYLCV captures HSFA2 by inducing protein complexes and aggregates, thus attenuating an acute stress response, which otherwise causes plant death. Viral infection mitigates the increase in stress-induced metabolites, such as carbohydrates and amino acids, and leads to their reallocation from shoots to roots. Under high temperatures and water deficit, TYLCV induces plant cellular homeostasis, promoting host survival. Thus, this virus-plant interaction is beneficial for both partners.
Collapse
Affiliation(s)
- Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Moshe Shteinberg
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ghandi Anfoka
- Faculty of Agricultural Technology, Al Balqa’ University, Al-Salt 10117, Jordan
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
50
|
Zhang Y, Xia G, Sheng L, Chen M, Hu C, Ye Y, Yue X, Chen S, OuYang W, Xia Z. Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses. PLANT CELL REPORTS 2022; 41:2125-2138. [PMID: 35922498 DOI: 10.1007/s00299-022-02910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Selective autophagy functions as a regulatory mechanism by targeting native and functional proteins to ensure their proper levels and activities in plant adaptive responses. Autophagy is a cellular degradation and recycling pathway with a key role in cellular homeostasis and metabolism. Autophagy is initiated with the biogenesis of autophagosomes, which fuse with the lysosomes or vacuoles to release their contents for degradation. Under nutrient starvation or other adverse environmental conditions, autophagy usually targets unwanted or damaged proteins, organelles and other cellular components for degradation and recycling to promote cell survival. Over the past decade, however, a substantial number of studies have reported that autophagy in plants also functions as a regulatory mechanism by targeting enzymes, structural and regulatory proteins that are not necessarily damaged or dysfunctional to ensure their proper abundance and function to facilitate cellular changes required for response to endogenous and environmental conditions. During plant-pathogen interactions in particular, selective autophagy targets specific pathogen components as a defense mechanism and pathogens also utilize autophagy to target functional host factors to suppress defense mechanisms. Autophagy also targets native and functional protein regulators of plant heat stress memory, hormone signaling, and vesicle trafficking associated with plant responses to abiotic and other conditions. In this review, we discuss advances in the regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses, what questions remain and how further progress in the analysis of these special regulatory roles of autophagy can help understand biological processes important to plants.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China.
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Li Sheng
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Mingjue Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Chenyang Hu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Yule Ye
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Xiaoyan Yue
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Shaocong Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Wenwu OuYang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Zhenkai Xia
- China Medical University -The Queen's University of Belfast Joint College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|