1
|
Shichino Y, Yamaguchi T, Kashiwagi K, Mito M, Takahashi M, Ito T, Ingolia NT, Kuba K, Iwasaki S. eIF4A1 enhances LARP1-mediated translational repression during mTORC1 inhibition. Nat Struct Mol Biol 2024; 31:1557-1566. [PMID: 38773334 DOI: 10.1038/s41594-024-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/18/2024] [Indexed: 05/23/2024]
Abstract
Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
2
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Harioudh MK, Perez J, So L, Maheshwari M, Ebert TS, Hornung V, Savan R, Rouf Banday A, Diamond MS, Rathinam VA, Sarkar SN. The canonical antiviral protein oligoadenylate synthetase 1 elicits antibacterial functions by enhancing IRF1 translation. Immunity 2024; 57:1812-1827.e7. [PMID: 38955184 PMCID: PMC11324410 DOI: 10.1016/j.immuni.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.
Collapse
Affiliation(s)
- Munesh K Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Mayank Maheshwari
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas S Ebert
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Veit Hornung
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Devi GR, Pai P, Lee S, Foster MW, Sannareddy DS, Bertucci F, Ueno N, Van Laere S. Altered ribosomal profile in acquired resistance and reversal associates with pathological response to chemotherapy in inflammatory breast cancer. NPJ Breast Cancer 2024; 10:65. [PMID: 39075068 PMCID: PMC11286775 DOI: 10.1038/s41523-024-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Therapeutic resistance presents a significant hurdle in combating inflammatory breast cancer (IBC), adding to the complexity of its management. To investigate these mechanisms, we conducted a comprehensive analysis using transcriptomic and proteomic profiling in a preclinical model alone with correlates of treatment response in IBC patients. This included SUM149 cell lines derived from treatment-naïve patients, along with acquired drug resistance (rSUM149) and others in a state of resistance reversal (rrSUM149), aiming to uncover drug resistance networks. We identified specific ribosomal proteins associated with acquiring resistance. These correlated with elevated levels of molecular markers such as pERK, CDK1, XIAP, and SOD2. While resistance reversal in rrSUM149 cells largely normalized the expression profile, VIPER analysis revealed persistent alterations in ribosomal process-related proteins (AGO2, Exportin 1, RPL5), suggesting their continued involvement in drug resistance. Moreover, genes linked to ribosomal processes were significantly enriched (P < 0.001) among overexpressed genes in IBC patients (n = 87) who exhibited a pathological complete response (pCR) to neoadjuvant chemotherapy. Given the common hyperactivation of MAPK in IBC tumors, including rSUM149, we evaluated Merestinib, a multikinase inhibitor in clinical trials. It effectively targeted pERK and peIF4E pathways, suppressed downstream targets, induced cell death in drug-resistant rSUM149 cells, and showed synergistic effects with another tyrosine kinase inhibitor (Lapatinib) in parental cells. This underscores its significant impact on protein synthesis signaling, crucial for combating translational dependence in cancer cells. In summary, our study elucidates adaptive changes in IBC cells in response to therapy and treatment pauses, guiding precision medicine approaches for this challenging cancer type.
Collapse
Affiliation(s)
- Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA.
| | - Pritha Pai
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
| | - Seayoung Lee
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Matthew W Foster
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Dorababu S Sannareddy
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
| | - Francois Bertucci
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
- Predictive Oncology team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Naoto Ueno
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Steven Van Laere
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA.
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Lohmann J, Herzog O, Rosenzweig K, Weingartner M. Thermal adaptation in plants: understanding the dynamics of translation factors and condensates. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4258-4273. [PMID: 38630631 DOI: 10.1093/jxb/erae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Plants, as sessile organisms, face the crucial challenge of adjusting growth and development with ever-changing environmental conditions. Protein synthesis is the fundamental process that enables growth of all organisms. Since elevated temperature presents a substantial threat to protein stability and function, immediate adjustments of protein synthesis rates are necessary to circumvent accumulation of proteotoxic stress and to ensure survival. This review provides an overview of the mechanisms that control translation under high-temperature stress by the modification of components of the translation machinery in plants, and compares them to yeast and metazoa. Recent research also suggests an important role for cytoplasmic biomolecular condensates, named stress granules, in these processes. Current understanding of the role of stress granules in translational regulation and of the molecular processes associated with translation that might occur within stress granules is also discussed.
Collapse
Affiliation(s)
- Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Oliver Herzog
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Kristina Rosenzweig
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
6
|
Choi JH, Luo J, Hesketh GG, Guo S, Pistofidis A, Ladak RJ, An Y, Naeli P, Alain T, Schmeing TM, Gingras AC, Duchaine T, Zhang X, Sonenberg N, Jafarnejad SM. Repression of mRNA translation initiation by GIGYF1 via disrupting the eIF3-eIF4G1 interaction. SCIENCE ADVANCES 2024; 10:eadl5638. [PMID: 39018414 PMCID: PMC466957 DOI: 10.1126/sciadv.adl5638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Viruses can selectively repress the translation of mRNAs involved in the antiviral response. RNA viruses exploit the Grb10-interacting GYF (glycine-tyrosine-phenylalanine) proteins 2 (GIGYF2) and eukaryotic translation initiation factor 4E (eIF4E) homologous protein 4EHP to selectively repress the translation of transcripts such as Ifnb1, which encodes the antiviral cytokine interferon-β (IFN-β). Herein, we reveal that GIGYF1, a paralog of GIGYF2, robustly represses cellular mRNA translation through a distinct 4EHP-independent mechanism. Upon recruitment to a target mRNA, GIGYF1 binds to subunits of eukaryotic translation initiation factor 3 (eIF3) at the eIF3-eIF4G1 interaction interface. This interaction disrupts the eIF3 binding to eIF4G1, resulting in transcript-specific translational repression. Depletion of GIGYF1 induces a robust immune response by derepressing IFN-β production. Our study highlights a unique mechanism of translational regulation by GIGYF1 that involves sequestering eIF3 and abrogating its binding to eIF4G1. This mechanism has profound implications for the host response to viral infections.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jun Luo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Geoffrey G. Hesketh
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Shuyue Guo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Angelos Pistofidis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Reese Jalal Ladak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Yuxin An
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Thomas Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
7
|
Kochnev Y, Ahmed M, Maldonado A, Durrant J. MolModa: accessible and secure molecular docking in a web browser. Nucleic Acids Res 2024; 52:W498-W506. [PMID: 38783339 PMCID: PMC11223821 DOI: 10.1093/nar/gkae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular docking advances early-stage drug discovery by predicting the geometries and affinities of small-molecule compounds bound to drug-target receptors, predictions that researchers can leverage in prioritizing drug candidates for experimental testing. Unfortunately, existing docking tools often suffer from poor usability, data security, and maintainability, limiting broader adoption. Additionally, the complexity of the docking process, which requires users to execute a series of specialized steps, often poses a substantial barrier for non-expert users. Here, we introduce MolModa, a secure, accessible environment where users can perform molecular docking entirely in their web browsers. We provide two case studies that illustrate how MolModa provides valuable biological insights. We further compare MolModa to other docking tools to highlight its strengths and limitations. MolModa is available free of charge for academic and commercial use, without login or registration, at https://durrantlab.com/molmoda.
Collapse
Affiliation(s)
- Yuri Kochnev
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mayar Ahmed
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex M Maldonado
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Diamond PD, McGlincy NJ, Ingolia NT. Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol Cell 2024; 84:2119-2134.e5. [PMID: 38848691 DOI: 10.1016/j.molcel.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.
Collapse
Affiliation(s)
- Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas J McGlincy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
10
|
Hochstoeger T, Papasaikas P, Piskadlo E, Chao JA. Distinct roles of LARP1 and 4EBP1/2 in regulating translation and stability of 5'TOP mRNAs. SCIENCE ADVANCES 2024; 10:eadi7830. [PMID: 38363833 PMCID: PMC10871529 DOI: 10.1126/sciadv.adi7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
A central mechanism of mTOR complex 1 (mTORC1) signaling is the coordinated translation of ribosomal protein and translation factor mRNAs mediated by the 5'-terminal oligopyrimidine motif (5'TOP). Recently, La-related protein 1 (LARP1) was proposed to be the specific regulator of 5'TOP mRNA translation downstream of mTORC1, while eIF4E-binding proteins (4EBP1/2) were suggested to have a general role in translational repression of all transcripts. Here, we use single-molecule translation site imaging of 5'TOP and canonical mRNAs to study the translation of single mRNAs in living cells. Our data reveal that 4EBP1/2 has a dominant role in repression of translation of both 5'TOP and canonical mRNAs during pharmacological inhibition of mTOR. In contrast, we find that LARP1 selectively protects 5'TOP mRNAs from degradation in a transcriptome-wide analysis of mRNA half-lives. Our results clarify the roles of 4EBP1/2 and LARP1 in regulating 5'TOP mRNAs and provide a framework to further study how these factors control cell growth during development and disease.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | | | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jeffrey A. Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
11
|
Kurosaki T, Rambout X, Maquat LE. FMRP-mediated spatial regulation of physiologic NMD targets in neuronal cells. Genome Biol 2024; 25:31. [PMID: 38263082 PMCID: PMC10804635 DOI: 10.1186/s13059-023-03146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
In non-polarized cells, nonsense-mediated mRNA decay (NMD) generally begins during the translation of newly synthesized mRNAs after the mRNAs are exported to the cytoplasm. Binding of the FMRP translational repressor to UPF1 on NMD targets mainly inhibits NMD. However, in polarized cells like neurons, FMRP additionally localizes mRNAs to cellular projections. Here, we review the literature and evaluate available transcriptomic data to conclude that, in neurons, the translation of physiologic NMD targets bound by FMRP is partially inhibited until the mRNAs localize to projections. There, FMRP displacement in response to signaling induces a burst in protein synthesis followed by rapid mRNA decay.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Kozlov G, Jiang J, Rutherford T, Noronha AM, Wilds CJ, Gehring K. Enhanced binding of guanylated poly(A) RNA by the LaM domain of LARP1. RNA Biol 2024; 21:7-16. [PMID: 39016322 PMCID: PMC11259064 DOI: 10.1080/15476286.2024.2379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Tyler Rutherford
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Anne M. Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Wragg JW, White PL, Hadzhiev Y, Wanigasooriya K, Stodolna A, Tee L, Barros-Silva JD, Beggs AD, Müller F. Intra-promoter switch of transcription initiation sites in proliferation signaling-dependent RNA metabolism. Nat Struct Mol Biol 2023; 30:1970-1984. [PMID: 37996663 PMCID: PMC10716046 DOI: 10.1038/s41594-023-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues. C-initiation is often followed by a 5' terminal oligopyrimidine (5'TOP) sequence, dramatically increasing the range of genes potentially subjected to 5'TOP-associated post-transcriptional regulation. We show selective, dynamic switching between purine and C-initiation site usage, indicating transcription initiation-level regulation in cancers. We additionally detail global metabolic changes in C-initiation transcripts that mark differentiation status, proliferative capacity, radiosensitivity, and response to irradiation and to PI3K-Akt-mTOR and DNA damage pathway-targeted radiosensitization therapies in colorectal cancer organoids and cancer cell lines and tissues.
Collapse
Affiliation(s)
- Joseph W Wragg
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Paige-Louise White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kasun Wanigasooriya
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Agata Stodolna
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Louise Tee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joao D Barros-Silva
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Knop K, Gomez-Moreira C, Galloway A, Ditsova D, Cowling VH. RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression. DISCOVERY IMMUNOLOGY 2023; 3:kyad021. [PMID: 38572449 PMCID: PMC10989996 DOI: 10.1093/discim/kyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/29/2023] [Indexed: 04/05/2024]
Abstract
On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM (RNMT-Activating Mini protein/RAMAC/Fam103a1), the cofactor of the RNA cap methyltransferase RNMT (RNA guanosine N-7 cap methyltransferase), is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilizes RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knockout T cells, activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT cofactor.
Collapse
Affiliation(s)
- Katarzyna Knop
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | | | - Alison Galloway
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Dimitrinka Ditsova
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Victoria H Cowling
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| |
Collapse
|
15
|
Saba JA, Huang Z, Schole KL, Ye X, Bhatt SD, Li Y, Timp W, Cheng J, Green R. LARP1 senses free ribosomes to coordinate supply and demand of ribosomal proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565189. [PMID: 37961604 PMCID: PMC10635049 DOI: 10.1101/2023.11.01.565189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies implicate LARP1 in 40S- or 80S-ribosome complexes that repress and stabilize TOPs. However, a mechanistic understanding of how LARP1 and TOPs interact with these complexes to coordinate TOP outcomes is lacking. Here, we show that LARP1 senses the cellular supply of ribosomes by directly binding non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the 40S mRNA channel. Free cytosolic ribosomes induce sequestration of TOPs in repressed 80S-LARP1-TOP complexes independent of alterations in mTOR signaling. Together, this work demonstrates a general ribosome-sensing function of LARP1 that allows it to tune ribosome protein synthesis to cellular demand.
Collapse
Affiliation(s)
- James A. Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
- These authors contributed equally
| | - Kate L. Schole
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianwen Ye
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Shrey D. Bhatt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Mansouri-Noori F, Pircher A, Bilodeau D, Siniavskaia L, Grigull J, Rissland OS, Bayfield MA. The LARP1 homolog Slr1p controls the stability and expression of proto-5'TOP mRNAs in fission yeast. Cell Rep 2023; 42:113226. [PMID: 37851576 DOI: 10.1016/j.celrep.2023.113226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Messenger RNAs (mRNAs) in higher eukaryotes that encode proteins important for the assembly of the translational apparatus (e.g., ribosomal proteins) often harbor a pyrimidine-rich motif at the extreme 5' end known as a 5' terminal oligopyrimidine (5'TOP) sequence. Members of the La-related protein 1 (LARP1) family control 5'TOP expression through a conserved DM15 motif, but the mechanism is not well understood. 5'TOP motifs have not been described in many lower organisms, and fission yeast harbors a LARP1 homolog that also lacks a DM15 motif. In this work, we show that the fission yeast LARP1 homolog, Slr1p, controls the translation and stability of mRNAs encoding proteins analogous to 5'TOP mRNAs in higher eukaryotes, which we thus refer to as proto-5'TOPs. Our data suggest that the LARP1 DM15 motif and the mRNA 5'TOP motif may be features that were scaffolded over a more fundamental mechanism of LARP1-associated control of gene expression.
Collapse
Affiliation(s)
| | | | - Danielle Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Canada
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
17
|
Lee KY, Wang H, Yook Y, Rhodes JS, Christian-Hinman CA, Tsai NP. Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning. Mol Psychiatry 2023; 28:3782-3794. [PMID: 37759036 PMCID: PMC11392564 DOI: 10.1038/s41380-023-02268-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Synaptic potentiation underlies various forms of behavior and depends on modulation by multiple activity-dependent transcription factors to coordinate the expression of genes necessary for sustaining synaptic transmission. Our current study identified the tumor suppressor p53 as a novel transcription factor involved in this process. We first revealed that p53 could be elevated upon chemically induced long-term potentiation (cLTP) in cultured primary neurons. By knocking down p53 in neurons, we further showed that p53 is required for cLTP-induced elevation of surface GluA1 and GluA2 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Because LTP is one of the principal plasticity mechanisms underlying behaviors, we employed forebrain-specific knockdown of p53 to evaluate the role of p53 in behavior. Our results showed that, while knocking down p53 in mice does not alter locomotion or anxiety-like behavior, it significantly promotes repetitive behavior and reduces sociability in mice of both sexes. In addition, knocking down p53 also impairs hippocampal LTP and hippocampus-dependent learning and memory. Most importantly, these learning-associated defects are more pronounced in male mice than in female mice, suggesting a sex-specific role of p53 in these behaviors. Using RNA sequencing (RNAseq) to identify p53-associated genes in the hippocampus, we showed that knocking down p53 up- or down-regulates multiple genes with known functions in synaptic plasticity and neurodevelopment. Altogether, our study suggests p53 as an activity-dependent transcription factor that mediates the surface expression of AMPAR, permits hippocampal synaptic plasticity, represses autism-like behavior, and promotes hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Haohan Wang
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yeeun Yook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, Reddy P, Nelson B, Wolfe C, Ha T, Green R, Liu J, Wu B. Bursting translation on single mRNAs in live cells. Mol Cell 2023; 83:2276-2289.e11. [PMID: 37329884 PMCID: PMC10330622 DOI: 10.1016/j.molcel.2023.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/14/2023] [Indexed: 06/19/2023]
Abstract
Stochasticity has emerged as a mechanism of gene regulation. Much of this so-called "noise" has been attributed to bursting transcription. Although bursting transcription has been studied extensively, the role of stochasticity in translation has not been fully investigated due to the lack of enabling imaging technology. In this study, we developed techniques to track single mRNAs and their translation in live cells for hours, allowing the measurement of previously uncharacterized translation dynamics. We applied genetic and pharmacological perturbations to control translation kinetics and found that, like transcription, translation is not a constitutive process but instead cycles between inactive and active states, or "bursts." However, unlike transcription, which is largely frequency-modulated, complex structures in the 5'-untranslated region alter burst amplitudes. Bursting frequency can be controlled through cap-proximal sequences and trans-acting factors such as eIF4F. We coupled single-molecule imaging with stochastic modeling to quantitatively determine the kinetic parameters of translational bursting.
Collapse
Affiliation(s)
- Nathan M Livingston
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiwoong Kwon
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oliver Valera
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James A Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranav Reddy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blake Nelson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clara Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Jennings MD, Srivastava P, Kershaw CJ, Talavera D, Grant C, Pavitt G. Interaction of the La-related protein Slf1 with colliding ribosomes maintains translation of oxidative-stress responsive mRNAs. Nucleic Acids Res 2023; 51:5755-5773. [PMID: 37070186 PMCID: PMC10287931 DOI: 10.1093/nar/gkad272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
In response to oxidative stress cells reprogram gene expression to enhance levels of antioxidant enzymes and promote survival. In Saccharomyces cerevisiae the polysome-interacting La-related proteins (LARPs) Slf1 and Sro9 aid adaptation of protein synthesis during stress by undetermined means. To gain insight in their mechanisms of action in stress responses, we determined LARP mRNA binding positions in stressed and unstressed cells. Both proteins bind within coding regions of stress-regulated antioxidant enzyme and other highly translated mRNAs in both optimal and stressed conditions. LARP interaction sites are framed and enriched with ribosome footprints suggesting ribosome-LARP-mRNA complexes are identified. Although stress-induced translation of antioxidant enzyme mRNAs is attenuated in slf1Δ, these mRNAs remain on polysomes. Focusing further on Slf1, we find it binds to both monosomes and disomes following RNase treatment. slf1Δ reduces disome enrichment during stress and alters programmed ribosome frameshifting rates. We propose that Slf1 is a ribosome-associated translational modulator that stabilises stalled/collided ribosomes, prevents ribosome frameshifting and so promotes translation of a set of highly-translated mRNAs that together facilitate cell survival and adaptation to stress.
Collapse
Affiliation(s)
- Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Priya Srivastava
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
20
|
Wang R, Cheng X, Chi D, Liu S, Li Q, Chen B, Xi M. M 1A and m 7G modification-related genes are potential biomarkers for survival prognosis and for deciphering the tumor immune microenvironment in esophageal squamous cell carcinoma. Discov Oncol 2023; 14:99. [PMID: 37314494 DOI: 10.1007/s12672-023-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the most common esophageal malignancy, and RNA methylation has been reported to be involved in the tumorigenesis of ESCC. However, no study has explored methylation modifications in m1A and m7G as prognostic markers for survival prediction in ESCC. METHODS Public gene-expression data and clinical annotation of 254 patients obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases were analyzed to identify potential consensus clusters of m1A and m7G modification-related genes. The RNA-seq of 20 patients in Sun Yat-Sen University Cancer Center was used as the validation set. Following screening for relevant differentially expressed genes (DEGs) and enrichment pathways were elucidated. DEGs were used to construct risk models using the randomForest algorithm, and the prognostic role of the models was assessed by applying Kaplan-Meier analysis. Extent of immune cell infiltration, drug resistance, and response to cancer treatment among different clusters and risk groups were also evaluated. RESULTS Consensus clustering analysis based on m1A and m7G modification patterns revealed three potential clusters. In total, 212 RNA methylation-related DEGs were identified. The methylation-associated signature consisting of 6 genes was then constructed to calculate methylation-related score (MRScore) and patients were dived into MRScore-high and MRScore-low groups. This signature has satisfied prognostic value for survival of ESCC (AUC = 0.66, 0.67, 0.64 for 2-, 3-, 4- year OS), and has satisfied performance in the validation SYSUCC cohort (AUC = 0.66 for 2- and 3-year OS). Significant correlation between m1A and m7G modification-related genes and immune cell infiltration, and drug resistance was also observed. CONCLUSIONS Transcriptomic prognostic signatures based on m1A and m7G modification-related genes are closely associated with immune cell infiltration in ESCC patients and have important correlations with the therapeutic sensitivity of multiple chemotherapeutic agents.
Collapse
Affiliation(s)
- Ruixi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Xingyuan Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Dongmei Chi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shiliang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiaoqiao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China.
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China.
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
21
|
Wolin E, Guo JK, Blanco MR, Perez AA, Goronzy IN, Abdou AA, Gorhe D, Guttman M, Jovanovic M. SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543769. [PMID: 37333139 PMCID: PMC10274648 DOI: 10.1101/2023.06.05.543769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.
Collapse
Affiliation(s)
- Erica Wolin
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Jimmy K. Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R. Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Andrew A. Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Isabel N. Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Ahmed A. Abdou
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| |
Collapse
|
22
|
Bowazolo C, Morse D. Insights into daily metabolic changes of the dinoflagellate Lingulodinium from ribosome profiling. Cell Cycle 2023; 22:1343-1352. [PMID: 37125841 PMCID: PMC10228409 DOI: 10.1080/15384101.2023.2206771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/02/2023] Open
Abstract
The dinoflagellate Lingulodinium specializes its metabolism to perform different tasks better at specific times of day. For example, cells are specialized for photosynthesis during the day and bioluminescence and cell division at night. These rhythms are circadian as they are controlled by an endogenous circadian clock whose mechanism is currently unknown. Despite this, the metabolic rhythms follow coordinated changes in gene expression that occur at a translational level. These changes are revealed by ribosome profiling, a surrogate measure of protein synthesis rates in vivo. Lingulodinium regulates the synthesis rate of over three thousand transcripts. Peak synthesis rates for the different transcripts are clustered around three different times over a light/dark cycle. Furthermore, transcripts involved in the same metabolic process are coordinately regulated. We review the basic principles underlying the correlation of coordinated translation of cell metabolic pathway enzymes with known circadian rhythms, and offer examples where previously unsuspected rhythms are suggested by synchronized changes in gene expression.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, Ferro K, Gerton JL. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. Development 2023; 150:dev201581. [PMID: 37278344 PMCID: PMC10309589 DOI: 10.1242/dev.201581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
Diamond PD, McGlincy NJ, Ingolia NT. Dysregulation of amino acid metabolism upon rapid depletion of cap-binding protein eIF4E. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540079. [PMID: 37214807 PMCID: PMC10197679 DOI: 10.1101/2023.05.11.540079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein synthesis is a crucial but metabolically costly biological process that must be tightly coordinated with cellular needs and nutrient availability. In response to environmental stress, translation initiation is modulated to control protein output while meeting new demands. The cap-binding protein eIF4E-the earliest contact between mRNAs and the translation machinery-serves as one point of control, but its contributions to mRNA-specific translation regulation remain poorly understood. To survey eIF4E-dependent translational control, we acutely depleted eIF4E and determined how this impacts protein synthesis. Despite its essentiality, eIF4E depletion had surprisingly modest effects on cell growth and protein synthesis. Analysis of transcript-level changes revealed that long-lived transcripts were downregulated, likely reflecting accelerated turnover. Paradoxically, eIF4E depletion led to simultaneous upregulation of genes involved in catabolism of aromatic amino acids, which arose as secondary effects of reduced protein biosynthesis on amino acid pools, and genes involved in the biosynthesis of amino acids. These futile cycles of amino acid synthesis and degradation were driven, in part, by translational activation of GCN4, a transcription factor typically induced by amino acid starvation. Furthermore, we identified a novel regulatory mechanism governing translation of PCL5, a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This translational control was partial dependent on a uniquely long poly-(A) tract in the PCL5 5' UTR and on poly-(A) binding protein. Collectively, these results highlight how eIF4E connects translation to amino acid homeostasis and stress responses and uncovers new mechanisms underlying how cells tightly control protein synthesis during environmental challenges.
Collapse
Affiliation(s)
- Paige D. Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley
| | | | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley
| |
Collapse
|
25
|
Chen Y, Zhang X, Jiang J, Luo M, Tu H, Xu C, Tan H, Zhou X, Chen H, Han X, Yue Q, Guo Y, Zheng K, Qi Y, Situ C, Cui Y, Guo X. Regulation of Miwi-mediated mRNA stabilization by Ck137956/Tssa is essential for male fertility. BMC Biol 2023; 21:89. [PMID: 37069605 PMCID: PMC10111675 DOI: 10.1186/s12915-023-01589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized. RESULTS Here we report a Miwi-interacting testis-specific and spermiogenic arrest protein, Ck137956, which we rename Tssa. Deletion of Tssa led to male sterility and absence of sperm formation. The spermiogenesis arrested at the round spermatid stage and numerous spermiogenic mRNAs were down-regulated in Tssa-/- mice. Deletion of Tssa disrupted the localization of Miwi to chromatoid body, a specialized assembly of cytoplasmic messenger ribonucleoproteins (mRNPs) foci present in germ cells. We found that Tssa interacted with Miwi in repressed mRNPs and stabilized Miwi-interacting spermiogenesis-essential mRNAs. CONCLUSIONS Our findings indicate that Tssa is indispensable in male fertility and has critical roles in post-transcriptional regulations by interacting with Miwi during spermiogenesis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengjiao Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Goering R, Arora A, Pockalny MC, Taliaferro JM. RNA localization mechanisms transcend cell morphology. eLife 2023; 12:e80040. [PMID: 36867563 PMCID: PMC9984196 DOI: 10.7554/elife.80040] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023] Open
Abstract
RNA molecules are localized to specific subcellular regions through interactions between RNA regulatory elements and RNA binding proteins (RBPs). Generally, our knowledge of the mechanistic details behind the localization of a given RNA is restricted to a particular cell type. Here, we show that RNA/RBP interactions that regulate RNA localization in one cell type predictably regulate localization in other cell types with vastly different morphologies. To determine transcriptome-wide RNA spatial distributions across the apicobasal axis of human intestinal epithelial cells, we used our recently developed RNA proximity labeling technique, Halo-seq. We found that mRNAs encoding ribosomal proteins (RP mRNAs) were strongly localized to the basal pole of these cells. Using reporter transcripts and single-molecule RNA FISH, we found that pyrimidine-rich motifs in the 5' UTRs of RP mRNAs were sufficient to drive basal RNA localization. Interestingly, the same motifs were also sufficient to drive RNA localization to the neurites of mouse neuronal cells. In both cell types, the regulatory activity of this motif was dependent on it being in the 5' UTR of the transcript, was abolished upon perturbation of the RNA-binding protein LARP1, and was reduced upon inhibition of kinesin-1. To extend these findings, we compared subcellular RNAseq data from neuronal and epithelial cells. We found that the basal compartment of epithelial cells and the projections of neuronal cells were enriched for highly similar sets of RNAs, indicating that broadly similar mechanisms may be transporting RNAs to these morphologically distinct locations. These findings identify the first RNA element known to regulate RNA localization across the apicobasal axis of epithelial cells, establish LARP1 as an RNA localization regulator, and demonstrate that RNA localization mechanisms cut across cell morphologies.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Megan C Pockalny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
27
|
Park J, Kim M, Yi H, Baeg K, Choi Y, Lee YS, Lim J, Kim VN. Short poly(A) tails are protected from deadenylation by the LARP1-PABP complex. Nat Struct Mol Biol 2023; 30:330-338. [PMID: 36849640 DOI: 10.1038/s41594-023-00930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/10/2023] [Indexed: 03/01/2023]
Abstract
Deadenylation generally constitutes the first and pivotal step in eukaryotic messenger RNA decay. Despite its importance in posttranscriptional regulations, the kinetics of deadenylation and its regulation remain largely unexplored. Here we identify La ribonucleoprotein 1, translational regulator (LARP1) as a general decelerator of deadenylation, which acts mainly in the 30-60-nucleotide (nt) poly(A) length window. We measured the steady-state and pulse-chased distribution of poly(A)-tail length, and found that deadenylation slows down in the 30-60-nt range. LARP1 associates preferentially with short tails and its depletion results in accelerated deadenylation specifically in the 30-60-nt range. Consistently, LARP1 knockdown leads to a global reduction of messenger RNA abundance. LARP1 interferes with the CCR4-NOT-mediated deadenylation in vitro by forming a ternary complex with poly(A)-binding protein (PABP) and poly(A). Together, our work reveals a dynamic nature of deadenylation kinetics and a role of LARP1 as a poly(A) length-specific barricade that creates a threshold for deadenylation.
Collapse
Affiliation(s)
- Joha Park
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Myeonghwan Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Stanford University School of Medicine, Stanford, CA, USA
| | - Kyungmin Baeg
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
| | - Yongkuk Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Yale School of Medicine, New Haven, CT, USA
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
28
|
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol 2023; 136:13-26. [PMID: 35440410 PMCID: PMC9569395 DOI: 10.1016/j.semcdb.2022.03.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The continued integrity of biological systems depends on a balance between interdependent elements at the molecular, cellular, and organismal levels. This is particularly true for the generation of ribosomes, which influence almost every aspect of cell and organismal biology. Ribosome biogenesis (RiBi) is an energetically demanding process that involves all three RNA polymerases, numerous RNA processing factors, chaperones, and the coordinated expression of 79-80 ribosomal proteins (r-proteins). Work over the last several decades has revealed that the dynamic regulation of ribosome production represents a major mechanism by which cells maintain homeostasis in response to changing environmental conditions and acute stress. More recent studies suggest that cells and tissues within multicellular organisms exhibit dramatically different levels of ribosome production and protein synthesis, marked by the differential expression of RiBi factors. Thus, distinct bottlenecks in the RiBi process, downstream of rRNA transcription, may exist within different cell populations of multicellular organisms during development and in adulthood. This review will focus on our current understanding of the mechanisms that link the complex molecular process of ribosome biogenesis with cellular and organismal physiology. We will discuss diverse topics including how different steps in the RiBi process are coordinated with one another, how MYC and mTOR impact RiBi, and how RiBi levels change between stem cells and their differentiated progeny. In turn, we will also review how regulated changes in ribosome production itself can feedback to influence cell fate and function.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
29
|
Breznak SM, Kotb NM, Rangan P. Dynamic regulation of ribosome levels and translation during development. Semin Cell Dev Biol 2023; 136:27-37. [PMID: 35725716 DOI: 10.1016/j.semcdb.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The ability of ribosomes to translate mRNAs into proteins is the basis of all life. While ribosomes are essential for cell viability, reduction in levels of ribosomes can affect cell fate and developmental transitions in a tissue specific manner and can cause a plethora of related diseases called ribosomopathies. How dysregulated ribosomes homeostasis influences cell fate and developmental transitions is not fully understood. Model systems such as Drosophila and C. elegans oogenesis have been used to address these questions since defects in conserved steps in ribosome biogenesis result in stem cell differentiation and developmental defects. In this review, we first explore how ribosome levels affect stem cell differentiation. Second, we describe how ribosomal modifications and incorporation of ribosomal protein paralogs contribute to development. Third, we summarize how cells with perturbed ribosome biogenesis are sensed and eliminated during organismal growth.
Collapse
Affiliation(s)
- Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, 12222, USA
| | - Noor M Kotb
- Department of Biomedical Sciences, The School of Public Health, University at Albany SUNY, 11 Albany, NY 12222, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
30
|
van den Elzen AMG, Watson MJ, Thoreen CC. mRNA 5' terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay. PLoS Genet 2022; 18:e1010532. [PMID: 36441824 PMCID: PMC9731452 DOI: 10.1371/journal.pgen.1010532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells. Using a library of reporter mRNAs initiating with all possible 7-mer sequences at their 5' ends, we find an unexpected impact on transcription that underlies 200-fold differences in mRNA expression. Library sequences that promote high levels of transcription mirrored those found in native mRNAs and define two basic classes with similarities to classic Initiator (Inr) and TCT core promoter motifs. By comparing transcription, translation and decay rates, we identify sequences that are optimized for both efficient transcription and growth-regulated translation and stability, including variants of terminal oligopyrimidine (TOP) motifs. We further show that 5' sequences of endogenous mRNAs are enriched for multi-functional TCT/TOP hybrid sequences. Together, our results reveal how 5' sequences define two general classes of mRNAs with distinct growth-responsive profiles of expression across synthesis, translation and decay.
Collapse
Affiliation(s)
- Antonia M. G. van den Elzen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Maegan J. Watson
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Carson C. Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
31
|
Scarpin MR, Simmons CH, Brunkard JO. Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7016-7025. [PMID: 35770874 PMCID: PMC9664230 DOI: 10.1093/jxb/erac267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
mRNA translation is the growth rate-limiting step in genome expression. Target of rapamycin (TOR) evolved a central regulatory role in eukaryotes as a signaling hub that monitors nutrient availability to maintain homeostasis and promote growth, largely by increasing the rate of translation initiation and protein synthesis. The dynamic pathways engaged by TOR to regulate translation remain debated even in well-studied yeast and mammalian models, however, despite decades of intense investigation. Recent studies have firmly established that TOR also regulates mRNA translation in plants through conserved mechanisms, such as the TOR-LARP1-5'TOP signaling axis, and through pathways specific to plants. Here, we review recent advances in our understanding of the regulation of mRNA translation in plants by TOR.
Collapse
Affiliation(s)
- M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
- Department of Plant and Microbial Biology, University of California, Berkeley,CA, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
32
|
Gandin V, English BP, Freeman M, Leroux LP, Preibisch S, Walpita D, Jaramillo M, Singer RH. Cap-dependent translation initiation monitored in living cells. Nat Commun 2022; 13:6558. [PMID: 36323665 PMCID: PMC9630388 DOI: 10.1038/s41467-022-34052-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.
Collapse
Affiliation(s)
- Valentina Gandin
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Brian P. English
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Melanie Freeman
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Louis-Philippe Leroux
- grid.418084.10000 0000 9582 2314Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, QC Canada
| | - Stephan Preibisch
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Deepika Walpita
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Maritza Jaramillo
- grid.418084.10000 0000 9582 2314Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, QC Canada
| | - Robert H. Singer
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| |
Collapse
|
33
|
Borden KL. Cancer cells hijack RNA processing to rewrite the message. Biochem Soc Trans 2022; 50:1447-1456. [PMID: 36282006 PMCID: PMC9704515 DOI: 10.1042/bst20220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Typically, cancer is thought to arise due to DNA mutations, dysregulated transcription and/or aberrant signalling. Recently, it has become clear that dysregulated mRNA processing, mRNA export and translation also contribute to malignancy. RNA processing events result in major modifications to the physical nature of mRNAs such as the addition of the methyl-7-guanosine cap, the removal of introns and the addition of polyA tails. mRNA processing is a critical determinant for the protein-coding capacity of mRNAs since these physical changes impact the efficiency by which a given transcript can be exported to the cytoplasm and translated into protein. While many of these mRNA metabolism steps were considered constitutive housekeeping activities, they are now known to be highly regulated with combinatorial and multiplicative impacts i.e. one event will influence the capacity to undergo others. Furthermore, alternative splicing and/or cleavage and polyadenylation can produce transcripts with alternative messages and new functionalities. The coordinated processing of groups of functionally related RNAs can potently re-wire signalling pathways, modulate survival pathways and even re-structure the cell. As postulated by the RNA regulon model, combinatorial regulation of these groups is achieved by the presence of shared cis-acting elements (known as USER codes) which recruit machinery for processing, export or translation. In all, dysregulated RNA metabolism in cancer gives rise to an altered proteome that in turn elicits biological responses related to malignancy. Studies of these events in cancer revealed new mechanisms underpinning malignancies and unearthed novel therapeutic opportunities. In all, cancer cells coopt RNA processing, export and translation to support their oncogenic activity.
Collapse
Affiliation(s)
- Katherine L.B. Borden
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
34
|
Tao X, Huang R, Xu R, Zheng S, Yue J. A novel m7G methylation–related signature associated with chromosome homeostasis in patients with lung adenocarcinoma. Front Genet 2022; 13:998258. [DOI: 10.3389/fgene.2022.998258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system with poor prognosis. Recent studies have revealed that N7-methylguanosine (m7G) methylation is a widespread modification occurring in RNA. But the expression of m7G methylation–related genes in LUAD and their correlations with prognosis are still unclear. In this study, we found 12 m7G methylation–related regulators with differential expression between LUAD and normal lung tissues. According to differentially expressed genes (DEGs), all LUAD cases were separated into two subtypes. The prognostic value of each m7G methylation–related gene for survival was evaluated to construct a multigene signature using The Cancer Genome Atlas (TCGA) cohort. Finally, an m7G methylation–related prognostic signature based on three genes was built to classify LUAD patients into two risk groups. Patients in the high-risk group showed significantly reduced overall survival (OS) when compared with patients in the low-risk group (p < 0.05). The receiver operating characteristic (ROC) curve analysis confirmed the predictive capacity of the signature. The Gene Ontology (GO) functional annotation analysis disclosed that chromosome homeostasis plays an important role in this process. The gene set enrichment analysis (ssGSEA) implied that the immune status was decreased in the high-risk group. To sum up, m7G methylation–related genes play a vital role in tumor immunity and the related signature is a reliable predictor for LUAD prognosis.
Collapse
|
35
|
mTOR- and LARP1-dependent regulation of TOP mRNA poly(A) tail and ribosome loading. Cell Rep 2022; 41:111548. [DOI: 10.1016/j.celrep.2022.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
|
36
|
Identification and molecular evolution of the La and LARP genes in 16 plant species: A focus on the Gossypium hirsutum. Int J Biol Macromol 2022; 224:1101-1117. [DOI: 10.1016/j.ijbiomac.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
37
|
Schneider C, Erhard F, Binotti B, Buchberger A, Vogel J, Fischer U. An unusual mode of baseline translation adjusts cellular protein synthesis capacity to metabolic needs. Cell Rep 2022; 41:111467. [DOI: 10.1016/j.celrep.2022.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
|
38
|
Embarc-Buh A, Francisco-Velilla R, Garcia-Martin JA, Abellan S, Ramajo J, Martinez-Salas E. Gemin5-dependent RNA association with polysomes enables selective translation of ribosomal and histone mRNAs. Cell Mol Life Sci 2022; 79:490. [PMID: 35987821 PMCID: PMC9392717 DOI: 10.1007/s00018-022-04519-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
AbstractSelective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5’ terminal oligopyrimidine tracts (5’TOP) and the histone stem-loop (hSL) structure at the 3’ end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5 promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.
Collapse
|
39
|
Kozlov G, Mattijssen S, Jiang J, Nyandwi S, Sprules T, Iben J, Coon S, Gaidamakov S, Noronha AM, Wilds C, Maraia R, Gehring K. Structural basis of 3'-end poly(A) RNA recognition by LARP1. Nucleic Acids Res 2022; 50:9534-9547. [PMID: 35979957 PMCID: PMC9458460 DOI: 10.1093/nar/gkac696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Samuel Nyandwi
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Tara Sprules
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada,Quebec/Eastern Canada NMR Centre, McGill University, Montréal, Canada
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Steven L Coon
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
40
|
Farooq Z, Kusuma F, Burke P, Dufour CR, Lee D, Tabatabaei N, Toboz P, Radovani E, Greenblatt J, Rehman J, Class J, Khoutorsky A, Fonseca BD, Richner JM, Mercier E, Bourque G, Giguère V, Subramaniam AR, Han J, Tahmasebi S. The amino acid sensor GCN2 suppresses Terminal Oligopyrimidine (TOP) mRNA translation via La-related Protein 1 (LARP1). J Biol Chem 2022; 298:102277. [PMID: 35863436 PMCID: PMC9396407 DOI: 10.1016/j.jbc.2022.102277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5′TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Fedho Kusuma
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Phillip Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catherine R Dufour
- Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Duckgue Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Phoenix Toboz
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ernest Radovani
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jacob Class
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | | | - Justin M Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Eloi Mercier
- Canadian Centre for Computational Genomics, and McGill University and Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, and McGill University and Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
41
|
Lu F, Gao J, Hou Y, Cao K, Xia Y, Chen Z, Yu H, Chang L, Li W. Construction of a Novel Prognostic Model in Lung Adenocarcinoma Based on 7-Methylguanosine-Related Gene Signatures. Front Oncol 2022; 12:876360. [PMID: 35785179 PMCID: PMC9243265 DOI: 10.3389/fonc.2022.876360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has implicated the modification of 7-methylguanosine (m7G), a type of RNA modification, in tumor progression. However, no comprehensive analysis to date has summarized the predicted role of m7G-related gene signatures in lung adenocarcinoma (LUAD). Herein, we aimed to develop a novel prognostic model in LUAD based on m7G-related gene signatures. The LUAD transcriptome profiling data and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus datasets. After screening, we first obtained 29 m7G-related genes, most of which were upregulated in tumor tissues and negatively associated with overall survival (OS). According to the expression similarity of m7G-related genes, the combined samples from the TCGA-LUAD and GSE68465 datasets were further classified as two clusters that exhibit distinct OS rates and genetic heterogeneity. Then, we constructed a novel prognostic model involving four genes by using 130 differentially expressed genes among the two clusters. The combined samples were randomly divided into a training cohort and an internal validation cohort in a 1:1 ratio, and the GSE72094 dataset was used as an external validation cohort. The samples were divided into high- and low-risk groups. We demonstrated that a higher risk score was an independent negative prognostic factor and predicted poor OS. A nomogram was further constructed to better predict the survival of LUAD patients. Functional enrichment analyses indicated that cell cycle and DNA replication-related biological processes and pathways were enriched in the high-risk group. More importantly, the low-risk group had greater infiltration and enrichment of most immune cells, as well as higher ESTIMATE, immune, and stromal scores. In addition, the high-risk group had a lower TIDE score and higher expressions of most immune checkpoint-related genes. We finally noticed that patients in the high-risk group were more sensitive to chemotherapeutic agents commonly used in LUAD. In conclusion, we herein summarized for the first time the alterations and prognostic role of m7G-related genes in LUAD and then constructed a prognostic model based on m7G-related gene signatures that could accurately and stably predict survival and guide individualized treatment decision-making in LUAD patients.
Collapse
Affiliation(s)
- Fei Lu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- Department of Oncology and Hematology, Southern Central Hospital of Yunnan Province, The First People’s Hospital of Honghe State, Mengzi, China
| | - Jingyan Gao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Ke Cao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Zhengting Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Hui Yu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- *Correspondence: Wenhui Li, ; Li Chang,
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- *Correspondence: Wenhui Li, ; Li Chang,
| |
Collapse
|
42
|
Yang M, Lu Y, Piao W, Jin H. The Translational Regulation in mTOR Pathway. Biomolecules 2022; 12:biom12060802. [PMID: 35740927 PMCID: PMC9221026 DOI: 10.3390/biom12060802] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) plays a master role in cell proliferation and growth in response to insulin, amino acids, energy levels, and oxygen. mTOR can coordinate upstream signals with downstream effectors, including transcriptional and translational apparatuses to regulate fundamental cellular processes such as energy utilization, protein synthesis, autophagy, cell growth, and proliferation. Of the above, protein synthesis is highly energy-consuming; thus, mRNA translation is under the tight and immediate control of mTOR signaling. The translational regulation driven by mTOR signaling mainly relies on eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP), ribosomal protein S6 kinase (S6K), and its downstream players, which are significant in rapid cellular response to environmental change. mTOR signaling not only controls the general mRNA translation, but preferential mRNA translation as well. This means that mTOR signaling shows the stronger selectivity to particular target mRNAs. Some evidence has supported the contribution of 4E-BP and La-related proteins 1 (LARP1) to such translational regulation. In this review, we summarize the mTOR pathway and mainly focus on mTOR-mediated mRNA translational regulation. We introduce the major components of mTOR signaling and their functions in translational control in a general or particular manner, and describe how the specificity of regulation is coordinated. Furthermore, we summarize recent research progress and propose additional ideas for reference. Because the mTOR pathway is on the center of cell growth and metabolism, comprehensively understanding this pathway will contribute to the therapy of related diseases, including cancers, type 2 diabetes, obesity, and neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Hua Jin
- Correspondence: (W.P.); (H.J.)
| |
Collapse
|
43
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
44
|
Jaramillo-Mesa H, Fischer E, Rakotondrafara AM. Multiple Cis-acting Polypyrimidine Tract Elements Regulate a Cooperative Mechanism for Triticum Mosaic Virus Internal Ribosomal Entry Site Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:864832. [PMID: 35498652 PMCID: PMC9042117 DOI: 10.3389/fpls.2022.864832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Diverse elements within the 5' untranslated region of an mRNA can influence the translation efficiency at the main AUG codon. We previously identified a core picornaviral like Y16X11-AUG motif with 16-nt polypyrimidine CU tract separated by an 11-nt spacer sequence from the 13th AUG codon, which is recognized as the preferred initiation site within the Triticum mosaic virus (TriMV) internal ribosome entry site (IRES) element. The motif is proposed to function as an internal ribosomal landing site at the designated start codon. Here, we exposed the cooperative role of multiple CU-rich segments flanking the TriMV YX-AUG motif to reach and drive internal initiation of translation at the preferred start site. We propose that these auxiliary domains may enhance the ribosome capacity and their delivery at proximity of the correct initiation site. These polypyrimidine tracts can be modulated with a cryptic AUG in a position-dependent manner to replace the native YX-AUG motif, and thus uncovering a new layer of control of start codon selection. In line with these observations, mass spectrometry analysis of proteins directly interacting with translationally impaired TriMV IRES mutants that bear these motifs indicated an enrichment in 40S and 60S ribosomal related proteins, revealing a new function of polypyrimidine tracts to regulate IRES-driven translation. Accessibility of these RNA regions for in trans interaction was validated by SHAPE analysis of the entire TriMV leader sequence and supported by the ability of anti-sense oligonucleotides designed to block the CU tracts accessibility to impair IRES activity. This is the first evidence that defines the core modular domains required for ribosomal recruitment and start codon selection in a complex, multi-AUG viral 5' UTR for translation in plants.
Collapse
|
45
|
Martin ET, Blatt P, Nguyen E, Lahr R, Selvam S, Yoon HAM, Pocchiari T, Emtenani S, Siekhaus DE, Berman A, Fuchs G, Rangan P. A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis. Dev Cell 2022; 57:883-900.e10. [PMID: 35413237 PMCID: PMC9011129 DOI: 10.1016/j.devcel.2022.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 01/26/2023]
Abstract
Ribosomal defects perturb stem cell differentiation, and this is the cause of ribosomopathies. How ribosome levels control stem cell differentiation is not fully known. Here, we discover that three DExD/H-box proteins govern ribosome biogenesis (RiBi) and Drosophila oogenesis. Loss of these DExD/H-box proteins, which we name Aramis, Athos, and Porthos, aberrantly stabilizes p53, arrests the cell cycle, and stalls germline stem cell (GSC) differentiation. Aramis controls cell-cycle progression by regulating translation of mRNAs that contain a terminal oligo pyrimidine (TOP) motif in their 5' UTRs. We find that TOP motifs confer sensitivity to ribosome levels that are mediated by La-related protein (Larp). One such TOP-containing mRNA codes for novel nucleolar protein 1 (Non1), a conserved p53 destabilizing protein. Upon a sufficient ribosome concentration, Non1 is expressed, and it promotes GSC cell-cycle progression via p53 degradation. Thus, a previously unappreciated TOP motif in Drosophila responds to reduced RiBi to co-regulate the translation of ribosomal proteins and a p53 repressor, coupling RiBi to GSC differentiation.
Collapse
Affiliation(s)
- Elliot T Martin
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA
| | - Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA
| | - Elaine Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roni Lahr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sangeetha Selvam
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA
| | - Hyun Ah M Yoon
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA; Albany Medical College, Albany, NY 12208, USA
| | - Tyler Pocchiari
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA; SUNY Upstate Medical University, Syracuse, NY 13210-2375, USA
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Daria E Siekhaus
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Andrea Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gabriele Fuchs
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA.
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA.
| |
Collapse
|
46
|
Metz JB, Hornstein NJ, Sharma SD, Worley J, Gonzalez C, Sims PA. High-throughput translational profiling with riboPLATE-seq. Sci Rep 2022; 12:5718. [PMID: 35383235 PMCID: PMC8983706 DOI: 10.1038/s41598-022-09638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 11/11/2022] Open
Abstract
Protein synthesis is dysregulated in many diseases, but we lack a systems-level picture of how signaling molecules and RNA binding proteins interact with the translational machinery, largely due to technological limitations. Here we present riboPLATE-seq, a scalable method for generating paired libraries of ribosome-associated and total mRNA. As an extension of the PLATE-seq protocol, riboPLATE-seq utilizes barcoded primers for pooled library preparation, but additionally leverages anti-rRNA ribosome immunoprecipitation on whole polysomes to measure ribosome association (RA). We compare RA to its analogue in ribosome profiling and RNA sequencing, translation efficiency, and demonstrate both the performance of riboPLATE-seq and its utility in detecting translational alterations induced by specific inhibitors of protein kinases.
Collapse
Affiliation(s)
- Jordan B Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicholas J Hornstein
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sohani Das Sharma
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Christian Gonzalez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
47
|
Desi N, Tong QY, Teh V, Chan JJ, Zhang B, Tabatabaeian H, Tan HQ, Kapeli K, Jin W, Lim CY, Kwok ZH, Tan HT, Wang S, Siew BE, Lee KC, Chong CS, Tan KK, Yang H, Kappei D, Yeo GW, Chung MCM, Tay Y. Global analysis of RNA-binding proteins identifies a positive feedback loop between LARP1 and MYC that promotes tumorigenesis. Cell Mol Life Sci 2022; 79:147. [PMID: 35195778 PMCID: PMC11072786 DOI: 10.1007/s00018-021-04093-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
In addition to genomic alterations, aberrant changes in post-transcriptional regulation can modify gene function and drive cancer development. RNA-binding proteins (RBPs) are a large class of post-transcriptional regulators that have been increasingly implicated in carcinogenesis. By integrating multi-omics data, we identify LARP1 as one of the most upregulated RBPs in colorectal cancer (CRC) and demonstrate its oncogenic properties. We perform LARP1:RNA interactome profiling and unveil a previously unexplored role for LARP1 in targeting the 3'UTR of oncogenes in CRC. Notably, we identify the proto-oncogenic transcription factor MYC as a key LARP1-regulated target. Our data show that LARP1 positively modulates MYC expression by associating with its 3'UTR. In addition, antisense oligonucleotide-mediated blocking of the interaction between LARP1 and the MYC 3'UTR reduces MYC expression and in vitro CRC growth. Furthermore, a systematic analysis of LARP1:protein interactions reveals IGF2BP3 and YBX1 as LARP1-interacting proteins that also regulate MYC expression and CRC development. Finally, we demonstrate that MYC reciprocally modulates LARP1 expression by targeting its enhancer. In summary, our data reveal a critical, previously uncharacterized role of LARP1 in promoting CRC tumorigenesis, validate its direct regulation of the proto-oncogene MYC and delineate a model of the positive feedback loop between MYC and LARP1 that promotes CRC growth and development.
Collapse
Affiliation(s)
- Ng Desi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Velda Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Katannya Kapeli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Wenhao Jin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Chun You Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Zhi Hao Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Division of Pulmonary and Critical Care, Boston University, Boston, MA, 02118, USA
| | - Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Bei-En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kuok-Chung Lee
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Choon-Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, La Jolla, San Diego, USA
| | - Maxey Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
48
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
49
|
Fuentes P, Pelletier J, Martinez-Herráez C, Diez-Obrero V, Iannizzotto F, Rubio T, Garcia-Cajide M, Menoyo S, Moreno V, Salazar R, Tauler A, Gentilella A. The 40 S-LARP1 complex reprograms the cellular translatome upon mTOR inhibition to preserve the protein synthetic capacity. SCIENCE ADVANCES 2021; 7:eabg9275. [PMID: 34818049 PMCID: PMC8612684 DOI: 10.1126/sciadv.abg9275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Ribosomes execute the transcriptional program in every cell. Critical to sustain nearly all cellular activities, ribosome biogenesis requires the translation of ~200 factors of which 80 are ribosomal proteins (RPs). As ribosome synthesis depends on RP mRNA translation, a priority within the translatome architecture should exist to ensure the preservation of ribosome biogenesis capacity, particularly under adverse growth conditions. Here, we show that under critical metabolic constraints characterized by mTOR inhibition, LARP1 complexed with the 40S subunit protects from ribophagy the mRNAs regulon for ribosome biogenesis and protein synthesis, acutely preparing the translatome to promptly resume ribosomes production after growth conditions return permissive. Characterizing the LARP1-protected translatome revealed a set of 5′TOP transcript isoforms other than RPs involved in energy production and in mitochondrial function, among other processes, indicating that the mTOR-LARP1-5′TOP axis acts at the translational level as a primary guardian of the cellular anabolic capacity.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Carolina Martinez-Herráez
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO). Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L’Hospitalet de Llobregat, Barcelona, Spain
| | - Flavia Iannizzotto
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Teresa Rubio
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandra Menoyo
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Victor Moreno
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO). Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Oncology (CIBERONC), Spain
| | - Ramón Salazar
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Albert Tauler
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer 2021; 21:558-577. [PMID: 34341537 DOI: 10.1038/s41568-021-00380-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|