1
|
Feng J, Lv M, Ma X, Li T, Xu M, Yang J, Su F, Hu R, Li J, Qiu Y, Liu Y, Shen Y, Xu W. Change of function and brain activity in patients of right spastic arm paralysis combined with aphasia after contralateral cervical seventh nerve transfer surgery. Eur J Neurosci 2024; 60:4254-4264. [PMID: 38830753 DOI: 10.1111/ejn.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Left hemisphere injury can cause right spastic arm paralysis and aphasia, and recovery of both motor and language functions shares similar compensatory mechanisms and processes. Contralateral cervical seventh cross transfer (CC7) surgery can provide motor recovery for spastic arm paralysis by triggering interhemispheric plasticity, and self-reports from patients indicate spontaneous improvement in language function but still need to be verified. To explore the improvements in motor and language function after CC7 surgery, we performed this prospective observational cohort study. The Upper Extremity part of Fugl-Meyer scale (UEFM) and Modified Ashworth Scale were used to evaluate motor function, and Aphasia Quotient calculated by Mandarin version of the Western Aphasia Battery (WAB-AQ, larger score indicates better language function) was assessed for language function. In 20 patients included, the average scores of UEFM increased by .40 and 3.70 points from baseline to 1-week and 6-month post-surgery, respectively. The spasticity of the elbow and fingers decreased significantly at 1-week post-surgery, although partially recurred at 6-month follow-up. The average scores of WAB-AQ were increased by 9.14 and 10.69 points at 1-week and 6-month post-surgery (P < .001 for both), respectively. Post-surgical fMRI scans revealed increased activity in the bilateral hemispheres related to language centrals, including the right precentral cortex and right gyrus rectus. These findings suggest that CC7 surgery not only enhances motor function but may also improve the aphasia quotient in patients with right arm paralysis and aphasia due to left hemisphere injuries.
Collapse
Affiliation(s)
- Juntao Feng
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Minzhi Lv
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Xingyi Ma
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Tie Li
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Miaomiao Xu
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Jingrui Yang
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Su
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Ruiping Hu
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Jie Li
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yanqun Qiu
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yundong Shen
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Department of Rehabilitation, Jing'an District Central Hospital, branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Research Unit of Synergistic Reconstruction of Upper and Lower Limbs After Brain Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024; 12:1146. [PMID: 38927353 PMCID: PMC11200721 DOI: 10.3390/biomedicines12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The neurobiological effects of transcranial direct current stimulation (tDCS) have still not been unequivocally clarified. Some studies have suggested that the application of tDCS over the inferior frontal gyrus (IFG) enhances different aspects of cognition in healthy and neurological individuals, exerting neural changes over the target area and its neural surroundings. In this systematic review, randomized sham-controlled trials in healthy and neurological adults were selected through a database search to explore whether tDCS over the IFG combined with cognitive training modulates functional connectivity or neural changes. Twenty studies were finally included, among which twelve measured tDCS effects through functional magnetic resonance (fMRI), two through functional near-infrared spectroscopy (fNIRS), and six through electroencephalography (EEG). Due to the high heterogeneity observed across studies, data were qualitatively described and compared to assess reliability. Overall, studies that combined fMRI and tDCS showed widespread changes in functional connectivity at both local and distant brain regions. The findings also suggested that tDCS may also modulate electrophysiological changes underlying the targeted area. However, these outcomes were not always accompanied by corresponding significant behavioral results. This work raises the question concerning the general efficacy of tDCS, the implications of which extend to the steadily increasing tDCS literature.
Collapse
Affiliation(s)
- Raffaele Di Fuccio
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Anna Lardone
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Mariagiovanna De Luca
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Leila Ali
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Pierpaolo Limone
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| |
Collapse
|
3
|
Hartwigsen G, Lim JS, Bae HJ, Yu KH, Kuijf HJ, Weaver NA, Biesbroek JM, Kopal J, Bzdok D. Bayesian modelling disentangles language versus executive control disruption in stroke. Brain Commun 2024; 6:fcae129. [PMID: 38707712 PMCID: PMC11069117 DOI: 10.1093/braincomms/fcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04109 Leipzig, Germany
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, 13620, South Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, 14068, Republic of Korea
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Neurology, Diakonessenhuis Hospital, 3582 KE Utrecht, The Netherlands
| | - Jakub Kopal
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2BA, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2BA, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
| |
Collapse
|
4
|
Billot A, Kiran S. Disentangling neuroplasticity mechanisms in post-stroke language recovery. BRAIN AND LANGUAGE 2024; 251:105381. [PMID: 38401381 PMCID: PMC10981555 DOI: 10.1016/j.bandl.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A major objective in post-stroke aphasia research is to gain a deeper understanding of neuroplastic mechanisms that drive language recovery, with the ultimate goal of enhancing treatment outcomes. Subsequent to recent advances in neuroimaging techniques, we now have the ability to examine more closely how neural activity patterns change after a stroke. However, the way these neural activity changes relate to language impairments and language recovery is still debated. The aim of this review is to provide a theoretical framework to better investigate and interpret neuroplasticity mechanisms underlying language recovery in post-stroke aphasia. We detail two sets of neuroplasticity mechanisms observed at the synaptic level that may explain functional neuroimaging findings in post-stroke aphasia recovery at the network level: feedback-based homeostatic plasticity and associative Hebbian plasticity. In conjunction with these plasticity mechanisms, higher-order cognitive control processes dynamically modulate neural activity in other regions to meet communication demands, despite reduced neural resources. This work provides a network-level neurobiological framework for understanding neural changes observed in post-stroke aphasia and can be used to define guidelines for personalized treatment development.
Collapse
Affiliation(s)
- Anne Billot
- Center for Brain Recovery, Boston University, Boston, USA; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, Boston, USA.
| |
Collapse
|
5
|
Luo Y, Wang K, Jiao S, Zeng J, Han Z. Distinct parallel activation and interaction between dorsal and ventral pathways during phonological and semantic processing: A cTBS-fMRI study. Hum Brain Mapp 2024; 45:e26569. [PMID: 38224540 PMCID: PMC10785560 DOI: 10.1002/hbm.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Successful visual word recognition requires the integration of phonological and semantic information, which is supported by the dorsal and ventral pathways in the brain. However, the functional specialization or interaction of these pathways during phonological and semantic processing remains unclear. Previous research has been limited by its dependence on correlational functional magnetic resonance imaging (fMRI) results or causal validation using patient populations, which are susceptible to confounds such as plasticity and lesion characteristics. To address this, the present study employed continuous theta-burst stimulation combined with fMRI in a within-subject design to assess rapid adaptation in regional activity and functional connectivity of the dorsal and ventral pathways during phonological and semantic tasks. This assessment followed the precise inhibition of the left inferior parietal lobule and anterior temporal lobe in the dorsal and ventral pathways, respectively. Our results reveal that both the dorsal and ventral pathways were activated during phonological and semantic processing, while the adaptation activation and interactive network were modulated by the task type and inhibited region. The two pathways exhibited interconnectivity in phonological processing, and disruption of either pathway led to rapid adaptation across both pathways. In contrast, only the ventral pathway exhibited connectivity in semantic processing, and disruption of this pathway alone resulted in adaptive effects primarily in the ventral pathway. These findings provide essential evidence supporting the interactive theory, phonological information processing in particular, potentially providing meaningful implications for clinical populations.
Collapse
Affiliation(s)
- Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of System ScienceBeijing Normal UniversityBeijingChina
| | - Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
6
|
Schroën JAM, Gunter TC, Numssen O, Kroczek LOH, Hartwigsen G, Friederici AD. Causal evidence for a coordinated temporal interplay within the language network. Proc Natl Acad Sci U S A 2023; 120:e2306279120. [PMID: 37963247 PMCID: PMC10666120 DOI: 10.1073/pnas.2306279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.
Collapse
Affiliation(s)
- Joëlle A. M. Schroën
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Thomas C. Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, Universität Regensburg, Regensburg93053, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig04109, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
7
|
Jeschke L, Mathias B, von Kriegstein K. Inhibitory TMS over Visual Area V5/MT Disrupts Visual Speech Recognition. J Neurosci 2023; 43:7690-7699. [PMID: 37848284 PMCID: PMC10634547 DOI: 10.1523/jneurosci.0975-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023] Open
Abstract
During face-to-face communication, the perception and recognition of facial movements can facilitate individuals' understanding of what is said. Facial movements are a form of complex biological motion. Separate neural pathways are thought to processing (1) simple, nonbiological motion with an obligatory waypoint in the motion-sensitive visual middle temporal area (V5/MT); and (2) complex biological motion. Here, we present findings that challenge this dichotomy. Neuronavigated offline transcranial magnetic stimulation (TMS) over V5/MT on 24 participants (17 females and 7 males) led to increased response times in the recognition of simple, nonbiological motion as well as visual speech recognition compared with TMS over the vertex, an active control region. TMS of area V5/MT also reduced practice effects on response times, that are typically observed in both visual speech and motion recognition tasks over time. Our findings provide the first indication that area V5/MT causally influences the recognition of visual speech.SIGNIFICANCE STATEMENT In everyday face-to-face communication, speech comprehension is often facilitated by viewing a speaker's facial movements. Several brain areas contribute to the recognition of visual speech. One area of interest is the motion-sensitive visual medial temporal area (V5/MT), which has been associated with the perception of simple, nonbiological motion such as moving dots, as well as more complex, biological motion such as visual speech. Here, we demonstrate using noninvasive brain stimulation that area V5/MT is causally relevant in recognizing visual speech. This finding provides new insights into the neural mechanisms that support the perception of human communication signals, which will help guide future research in typically developed individuals and populations with communication difficulties.
Collapse
Affiliation(s)
- Lisa Jeschke
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Brian Mathias
- School of Psychology, University of Aberdeen, Aberdeen AB243FX, United Kingdom
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
8
|
Turker S, Kuhnke P, Schmid FR, Cheung VKM, Weise K, Knoke M, Zeidler B, Seidel K, Eckert L, Hartwigsen G. Adaptive short-term plasticity in the typical reading network. Neuroimage 2023; 281:120373. [PMID: 37696425 PMCID: PMC10577446 DOI: 10.1016/j.neuroimage.2023.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.
Collapse
Affiliation(s)
- S Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany.
| | - P Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| | - F R Schmid
- CBC Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - V K M Cheung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - K Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Knoke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - B Zeidler
- Centre for Systematic Musicology, University of Graz, Austria
| | - K Seidel
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - L Eckert
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - G Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| |
Collapse
|
9
|
Abstract
Noninvasive brain stimulation (NIBS) techniques are widely used tools for the study and rehabilitation of cognitive functions. Different NIBS approaches aim to enhance or impair different cognitive processes. The methodological focus for achieving this has been on stimulation protocols that are considered either inhibitory or facilitatory. However, despite more than three decades of use, their application is based on incomplete and overly simplistic conceptualizations of mechanisms of action. Such misconception limits the usefulness of these approaches in the basic science and clinical domains. In this review, we challenge this view by arguing that stimulation protocols themselves are neither inhibitory nor facilitatory. Instead, we suggest that all induced effects reflect complex interactions of internal and external factors. Given these considerations, we present a novel model in which we conceptualize NIBS effects as an interaction between brain activity and the characteristics of the external stimulus. This interactive model can explain various phenomena in the brain stimulation literature that have been considered unexpected or paradoxical. We argue that these effects no longer seem paradoxical when considered from the viewpoint of state dependency.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Hartwigsen G, Lim JS, Bae HJ, Yu KH, Kuijf HJ, Weaver NA, Biesbroek JM, Kopal J, Bzdok D. Bayesian modeling disentangles language versus executive control disruption in stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552147. [PMID: 37609325 PMCID: PMC10441359 DOI: 10.1101/2023.08.06.552147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Stroke is the leading cause of long-term disability worldwide. Incurred brain damage disrupts cognition, often with persisting deficits in language and executive capacities. Despite their clinical relevance, the commonalities, and differences of language versus executive control impairments remain under-specified. We tailored a Bayesian hierarchical modeling solution in a largest-of-its-kind cohort (1080 stroke patients) to deconvolve language and executive control in the brain substrates of stroke insults. Four cognitive factors distinguished left- and right-hemispheric contributions to ischemic tissue lesion. One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized control and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two factors: executive speech functions and verbal memory. Impairments on both were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.
Collapse
|
11
|
Palaniyappan L, Homan P, Alonso-Sanchez MF. Language Network Dysfunction and Formal Thought Disorder in Schizophrenia. Schizophr Bull 2023; 49:486-497. [PMID: 36305160 PMCID: PMC10016399 DOI: 10.1093/schbul/sbac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Pathophysiological inquiries into schizophrenia require a consideration of one of its most defining features: disorganization and impoverishment in verbal behavior. This feature, often captured using the term Formal Thought Disorder (FTD), still remains to be one of the most poorly understood and understudied dimensions of schizophrenia. In particular, the large-scale network level dysfunction that contributes to FTD remains obscure to date. STUDY DESIGN In this narrative review, we consider the various challenges that need to be addressed for us to move towards mapping FTD (construct) to a brain network level account (circuit). STUDY RESULTS The construct-to-circuit mapping goal is now becoming more plausible than it ever was, given the parallel advent of brain stimulation and the tools providing objective readouts of human speech. Notwithstanding this, several challenges remain to be overcome before we can decisively map the neural basis of FTD. We highlight the need for phenotype refinement, robust experimental designs, informed analytical choices, and present plausible targets in and beyond the Language Network for brain stimulation studies in FTD. CONCLUSIONS Developing a therapeutically beneficial pathophysiological model of FTD is a challenging endeavor, but holds the promise of improving interpersonal communication and reducing social disability in schizophrenia. Addressing the issues raised in this review will be a decisive step in this direction.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maria F Alonso-Sanchez
- Robarts Research Institute, Western University, London, Ontario, Canada
- CIDCL, Fonoaudiología, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
12
|
Li H, Liu J, Tian S, Fan S, Wang T, Qian H, Liu G, Zhu Y, Wu Y, Hu R. Language reorganization patterns in global aphasia-evidence from fNIRS. Front Neurol 2023; 13:1025384. [PMID: 36686505 PMCID: PMC9853054 DOI: 10.3389/fneur.2022.1025384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Background Exploring the brain reorganization patterns associated with language recovery would promote the treatment of global aphasia. While functional near-infrared spectroscopy (fNIRS) has been widely used in the study of speech and language impairment, its application in the field of global aphasia is still limited. Aims We aimed to identify cortical activation patterns of patients with global aphasia during naming and repetition tasks. Methods and procedures We recruited patients with post-stroke aphasia from the Department of Rehabilitation Medicine at Huashan Hospital. These individuals were diagnosed with global aphasia without cognitive impairments, as assessed by speech-language pathology evaluations. Age- and sex-matched healthy controls were recruited from the greater Shanghai area. During fNIRS measurement, patients and healthy controls completed the picture-naming and phrase repetition task. Cortical activation patterns on each of these language tasks were then compared between groups. Outcomes and results A total of nine patients with global aphasia and 14 healthy controls were included in this study. Compared with the healthy subjects, patients with global aphasia showed increased activation in the left Broca's area, middle temporal gyrus (MTG), superior temporal gyrus (STG), and pre-motor and supplementary motor cortex (SMA) (p < 0.05) in the picture-naming task. Furthermore, the latency of the oxyhemoglobin (HbO) concentration in the left supramarginal gyrus (SMG) region had a strong negative correlation with their score of the naming task (p < 0.01). In the phrase repetition task, decreased activation was detected in the left SMA and SMG (p < 0.05) of patients relative to controls. Conclusion The left SMG plays a critical role in the language function of patients with global aphasia, especially in their abilities to name and repeat. fNIRS is a promising approach to revealing the changes in brain activities in patients with aphasia, and we believe it will contribute to a deeper understanding of the neurological mechanisms and the establishment of a novel treatment approach for global aphasia.
Collapse
Affiliation(s)
- Haozheng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianju Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shunjuan Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingwei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Qian
- Department of Rehabilitation Medicine, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Gang Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China,*Correspondence: Yi Wu ✉
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China,Ruiping Hu ✉
| |
Collapse
|
13
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
14
|
Causal involvement of the left angular gyrus in higher functions as revealed by transcranial magnetic stimulation: a systematic review. Brain Struct Funct 2023; 228:169-196. [PMID: 36260126 DOI: 10.1007/s00429-022-02576-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that can transiently interfere with local cortical functioning, thus enabling inferences of causal left AG involvement in higher functions from experimentation with healthy participants. Here, we examine 35 studies that measure behavioural outcomes soon after or during targeting TMS to the left AG, by design and as documented by individual magnetic resonance images, in healthy adult participants. The reviewed evidence suggests a specific causal involvement of the left AG in a wide range of tasks involving language, memory, number processing, visuospatial attention, body awareness and motor planning functions. These core findings are particularly valuable to inform theoretical models of the left AG role(s) in higher functions, due to the anatomical specificity afforded by the selected studies and the complementarity of TMS to different methods of investigation. In particular, the variety of the operations within and between functions in which the left AG appears to be causally involved poses a formidable challenge to any attempts to identify a single computational process subserved by the left AG (as opposed to just outlining a broad type of functional contribution) that could apply across thematic areas. We conclude by highlighting directions for improvement in future experimentation with TMS, in order to strengthen the available evidence, while taking into account the anatomical heterogeneity of this brain region.
Collapse
|
15
|
Pasquini L, Di Napoli A, Rossi-Espagnet MC, Visconti E, Napolitano A, Romano A, Bozzao A, Peck KK, Holodny AI. Understanding Language Reorganization With Neuroimaging: How Language Adapts to Different Focal Lesions and Insights Into Clinical Applications. Front Hum Neurosci 2022; 16:747215. [PMID: 35250510 PMCID: PMC8895248 DOI: 10.3389/fnhum.2022.747215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity. Different lesions may induce different patterns of reorganization depending on pathologic features, location in the brain, and timing of onset. Neuroimaging provides insights into language plasticity due to its non-invasiveness, ability to image the whole brain, and large-scale implementation. This review provides an overview of language plasticity on MRI with insights for patient care. First, we describe the structural and functional language network as depicted by neuroimaging. Second, we explore language reorganization triggered by stroke, brain tumors, and epileptic lesions and analyze applications in clinical diagnosis and treatment planning. By comparing different focal lesions, we investigate determinants of language plasticity including lesion location and timing of onset, longitudinal evolution of reorganization, and the relationship between structural and functional changes.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Hospital, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Emiliano Visconti
- Neuroradiology Unit, Cesena Surgery and Trauma Department, M. Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, United States
| |
Collapse
|
16
|
Motor Cortex Causally Contributes to Vocabulary Translation following Sensorimotor-Enriched Training. J Neurosci 2021; 41:8618-8631. [PMID: 34429380 DOI: 10.1523/jneurosci.2249-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
The role of the motor cortex in perceptual and cognitive functions is highly controversial. Here, we investigated the hypothesis that the motor cortex can be instrumental for translating foreign language vocabulary. Human participants of both sexes were trained on foreign language (L2) words and their native language translations over 4 consecutive days. L2 words were accompanied by complementary gestures (sensorimotor enrichment) or pictures (sensory enrichment). Following training, participants translated the auditorily presented L2 words that they had learned. During translation, repetitive transcranial magnetic stimulation was applied bilaterally to a site within the primary motor cortex (Brodmann area 4) located in the vicinity of the arm functional compartment. Responses within the stimulated motor region have previously been found to correlate with behavioral benefits of sensorimotor-enriched L2 vocabulary learning. Compared to sham stimulation, effective perturbation by repetitive transcranial magnetic stimulation slowed down the translation of sensorimotor-enriched L2 words, but not sensory-enriched L2 words. This finding suggests that sensorimotor-enriched training induced changes in L2 representations within the motor cortex, which in turn facilitated the translation of L2 words. The motor cortex may play a causal role in precipitating sensorimotor-based learning benefits, and may directly aid in remembering the native language translations of foreign language words following sensorimotor-enriched training. These findings support multisensory theories of learning while challenging reactivation-based theories.SIGNIFICANCE STATEMENT Despite the potential for sensorimotor enrichment to serve as a powerful tool for learning in many domains, its underlying brain mechanisms remain largely unexplored. Using transcranial magnetic stimulation and a foreign language (L2) learning paradigm, we found that sensorimotor-enriched training can induce changes in L2 representations within the motor cortex, which in turn causally facilitate the translation of L2 words. The translation of recently acquired L2 words may therefore rely not only on auditory information stored in memory or on modality-independent L2 representations, but also on the sensorimotor context in which the words have been experienced.
Collapse
|
17
|
Jargow J, Zwosta K, Korb FM, Ruge H, Wolfensteller U. Low-Frequency TMS Results in Condition-Related Dynamic Activation Changes of Stimulated and Contralateral Inferior Parietal Lobule. Front Hum Neurosci 2021; 15:684367. [PMID: 34366812 PMCID: PMC8342925 DOI: 10.3389/fnhum.2021.684367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
Non-invasive brain stimulation is a promising approach to study the causal relationship between brain function and behavior. However, it is difficult to interpret behavioral null results as dynamic brain network changes have the potential to prevent stimulation from affecting behavior, ultimately compensating for the stimulation. The present study investigated local and remote changes in brain activity via functional magnetic resonance imaging (fMRI) after offline disruption of the inferior parietal lobule (IPL) or the vertex in human participants via 1 Hz repetitive transcranial magnetic stimulation (rTMS). Since the IPL acts as a multimodal hub of several networks, we implemented two experimental conditions in order to robustly engage task-positive networks, such as the fronto-parietal control network (on-task condition) and the default mode network (off-task condition). The condition-dependent neural after-effects following rTMS applied to the IPL were dynamic in affecting post-rTMS BOLD activity depending on the exact time-window. More specifically, we found that 1 Hz rTMS applied to the right IPL led to a delayed activity increase in both, the stimulated and the contralateral IPL, as well as in other brain regions of a task-positive network. This was markedly more pronounced in the on-task condition suggesting a condition-related delayed upregulation. Thus together, our results revealed a dynamic compensatory reorganization including upregulation and intra-network compensation which may explain mixed findings after low-frequency offline TMS.
Collapse
Affiliation(s)
- Janine Jargow
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Katharina Zwosta
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Franziska M Korb
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Ruge
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Uta Wolfensteller
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Viruega H, Gaviria M. Functional Weight of Somatic and Cognitive Networks and Asymmetry of Compensatory Mechanisms: Collaboration or Divergency among Hemispheres after Cerebrovascular Accident? Life (Basel) 2021; 11:life11060495. [PMID: 34071611 PMCID: PMC8226640 DOI: 10.3390/life11060495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain holds highly sophisticated compensatory mechanisms relying on neuroplasticity. Neuronal degeneracy, redundancy, and brain network organization make the human nervous system more robust and evolvable to continuously guarantee an optimal environmental-related homeostasis. Nevertheless, after injury, restitution processes appear dissimilar, depending on the pathology. Following a cerebrovascular accident, asymmetry, within- and across-network compensation and interhemispheric inhibition are key features to functional recovery. In moderate-to-severe stroke, neurological outcome is often poor, and little is known about the paths that enable either an efficient collaboration among hemispheres or, on the contrary, an antagonism of adaptative responses. In this review, we aim to decipher key issues of ipsilesional and contralesional hemispheric functioning allowing the foundations of effective neurorehabilitation strategies.
Collapse
Affiliation(s)
- Hélène Viruega
- Institut Equiphoria, Combo Besso-Rouges Parets, 48500 La Canourgue, France;
- Alliance Equiphoria, 4, Résidence Le Sabot, 48500 La Canourgue, France
| | - Manuel Gaviria
- Alliance Equiphoria, 4, Résidence Le Sabot, 48500 La Canourgue, France
- Correspondence:
| |
Collapse
|
19
|
Turker S, Hartwigsen G. Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex 2021; 141:497-521. [PMID: 34166905 DOI: 10.1016/j.cortex.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Non-invasive brain stimulation (NIBS) has gained increasing popularity as a modulatory tool for drawing causal inferences and exploring task-specific network interactions. Yet, a comprehensive synthesis of reading-related NIBS studies is still missing. We fill this gap by synthesizing the results of 78 NIBS studies investigating the causal involvement of brain regions for reading processing, and then link these results to a neurobiological model of reading. The included studies provide evidence for a functional-anatomical double dissociation for phonology versus semantics during reading-related processes within left inferior frontal and parietal areas. Additionally, the posterior parietal cortex and the anterior temporal lobe are identified as critical regions for reading-related processes. Overall, the findings provide some evidence for a dual-stream neurobiological model of reading, in which a dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, and a ventral stream (left occipito-temporal and inferior frontal areas, with assistance from the angular gyrus and the anterior temporal lobe) processes known words. However, individual differences in reading abilities and strategies, as well as differences in stimulation parameters, may impact the neuromodulatory effects induced by NIBS. We emphasize the need to investigate task-specific network interactions in future studies by combining NIBS with neuroimaging.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
20
|
Quiñones I, Amoruso L, Pomposo Gastelu IC, Gil-Robles S, Carreiras M. What Can Glioma Patients Teach Us about Language (Re)Organization in the Bilingual Brain: Evidence from fMRI and MEG. Cancers (Basel) 2021; 13:2593. [PMID: 34070619 PMCID: PMC8198785 DOI: 10.3390/cancers13112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that the presence of brain tumors (e.g., low-grade gliomas) triggers language reorganization. Neuroplasticity mechanisms called into play can transfer linguistic functions from damaged to healthy areas unaffected by the tumor. This phenomenon has been reported in monolingual patients, but much less is known about the neuroplasticity of language in the bilingual brain. A central question is whether processing a first or second language involves the same or different cortical territories and whether damage results in diverse recovery patterns depending on the language involved. This question becomes critical for preserving language areas in bilingual brain-tumor patients to prevent involuntary pathological symptoms following resection. While most studies have focused on intraoperative mapping, here, we go further, reporting clinical cases for five bilingual patients tested before and after tumor resection, using a novel multimethod approach merging neuroimaging information from fMRI and MEG to map the longitudinal reshaping of the language system. Here, we present four main findings. First, all patients preserved linguistic function in both languages after surgery, suggesting that the surgical intervention with intraoperative language mapping was successful in preserving cortical and subcortical structures necessary for brain plasticity at the functional level. Second, we found reorganization of the language network after tumor resection in both languages, mainly reflected by a shift of activity to right hemisphere nodes and the recruitment of ipsilesional left nodes. Third, we found that this reorganization varied according to the language involved, indicating that L1 and L2 follow different reshaping patterns after surgery. Fourth, oscillatory longitudinal effects were correlated with BOLD laterality changes in superior parietal and middle frontal areas. These findings may reflect that neuroplasticity impacts on the compensatory involvement of executive control regions, supporting the allocation of cognitive resources as a consequence of increased attentional demands. Furthermore, these results hint at the complementary role of this neuroimaging approach in language mapping, with fMRI offering excellent spatial localization and MEG providing optimal spectrotemporal resolution.
Collapse
Affiliation(s)
- Ileana Quiñones
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
| | - Lucia Amoruso
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | | | - Santiago Gil-Robles
- BioCruces Research Institute, 48015 Bilbao, Spain;
- Department of Neurosurgery, Hospital Quironsalud, 28223 Madrid, Spain
| | - Manuel Carreiras
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Basque Language and Communication, University of the Basque Country, UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
21
|
Numssen O, Bzdok D, Hartwigsen G. Functional specialization within the inferior parietal lobes across cognitive domains. eLife 2021; 10:63591. [PMID: 33650486 PMCID: PMC7946436 DOI: 10.7554/elife.63591] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated hemispheric specialization in the IPL supports some of the most distinctive human mental capacities.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Graessner A, Zaccarella E, Hartwigsen G. Differential contributions of left-hemispheric language regions to basic semantic composition. Brain Struct Funct 2021; 226:501-518. [PMID: 33515279 PMCID: PMC7910266 DOI: 10.1007/s00429-020-02196-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Semantic composition, the ability to combine single words to form complex meanings, is a core feature of human language. Despite growing interest in the basis of semantic composition, the neural correlates and the interaction of regions within this network remain a matter of debate. We designed a well-controlled two-word fMRI paradigm in which phrases only differed along the semantic dimension while keeping syntactic information alike. Healthy participants listened to meaningful ("fresh apple"), anomalous ("awake apple") and pseudoword phrases ("awake gufel") while performing an implicit and an explicit semantic task. We identified neural signatures for distinct processes during basic semantic composition. When lexical information is kept constant across conditions and the evaluation of phrasal plausibility is examined (meaningful vs. anomalous phrases), a small set of mostly left-hemispheric semantic regions, including the anterior part of the left angular gyrus, is found active. Conversely, when the load of lexical information-independently of phrasal plausibility-is varied (meaningful or anomalous vs. pseudoword phrases), conceptual combination involves a wide-spread left-hemispheric network comprising executive semantic control regions and general conceptual representation regions. Within this network, the functional coupling between the left anterior inferior frontal gyrus, the bilateral pre-supplementary motor area and the posterior angular gyrus specifically increases for meaningful phrases relative to pseudoword phrases. Stronger effects in the explicit task further suggest task-dependent neural recruitment. Overall, we provide a separation between distinct nodes of the semantic network, whose functional contributions depend on the type of compositional process under analysis.
Collapse
Affiliation(s)
- Astrid Graessner
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany.
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
| |
Collapse
|
23
|
Dey A, Dempster K, MacKinley M, Jeon P, Das T, Khan A, Gati J, Palaniyappan L. Conceptual disorganization and redistribution of resting-state cortical hubs in untreated first-episode psychosis: A 7T study. NPJ SCHIZOPHRENIA 2021; 7:4. [PMID: 33500416 PMCID: PMC7838254 DOI: 10.1038/s41537-020-00130-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2020] [Indexed: 01/30/2023]
Abstract
Network-level dysconnectivity has been studied in positive and negative symptoms of schizophrenia. Conceptual disorganization (CD) is a symptom subtype that predicts impaired real-world functioning in psychosis. Systematic reviews have reported aberrant connectivity in formal thought disorder, a construct related to CD. However, no studies have investigated whole-brain functional correlates of CD in psychosis. We sought to investigate brain regions explaining the severity of CD in patients with first-episode psychosis (FEPs) compared with healthy controls (HCs). We computed whole-brain binarized degree centrality maps of 31 FEPs, 25 HCs, and characterized the patterns of network connectivity in the 2 groups. In FEPs, we related these findings to the severity of CD. We also studied the effect of positive and negative symptoms on altered network connectivity. Compared to HCs, reduced centrality of a right superior temporal gyrus (rSTG) cluster was observed in the FEPs. In patients exhibiting high CD, increased centrality of a medial superior parietal (mSPL) cluster was observed, compared to patients exhibiting low CD. This cluster was strongly correlated with CD scores but not with other symptom scores. Our observations are congruent with previous findings of reduced but not increased centrality. We observed increased centrality of mSPL suggesting that cortical reorganization occurs to provide alternate routes for information transfer. These findings provide insight into the underlying neural processes mediating the presentation of symptoms in untreated FEP. Longitudinal tracking of the symptom course will be useful to assess the mechanisms underlying these compensatory changes.
Collapse
Affiliation(s)
- Avyarthana Dey
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada
| | - Kara Dempster
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.55602.340000 0004 1936 8200Present Address: Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Michael MacKinley
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada
| | - Peter Jeon
- grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Tushar Das
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada
| | - Ali Khan
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,grid.39381.300000 0004 1936 8884The Brain and Mind Institute, University of Western Ontario, London, ON Canada
| | - Joe Gati
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Lena Palaniyappan
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,grid.39381.300000 0004 1936 8884The Brain and Mind Institute, University of Western Ontario, London, ON Canada
| |
Collapse
|
24
|
Mathias B, Sureth L, Hartwigsen G, Macedonia M, Mayer KM, von Kriegstein K. Visual Sensory Cortices Causally Contribute to Auditory Word Recognition Following Sensorimotor-Enriched Vocabulary Training. Cereb Cortex 2021; 31:513-528. [PMID: 32959878 PMCID: PMC7727387 DOI: 10.1093/cercor/bhaa240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Despite a rise in the use of "learning by doing" pedagogical methods in praxis, little is known as to how the brain benefits from these methods. Learning by doing strategies that utilize complementary information ("enrichment") such as gestures have been shown to optimize learning outcomes in several domains including foreign language (L2) training. Here we tested the hypothesis that behavioral benefits of gesture-based enrichment are critically supported by integrity of the biological motion visual cortices (bmSTS). Prior functional neuroimaging work has implicated the visual motion cortices in L2 translation following sensorimotor-enriched training; the current study is the first to investigate the causal relevance of these structures in learning by doing contexts. Using neuronavigated transcranial magnetic stimulation and a gesture-enriched L2 vocabulary learning paradigm, we found that the bmSTS causally contributed to behavioral benefits of gesture-enriched learning. Visual motion cortex integrity benefitted both short- and long-term learning outcomes, as well as the learning of concrete and abstract words. These results adjudicate between opposing predictions of two neuroscientific learning theories: While reactivation-based theories predict no functional role of specialized sensory cortices in vocabulary learning outcomes, the current study supports the predictive coding theory view that these cortices precipitate sensorimotor-based learning benefits.
Collapse
Affiliation(s)
- Brian Mathias
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technical University Dresden, Dresden 01187, Germany
- Research Group Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Leona Sureth
- Research Group Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Manuela Macedonia
- Research Group Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Information Engineering, Johannes Kepler University Linz, Linz, Austria
| | - Katja M Mayer
- Institute of Psychology, University of Münster, Münster, Germany
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technical University Dresden, Dresden 01187, Germany
- Research Group Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
25
|
Friehs MA, Klaus J, Singh T, Frings C, Hartwigsen G. Perturbation of the right prefrontal cortex disrupts interference control. Neuroimage 2020; 222:117279. [PMID: 32828926 DOI: 10.1016/j.neuroimage.2020.117279] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Resolving cognitive interference is central for successful everyday cognition and behavior. The Stroop task is a classical measure of cognitive interference. In this task, participants have to resolve interference on a trial-by-trial basis and performance is also influenced by the trial history, as reflected in sequence effects. Previous neuroimaging studies have associated the left and right prefrontal cortex with successful performance in the Stroop task. Yet, the causal relevance of both regions for interference processing remains largely unclear. We probed the functional relevance of the left and right prefrontal cortex for interference control. In three sessions, 25 healthy participants received online repetitive transcranial magnetic stimulation (rTMS) over the left and right dorsolateral prefrontal cortex, and sham stimulation over the vertex. During each session, participants completed a verbal-response Stroop task. Relative to sham rTMS and rTMS over the left prefrontal cortex, rTMS over the right prefrontal cortex selectively disrupted the Stroop sequence effect (i.e., the congruency sequence effect; CSE). This effect was specific to sequential modulations of interference since rTMS did not affect the Stroop performance in the ongoing trial. Our results demonstrate the functional relevance of the right dorsolateral prefrontal cortex for the processing of interference control. This finding points towards process-specific lateralization within the prefrontal cortex. The observed process- and site-specific TMS effect provides new insights into the neurophysiological underpinnings of Stroop task performance and more general, the role of the prefrontal cortex in the processing of interference control.
Collapse
Affiliation(s)
- Maximilian A Friehs
- Department of Cognitive Psychology and Methodology, Trier University, Germany.
| | - Jana Klaus
- Department of Experimental Psychology, Utrecht University, the Netherlands
| | - Tarini Singh
- Department of Experimental Psychology, Halle University, Germany
| | - Christian Frings
- Department of Cognitive Psychology and Methodology, Trier University, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Germany
| |
Collapse
|
26
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
27
|
Kuhnke P, Beaupain MC, Cheung VKM, Weise K, Kiefer M, Hartwigsen G. Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. Neuroimage 2020; 219:117041. [PMID: 32534127 DOI: 10.1016/j.neuroimage.2020.117041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/06/2020] [Indexed: 11/15/2022] Open
Abstract
Conceptual knowledge is central to human cognition. The left posterior inferior parietal lobe (pIPL) is implicated by neuroimaging studies as a multimodal hub representing conceptual knowledge related to various perceptual-motor modalities. However, the causal role of left pIPL in conceptual processing remains unclear. Here, we transiently disrupted left pIPL function with transcranial magnetic stimulation (TMS) to probe its causal relevance for the retrieval of action and sound knowledge. We compared effective TMS over left pIPL with sham TMS, while healthy participants performed three different tasks-lexical decision, action judgment, and sound judgment-on words with a high or low association to actions and sounds. We found that pIPL-TMS selectively impaired action judgments on low sound-low action words. For the first time, we directly related computational simulations of the TMS-induced electrical field to behavioral performance, which revealed that stronger stimulation of left pIPL is associated with worse performance for action but not sound judgments. These results indicate that left pIPL causally supports conceptual processing when action knowledge is task-relevant and cannot be compensated by sound knowledge. Our findings suggest that left pIPL is specialized for the retrieval of action knowledge, challenging the view of left pIPL as a multimodal conceptual hub.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Marie C Beaupain
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vincent K M Cheung
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Konstantin Weise
- Methods and Development Group 'Brain Networks', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
28
|
Chien PJ, Friederici AD, Hartwigsen G, Sammler D. Intonation processing increases task-specific fronto-temporal connectivity in tonal language speakers. Hum Brain Mapp 2020; 42:161-174. [PMID: 32996647 PMCID: PMC7721241 DOI: 10.1002/hbm.25214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023] Open
Abstract
Language comprehension depends on tight functional interactions between distributed brain regions. While these interactions are established for semantic and syntactic processes, the functional network of speech intonation – the linguistic variation of pitch – has been scarcely defined. Particularly little is known about intonation in tonal languages, in which pitch not only serves intonation but also expresses meaning via lexical tones. The present study used psychophysiological interaction analyses of functional magnetic resonance imaging data to characterise the neural networks underlying intonation and tone processing in native Mandarin Chinese speakers. Participants categorised either intonation or tone of monosyllabic Mandarin words that gradually varied between statement and question and between Tone 2 and Tone 4. Intonation processing induced bilateral fronto‐temporal activity and increased functional connectivity between left inferior frontal gyrus and bilateral temporal regions, likely linking auditory perception and labelling of intonation categories in a phonological network. Tone processing induced bilateral temporal activity, associated with the auditory representation of tonal (phonemic) categories. Together, the present data demonstrate the breadth of the functional intonation network in a tonal language including higher‐level phonological processes in addition to auditory representations common to both intonation and tone.
Collapse
Affiliation(s)
- Pei-Ju Chien
- International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Otto Hahn Group 'Neural Bases of Intonation in Speech and Music', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniela Sammler
- Otto Hahn Group 'Neural Bases of Intonation in Speech and Music', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
29
|
Bergmann TO, Hartwigsen G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J Cogn Neurosci 2020; 33:195-225. [PMID: 32530381 DOI: 10.1162/jocn_a_01591] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation or transcranial direct and alternating current stimulation, are advocated as measures to enable causal inference in cognitive neuroscience experiments. Transcending the limitations of purely correlative neuroimaging measures and experimental sensory stimulation, they allow to experimentally manipulate brain activity and study its consequences for perception, cognition, and eventually, behavior. Although this is true in principle, particular caution is advised when interpreting brain stimulation experiments in a causal manner. Research hypotheses are often oversimplified, disregarding the underlying (implicitly assumed) complex chain of causation, namely, that the stimulation technique has to generate an electric field in the brain tissue, which then evokes or modulates neuronal activity both locally in the target region and in connected remote sites of the network, which in consequence affects the cognitive function of interest and eventually results in a change of the behavioral measure. Importantly, every link in this causal chain of effects can be confounded by several factors that have to be experimentally eliminated or controlled to attribute the observed results to their assumed cause. This is complicated by the fact that many of the mediating and confounding variables are not directly observable and dose-response relationships are often nonlinear. We will walk the reader through the chain of causation for a generic cognitive neuroscience NIBS study, discuss possible confounds, and advise appropriate control conditions. If crucial assumptions are explicitly tested (where possible) and confounds are experimentally well controlled, NIBS can indeed reveal cause-effect relationships in cognitive neuroscience studies.
Collapse
Affiliation(s)
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
30
|
Hartwigsen G, Stockert A, Charpentier L, Wawrzyniak M, Klingbeil J, Wrede K, Obrig H, Saur D. Short-term modulation of the lesioned language network. eLife 2020; 9:54277. [PMID: 32181741 PMCID: PMC7077979 DOI: 10.7554/elife.54277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022] Open
Abstract
Language is sustained by large-scale networks in the human brain. Stroke often severely affects function and network dynamics. However, the adaptive potential of the brain to compensate for lesions is poorly understood. A key question is whether upregulation of the right hemisphere is adaptive for language recovery. Targeting the potential for short-term reorganization in the lesioned brain, we applied 'virtual lesions' over left anterior or posterior inferior frontal gyrus (IFG) in post-stroke patients with left temporo-parietal lesions prior to functional neuroimaging. Perturbation of the posterior IFG selectively delayed phonological decisions and decreased phonological activity. The individual response delay was correlated with the upregulation of the lesion homologue, likely reflecting compensation. Moreover, stronger individual tract integrity of the right superior longitudinal fascicle was associated with lesser disruption. Our results provide evidence for functional and structural underpinnings of plasticity in the lesioned language network, and a compensatory role of the right hemisphere.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Louise Charpentier
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Max Wawrzyniak
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Julian Klingbeil
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Katrin Wrede
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University of Leipzig Medical Centre & Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dorothee Saur
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, Leipzig, Germany
| |
Collapse
|
31
|
Chien PJ, Friederici AD, Hartwigsen G, Sammler D. Neural correlates of intonation and lexical tone in tonal and non-tonal language speakers. Hum Brain Mapp 2020; 41:1842-1858. [PMID: 31957928 PMCID: PMC7268089 DOI: 10.1002/hbm.24916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
Intonation, the modulation of pitch in speech, is a crucial aspect of language that is processed in right‐hemispheric regions, beyond the classical left‐hemispheric language system. Whether or not this notion generalises across languages remains, however, unclear. Particularly, tonal languages are an interesting test case because of the dual linguistic function of pitch that conveys lexical meaning in form of tone, in addition to intonation. To date, only few studies have explored how intonation is processed in tonal languages, how this compares to tone and between tonal and non‐tonal language speakers. The present fMRI study addressed these questions by testing Mandarin and German speakers with Mandarin material. Both groups categorised mono‐syllabic Mandarin words in terms of intonation, tone, and voice gender. Systematic comparisons of brain activity of the two groups between the three tasks showed large cross‐linguistic commonalities in the neural processing of intonation in left fronto‐parietal, right frontal, and bilateral cingulo‐opercular regions. These areas are associated with general phonological, specific prosodic, and controlled categorical decision‐making processes, respectively. Tone processing overlapped with intonation processing in left fronto‐parietal areas, in both groups, but evoked additional activity in bilateral temporo‐parietal semantic regions and subcortical areas in Mandarin speakers only. Together, these findings confirm cross‐linguistic commonalities in the neural implementation of intonation processing but dissociations for semantic processing of tone only in tonal language speakers.
Collapse
Affiliation(s)
- Pei-Ju Chien
- International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Otto Hahn Group "Neural Bases of Intonation in Speech and Music", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniela Sammler
- Otto Hahn Group "Neural Bases of Intonation in Speech and Music", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
32
|
Keser Z, Sebastian R, Hasan KM, Hillis AE. Right Hemispheric Homologous Language Pathways Negatively Predicts Poststroke Naming Recovery. Stroke 2019; 51:1002-1005. [PMID: 31884909 DOI: 10.1161/strokeaha.119.028293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Stroke is the leading cause of disability in United States, and aphasia is a common sequela after a left hemisphere stroke. Functional imaging and brain stimulation studies show that right hemisphere structures are detrimental to aphasia recovery but evidence from diffusion tensor imaging is lacking. We investigated the role of homologous language pathways in naming recovery after left hemispheric stroke. Methods- Patients with aphasia after a left hemispheric stroke underwent naming assessment using the Boston Naming Test and diffusion tensor imaging at the acute and chronic time points. We analyzed diffusion tensor imaging of right arcuate fasciculus and frontal aslant tracts. We used Wilcoxon rank-sum test to evaluate structural lateralization patterns and partial Spearman correlation/multivariate generalized linear model to determine the role of right arcuate fasciculus and frontal aslant tracts in naming recovery after controlling for confounders. Results were corrected for multiple comparisons. Results- On average, the structural integrity of left language pathways deteriorated more than their right homologs, such that there was rightward lateralization in the chronic stage. Regression/correlation analyses showed that greater preservation of tract integrity of right arcuate fasciculus was associated with poorer naming recovery. Conclusions- Our study provides preliminary evidence that preservation of right homologs of language pathways is associated with poor recovery of naming after a left hemispheric stroke, consistent with previous evidence that maintaining greater reliance on left hemisphere structures is associated with better language recovery.
Collapse
Affiliation(s)
- Zafer Keser
- From the Department of Neurology (Z.K.), The University of Texas Health Science Center, Houston
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation (R.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology (K.M.H.), The University of Texas Health Science Center, Houston
| | - Argye E Hillis
- Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
33
|
The neural and neurocomputational bases of recovery from post-stroke aphasia. Nat Rev Neurol 2019; 16:43-55. [DOI: 10.1038/s41582-019-0282-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
34
|
Klaus J, Schutter DJLG, Piai V. Transient perturbation of the left temporal cortex evokes plasticity-related reconfiguration of the lexical network. Hum Brain Mapp 2019; 41:1061-1071. [PMID: 31705740 PMCID: PMC7267941 DOI: 10.1002/hbm.24860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
While much progress has been made in how brain organization supports language function, the language network's ability to adapt to immediate disturbances by means of reorganization remains unclear. The aim of this study was to examine acute reorganizational changes in brain activity related to conceptual and lexical retrieval in unimpaired language production following transient disruption of the left middle temporal gyrus (MTG). In a randomized single‐blind within‐subject experiment, we recorded the electroencephalogram from 16 healthy participants during a context‐driven picture‐naming task. Prior to the task, the left MTG was perturbed with real continuous theta‐burst stimulation (cTBS) or sham stimulation. During the task, participants read lead‐in sentences creating a constraining (e.g., “The farmer milks the”) or nonconstraining context (e.g., “The farmer buys the”). The last word was shown as a picture that participants had to name (e.g., “cow”). Replicating behavioral studies, participants were overall faster in naming pictures following a constraining relative to a nonconstraining context, but this effect did not differ between real and sham cTBS. In contrast, real cTBS increased overall error rates compared to sham cTBS. In line with previous studies, we observed a decrease in alpha‐beta (8–24 Hz) oscillatory power for constraining relative to nonconstraining contexts over left temporal–parietal cortex after participants received sham cTBS. However, following real cTBS, this decrease extended toward left prefrontal regions associated with both domain‐general and domain‐specific control mechanisms. Our findings provide evidence that immediately after perturbing the left MTG, the lexical‐semantic network is able to quickly reconfigure, also recruiting domain‐general regions.
Collapse
Affiliation(s)
- Jana Klaus
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, Netherlands
| | - Dennis J L G Schutter
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands.,Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, Netherlands
| | - Vitória Piai
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands.,Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
35
|
Neurophysiological examination combined with functional intraoperative navigation using TMS in patients with brain tumor near the central region-a pilot study. Acta Neurochir (Wien) 2019; 161:1853-1864. [PMID: 31297597 DOI: 10.1007/s00701-019-04004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Feasibility and value of non-invasive transcranial magnetic brain stimulation (TMS MAGVENTURE® MagPro R30 Denmark) for preoperative diagnosis and surgical planning of brain tumor operations in everyday clinical practice. METHODS A prospective monocentric study was conducted, which included preoperative neurological and electrophysiological examination, TMS, and display of functional data in the navigation system (LOCALITE® TMS Navigator Germany). During surgery, the TMS data were correlated with the intraoperative monitoring (IOM). Twenty-four hours to 96 h and after at least 3 months, follow-ups with neurological, electrophysiological examinations and TMS stimulation were performed. RESULTS Twenty-five patients with tumors in or near by the primary motor cortex region were included in the study. Twenty-one patients completed preoperative and first postoperative TMS and the neurological examination. Eight of 21 patients showed slight worsening of primary motor cortex function, 8 patients had an unchanged state, and 4 patients showed an improvement early after surgery. The changes of the electrophysiological examination like significant delay of the latency and/or reduced amplitudes matched well with the postoperative neurological outcome: if patients showed a worsening of the SEP's and MEP's, the postoperative results revealed deterioration. CONCLUSION A preoperatively performed TMS using the MAGVENTURE® MagPro R30 and the LOCALITE® TMS Navigator could be established in our clinical daily practice and allowed a safe and reliable mapping of the primary motor cortex in order to minimize the risk of postoperative neurological deficits and improve the neurological outcome of the patients.
Collapse
|
36
|
Sakreida K, Blume-Schnitzler J, Heim S, Willmes K, Clusmann H, Neuloh G. Phonological picture–word interference in language mapping with transcranial magnetic stimulation: an objective approach for functional parcellation of Broca’s region. Brain Struct Funct 2019; 224:2027-2044. [DOI: 10.1007/s00429-019-01891-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
|
37
|
Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. Neuroimage 2018; 181:550-559. [DOI: 10.1016/j.neuroimage.2018.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022] Open
|
38
|
Hartwigsen G, Bzdok D. Multivariate single-subject analysis of short-term reorganization in the language network. Cortex 2018; 106:309-312. [DOI: 10.1016/j.cortex.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/07/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022]
|
39
|
Hartwigsen G. Flexible Redistribution in Cognitive Networks. Trends Cogn Sci 2018; 22:687-698. [DOI: 10.1016/j.tics.2018.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
|
40
|
Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration. J Neurosci 2018; 38:1891-1900. [PMID: 29358361 DOI: 10.1523/jneurosci.1748-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 01/15/2023] Open
Abstract
Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas.SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being separate entities, gesture and speech are part of an integrated multimodal language system, with inferior frontal gyrus and posterior middle temporal gyrus serving as critical nodes of the cortical network underpinning this system.
Collapse
|
41
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|