1
|
Gwon K, Dharmesh E, Nguyen KM, Schornack AMR, de Hoyos-Vega JM, Ceylan H, Stybayeva G, Peterson QP, Revzin A. Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids. MICROSYSTEMS & NANOENGINEERING 2024; 10:127. [PMID: 39261472 PMCID: PMC11390961 DOI: 10.1038/s41378-024-00747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
Human pluripotent stem cells (hPSCs) represent an excellent cell source for regenerative medicine and tissue engineering applications. However, there remains a need for robust and scalable differentiation of stem cells into functional adult tissues. In this paper, we sought to address this challenge by developing magnetic microcapsules carrying hPSC spheroids. A co-axial flow-focusing microfluidic device was employed to encapsulate stem cells in core-shell microcapsules that also contained iron oxide magnetic nanoparticles (MNPs). These microcapsules exhibited excellent response to an external magnetic field and could be held at a specific location. As a demonstration of utility, magnetic microcapsules were used for differentiating hPSC spheroids as suspension cultures in a stirred bioreactor. Compared to standard suspension cultures, magnetic microcapsules allowed for more efficient media change and produced improved differentiation outcomes. In the future, magnetic microcapsules may enable better and more scalable differentiation of hPSCs into adult cell types and may offer benefits for cell transplantation.
Collapse
Affiliation(s)
- Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Ether Dharmesh
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Kianna M Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Shen L, Han F, Pan L, Du L, Sun P, Zhang K, Wu X, Pang K, Zhu J. Construction of tissue engineered cornea with skin-derived corneal endothelial-like cell and mechanism research for the cell differentiation. Front Med (Lausanne) 2024; 11:1448248. [PMID: 39286645 PMCID: PMC11402686 DOI: 10.3389/fmed.2024.1448248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Corneal endothelial transplantation accounts for most of corneal transplantation for treating corneal diseases, however severe shortage of corneal donors is the biggest obstacle. In our previous study, we differentiated human skin-derived precursors (SKPs) into corneal endothelial cell (CEC)-like cells with a co-culture system. In this study, we aimed to investigate cell differentiation molecular mechanism and evaluate the function of CEC-like cells by developing tissue-engineered corneas in order to improve cell production efficiency and provide basic research for clinical transformation. Methods We performed transcriptome sequencing of SKPs and CEC-like cells. Further, we focused on the possible enriching pathways, including PI3K/Akt, MAPK/Erk, WNT/β-catenin, and important transcription factors Pitx2 and Foxc1. The PI3K and β-catenin inhibitors were also added to the culture system to observe the differentiation alteration. We developed a graft for a tissue-engineered cornea (TEC) using CEC-like cells and acellular porcine cornea matrix scaffold. The tissue-engineered corneas were transplanted into rabbits via penetrating keratoplasty. Results The PI3K/Akt, MAPK/Erk, and WNT/β-catenin pathways play important roles during the differentiation of SKPs into CEC-like cells. Crosstalk existed between the PI3K/Akt and MAPK/Erk pathways. The PI3K/Akt and WNT/β-catenin pathways were connected. Pitx2 and Foxc1 were subject to temporal and spatial controls of the WNT/β-catenin pathway. The inhibition of the PI3K/Akt and WNT/β-catenin pathways both prevented cell differentiation. CEC-like cells grew well on the acellular porcine cornea matrix scaffold, and the tissue-engineered corneal graft performed well after transplantation into rabbits. Conclusion We provide experimental basis for CEC-like cell industrial production and drive the cells to be clinically applied in cellular replacement therapy or alternative graft substitution for treating corneal diseases in the future.
Collapse
Affiliation(s)
- Lin Shen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kai Zhang
- Department of Ophthalmology, Shandong Second Provincial General Hospital, Jinan, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
York JR, Rao A, Huber PB, Schock EN, Montequin A, Rigney S, LaBonne C. Shared features of blastula and neural crest stem cells evolved at the base of vertebrates. Nat Ecol Evol 2024; 8:1680-1692. [PMID: 39060477 PMCID: PMC11520720 DOI: 10.1038/s41559-024-02476-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
The neural crest is a vertebrate-specific stem cell population that helped drive the origin and evolution of vertebrates. A distinguishing feature of these cells is their multi-germ layer potential, which has parallels to another stem cell population-pluripotent stem cells of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks of a jawed vertebrate, Xenopus, and a jawless vertebrate, lamprey. We reveal an ancient evolutionary origin of shared regulatory factors in these gene regulatory networks that dates to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5, we show that a lamprey pou5 orthologue is expressed in animal pole cells but is absent from neural crest. Both lamprey and Xenopus pou5 promote neural crest formation, suggesting that pou5 activity was lost from the neural crest of jawless vertebrates or acquired along the jawed vertebrate stem. Finally, we provide evidence that pou5 acquired novel, neural crest-enhancing activity after evolving from an ancestral pou3-like clade. This work provides evidence that both the neural crest and blastula pluripotency networks arose at the base of the vertebrates and that this may be linked to functional evolution of pou5.
Collapse
Affiliation(s)
- Joshua R York
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Anjali Rao
- Research Department, Gilead Sciences, Foster City, CA, USA
| | - Paul B Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Elizabeth N Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Andrew Montequin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sara Rigney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- National Institute for Theory and Mathematics in Biology, Chicago, IL, USA.
| |
Collapse
|
4
|
Huber PB, Rao A, LaBonne C. BET activity plays an essential role in control of stem cell attributes in Xenopus. Development 2024; 151:dev202990. [PMID: 38884356 PMCID: PMC11266789 DOI: 10.1242/dev.202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.
Collapse
Affiliation(s)
- Paul B. Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| | - Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Yang R, Fu Y, Li C, Chen Y, He A, Jiang X, Ma J, Zhang T. Profiling of Long Non-Coding RNAs in Auricular Cartilage of Patients with Isolated Microtia. Genet Test Mol Biomarkers 2024; 28:50-58. [PMID: 38416666 DOI: 10.1089/gtmb.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Introduction: Microtia is the second most common maxillofacial birth defect worldwide. However, the involvement of long non-coding RNAs (lncRNAs) in isolated microtia is not well understood. This study aimed at identifying lncRNAs that regulate the expression of genes associated with isolated microtia. Methods: We used our microarray data to analyze the expression pattern of lncRNA in the auricular cartilage tissues from 10 patients diagnosed with isolated microtia, alongside 15 control subjects. Five lncRNAs were chosen for validation using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: We identified 4651 differentially expressed lncRNAs in the auricular cartilage from patients with isolated microtia. By Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway (GO/KEGG) analysis, we identified 27 differentially expressed genes enriched in pathways associated with microtia. In addition, we predicted 9 differentially expressed genes as potential cis-acting targets of 12 differentially expressed lncRNAs. Our findings by qRT-PCR demonstrate significantly elevated expression levels of ZFAS1 and DAB1-AS1, whereas ADIRF-AS1, HOTAIRM1, and EPB41L4A-AS1 exhibited significantly reduced expression levels in the auricular cartilage tissues of patients with isolated microtia. Conclusions: Our study sheds light on the potential involvement of lncRNAs in microtia and provides a basis for further investigation into their functional roles and underlying mechanisms.
Collapse
Affiliation(s)
- Run Yang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yin Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Jiang
- Medical Laboratory of Nantong Zhongke, Department of Bioinformatics, Nantong, Jiangsu, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
7
|
York JR, Rao A, Huber PB, Schock EN, Montequin A, Rigney S, LaBonne C. Shared features of blastula and neural crest stem cells evolved at the base of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572714. [PMID: 38187687 PMCID: PMC10769357 DOI: 10.1101/2023.12.21.572714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The neural crest is vertebrate-specific stem cell population that helped drive the origin and evolution of the vertebrate clade. A distinguishing feature of these stem cells is their multi-germ layer potential, which has drawn developmental and evolutionary parallels to another stem cell population-pluripotent embryonic stem cells (animal pole cells or ES cells) of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks (GRNs) in both jawed ( Xenopus ) and jawless (lamprey) vertebrates. Through comparative gene expression analysis and transcriptomics, we reveal an ancient evolutionary origin of shared regulatory factors between neural crest and pluripotency GRNs that dates back to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5 (formerly oct4), we show that the lamprey genome encodes a pou5 ortholog that is expressed in animal pole cells, as in jawed vertebrates, but is absent from the neural crest. However, gain-of-function experiments show that both lamprey and Xenopus pou5 enhance neural crest formation, suggesting that pou5 was lost from the neural crest of jawless vertebrates. Finally, we show that pou5 is required for neural crest specification in jawed vertebrates and that it acquired novel neural crest-enhancing activity after evolving from an ancestral pou3 -like clade that lacks this functionality. We propose that a pluripotency-neural crest GRN was assembled in stem vertebrates and that the multi-germ layer potential of the neural crest evolved by deploying this regulatory program.
Collapse
|
8
|
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 2023; 150:dev202047. [PMID: 37756587 PMCID: PMC10617604 DOI: 10.1242/dev.202047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Helen R. Maunsell
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
10
|
Schock EN, York JR, LaBonne C. The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest. Semin Cell Dev Biol 2023; 138:36-44. [PMID: 35534333 PMCID: PMC11513157 DOI: 10.1016/j.semcdb.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
Neural crest cells are central to vertebrate development and evolution, endowing vertebrates with a "new head" that resulted in morphological, physiological, and behavioral features that allowed vertebrates to become active predators. One remarkable feature of neural crest cells is their multi-germ layer potential that allows for the formation of both ectodermal (pigmentation, peripheral glia, sensory neurons) and mesenchymal (connective tissue, cartilage/bone, dermis) cell types. Understanding the cellular and evolutionary origins of this broad cellular potential in the neural crest has been a long-standing focus for developmental biologists. Here, we review recent work that has demonstrated that neural crest cells share key features with pluripotent blastula stem cells, including expression of the Yamanaka stem cell factors (Oct3/4, Klf4, Sox2, c-Myc). These shared features suggest that pluripotency is either retained in the neural crest from blastula stages or subsequently reactivated as the neural crest forms. We highlight the cellular and molecular parallels between blastula stem cells and neural crest cells and discuss the work that has led to current models for the cellular origins of broad potential in the crest. Finally, we explore how these themes can provide new insights into how and when neural crest cells and pluripotency evolved in vertebrates and the evolutionary relationship between these populations.
Collapse
Affiliation(s)
| | | | - Carole LaBonne
- Dept. of Molecular Biosciences; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
11
|
Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells. Hum Cell 2023; 36:612-630. [PMID: 36692671 DOI: 10.1007/s13577-023-00861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Mesoderm-derived cells, including bone, muscle, and mesenchymal stem/stromal cells (MSCs), constitute various parts of vertebrate body. Cell therapy with mesoderm specification in vitro may be a promising treatment for diseases affecting organs of mesodermal origin. Repair and regeneration of damaged organs with in vitro generation of mesoderm-derived tissues and MSCs hold a great potential for regenerative therapy. Therefore, understanding the signaling pathways involving mesoderm and mesoderm-derived cellular differentiation is important. Previous findings indicated the importance of Apelin receptor (Aplnr) signaling, during embryonic development, in gastrulation, cell migration, and differentiation. Nevertheless, regulatory role of Aplnr pathway in differentiation of mesoderm and mesoderm-derived MSCs remains unclear. In the current study, we tried to elucidate the role of Aplnr signaling during mesoderm cell migration and differentiation from mouse embryonic stem cells (mESCs). By activating and suppressing Aplnr signaling pathway via peptide, small molecule, and genetic modifications including siRNA- and shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout (KO), we revealed that Aplnr signaling not only induces migration of cells during germ layer formation but also enhances mesoderm differentiation through FGF/MAPK pathway. Antibody array and LC/MS protein profiling data demonstrated that Apelin-13 treatment enhanced cell cycle, EGFR, FGF, Wnt, and Integrin signaling pathway proteins. Furthermore, Aplelin-13 treatment improved MSC characteristics, with mesenchymal phenotype and high expression of MSC markers, and silencing Aplnr signaling components resulted in significantly reduced expression of MSC markers. Also, Aplnr signaling activity enhanced proliferation and survival of the cells during MSC derivation from mesoderm.
Collapse
|
12
|
Liu B, Liu W, Zhao S, Ma L, Zang T, Huang C, Shu K, Gao H, Tang X. Transcriptome sequencing of facial adipose tissue reveals alterations in mRNAs of hemifacial microsomia. Front Pediatr 2023; 11:1099841. [PMID: 36861077 PMCID: PMC9968928 DOI: 10.3389/fped.2023.1099841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Hemifacial microsomia (HFM) is a common congenital malformation of the craniofacial region, including mandibular hypoplasia, microtia, facial palsy and soft tissue deficiencies. However, it remains unclear which specific genes are involved in the pathogenesis of HFM. By identifying differentially expressed genes (DEGs) in deficient facial adipose tissue from HFM patients, we hope to provide a new insight into disease mechanisms from the transcriptome perspective. RNA sequencing (RNA-Seq) was performed with 10 facial adipose tissues from patients of HFM and healthy controls. Differentially expressed genes in HFM were validated by quantitative real-time PCR (qPCR). Functional annotations of the DEGs were analyzed with DESeq2 R package (1.20.0). A total of 1,244 genes were identified as DEGs between HFM patients and matched controls. Bioinformatic analysis predicted that the increased expression of HOXB2 and HAND2 were associated with facial deformity of HFM. Knockdown and overexpression of HOXB2 were achieved with lentiviral vectors. Cell proliferation, migration, and invasion assay was performed with adipose-derived stem cells (ADSC) to confirm the phenotype of HOXB2. We also found that PI3K-Akt signaling pathway and human papillomavirus infection were activated in HFM. In conclusion, we discovered potential genes, pathways and networks in HFM facial adipose tissue, which contributes to a better understanding of the pathogenesis of HFM.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanbaga Zhao
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lunkun Ma
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianying Zang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changjin Huang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaiyi Shu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiaojun Tang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
Michiue T, Tsukano K. Feedback Regulation of Signaling Pathways for Precise Pre-Placodal Ectoderm Formation in Vertebrate Embryos. J Dev Biol 2022; 10:35. [PMID: 36135368 PMCID: PMC9504399 DOI: 10.3390/jdb10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is necessary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation of signaling pathways for robust formation of the PPE, showing the importance of this regulation.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
15
|
Alzawi A, Iftikhar A, Shalgm B, Jones S, Ellis I, Islam M. Receptor, Signal, Nucleus, Action: Signals That Pass through Akt on the Road to Head and Neck Cancer Cell Migration. Cancers (Basel) 2022; 14:2606. [PMID: 35681586 PMCID: PMC9179418 DOI: 10.3390/cancers14112606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
This review aims to provide evidence for the role of the tumour microenvironment in cancer progression, including invasion and metastasis. The tumour microenvironment is complex and consists of tumour cells and stromal-derived cells, in addition to a modified extracellular matrix. The cellular components synthesise growth factors such as EGF, TGFα and β, VEGF, and NGF, which have been shown to initiate paracrine signalling in head and neck cancer cells by binding to cell surface receptors. One example is the phosphorylation, and hence activation, of the signalling protein Akt, which can ultimately induce oral cancer cell migration in vitro. Blocking of Akt activation by an inhibitor, MK2206, leads to a significant decrease, in vitro, of cancer-derived cell migration, visualised in both wound healing and scatter assays. Signalling pathways have therefore been popular targets for the design of chemotherapeutic agents, but drug resistance has been observed and is related to direct tumour-tumour cell communication, the tumour-extracellular matrix interface, and tumour-stromal cell interactions. Translation of this knowledge to patient care is reliant upon a comprehensive understanding of the complex relationships present in the tumour microenvironment and could ultimately lead to the design of efficacious treatment regimens such as targeted therapy or novel therapeutic combinations.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammad Islam
- Unit of Cell & Molecular Biology, School of Dentistry, University of Dundee, Dundee DD1 4HN, UK; (A.A.); (A.I.); (B.S.); (S.J.); (I.E.)
| |
Collapse
|
16
|
McFann SE, Shvartsman SY, Toettcher JE. Putting in the Erk: Growth factor signaling and mesoderm morphogenesis. Curr Top Dev Biol 2022; 149:263-310. [PMID: 35606058 DOI: 10.1016/bs.ctdb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has long been known that FGF signaling contributes to mesoderm formation, a germ layer found in triploblasts that is composed of highly migratory cells that give rise to muscles and to the skeletal structures of vertebrates. FGF signaling activates several pathways in the developing mesoderm, including transient activation of the Erk pathway, which triggers mesodermal fate specification through the induction of the gene brachyury and activates morphogenetic programs that allow mesodermal cells to position themselves in the embryo. In this review, we discuss what is known about the generation and interpretation of transient Erk signaling in mesodermal tissues across species. We focus specifically on mechanisms that translate the level and duration of Erk signaling into cell fate and cell movement instructions and discuss strategies for further interrogating the role that Erk signaling dynamics play in mesodermal gastrulation and morphogenesis.
Collapse
Affiliation(s)
- Sarah E McFann
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
17
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
18
|
FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Mol Metab 2021; 54:101358. [PMID: 34710640 PMCID: PMC8605413 DOI: 10.1016/j.molmet.2021.101358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast growth factor 2 (FGF2) has been reported to play divergent roles in white adipogenic differentiation, however, whether it regulates thermogenesis of fat tissues remains largely unknown. We therefore aimed to investigate the effect of FGF2 on fat thermogenesis and elucidate the underlying mechanisms. Methods FGF2-KO and wild-type (WT) mice were fed with chow diet and high-fat diet (HFD) for 14 weeks. The brown and white fat mass, thermogenic capability, respiratory exchange ratio, and hepatic fat deposition were determined. In vitro experiments were conducted to compare the thermogenic ability of FGF2-KO- with WT-derived brown and white adipocytes. Exogenous FGF2 was supplemented to in vitro-cultured WT brown and ISO-induced beige adipocytes. The FGFR inhibitor, PPARγ agonist, and PGC-1α expression lentivirus were used with the aid of technologies including Co-IP, ChIP, and luciferase reporter assay to elucidate the mechanisms underlying the FGF2 regulation of thermogenesis. Results FGF2 gene disruption results in increased thermogenic capability in both brown and beige fat, supporting by increased UCP1 expression, enhanced respiratory exchange ratio, and elevated thermogenic potential in response to cold exposure. Thus, the deletion of FGF2 protects mice from high fat-induced adiposity and hepatic steatosis. Mechanistically, in vitro investigations indicated FGF2 acts in autocrine/paracrine fashions. Exogenous FGF2 supplementation inhibits both PGC-1α and PPARγ expression, leading to suppression of UCP1 expression in brown and beige adipocytes. Conclusions These findings demonstrate that FGF2 is a novel thermogenic regulator, suggesting a viable potential strategy for using FGF2-selective inhibitors in combat adiposity and associated hepatic steatosis. FGF2-KO mice show potentiated stimulation on thermogenic capability under both basal and cold challenge stimulation. FGF2 disruption protected mice against HFD-induced adiposity and hepatic steatosis. FGF2 acts in autocrine/paracrine fashions in vitro. Both PPARγ and PGC-1α play roles in FGF2 suppression of thermogenesis.
Collapse
|
19
|
ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci Biobehav Rev 2021; 131:792-805. [PMID: 34634357 DOI: 10.1016/j.neubiorev.2021.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The extracellular regulated kinase/microtubule-associated protein kinase (ERK/MAPK) signalling pathway transduces signals that cause an alteration in the ongoing metabolic pathways and modifies gene expression patterns; thus, influencing cellular behaviour. ERK/MAPK signalling is essential for the proper development of the nervous system from neural progenitor cells derived from the embryonic mesoderm. Several signalling molecules that regulate the well-coordinated process of neurodevelopment transduce developmental information through the ERK/MAPK signalling pathway. The ERK/MAPK is a potential novel therapeutic target in several neurodevelopmental disorders, however, despite years of study, there is still significant uncertainty about the exact mechanism by which the ERK/MAPK signalling pathway elicits specific responses in neurodevelopment. Here, we will review the evidence highlighting the role of ERK/MAPK signalling in neurodevelopment. We will also discuss the structural implication and behavioural deficits associated with perturbed ERK/MAPK signalling pathway in cortical development, whilst examining its contribution to the neuropathology of several neurodevelopmental disorders, such as Autism Spectrum Disorder, Schizophrenia, Fragile X, and Attention Deficit Hyperactive Disorder.
Collapse
|
20
|
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, Dos Santos Martins D, Bressan FF, de Andrade AFC. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev Rep 2021; 18:1639-1656. [PMID: 34115317 DOI: 10.1007/s12015-021-10198-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Culture conditions regulate the process of pluripotency acquisition and self-renewal. This study aimed to analyse the influence of the in vitro environment on the induction of porcine induced pluripotent stem cell (piPSCs) differentiation into primordial germ cell-like cells (pPGCLCs). piPSC culture with different supplementation strategies (LIF, bFGF, or LIF plus bFGF) promoted heterogeneous phenotypic profiles. Continuous bFGF supplementation during piPSCs culture was beneficial to support a pluripotent state and the differentiation of piPSCs into pPGCLCs. The pPGCLCs were positive for the gene and protein expression of pluripotent and germinative markers. This study can provide a suitable in vitro model for use in translational studies and to help answer numerous remaining questions about germ cells.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Lucas Simões Machado
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | | | - Daniele Dos Santos Martins
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
21
|
Laplace-Builhé B, Bahraoui S, Jorgensen C, Djouad F. From the Basis of Epimorphic Regeneration to Enhanced Regenerative Therapies. Front Cell Dev Biol 2021; 8:605120. [PMID: 33585444 PMCID: PMC7873919 DOI: 10.3389/fcell.2020.605120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
Current cell-based therapies to treat degenerative diseases such as osteoarthritis (OA) fail to offer long-term beneficial effects. The therapeutic effects provided by mesenchymal stem cell (MSC) injection, characterized by reduced pain and an improved functional activity in patients with knee OA, are reported at short-term follow-up since the improved outcomes plateau or, even worse, decline several months after MSC administration. This review tackles the limitations of MSC-based therapy for degenerative diseases and highlights the lessons learned from regenerative species to comprehend the coordination of molecular and cellular events critical for complex regeneration processes. We discuss how MSC injection generates a positive cascade of events resulting in a long-lasting systemic immune regulation with limited beneficial effects on tissue regeneration while in regenerative species fine-tuned inflammation is required for progenitor cell proliferation, differentiation, and regeneration. Finally, we stress the direct or indirect involvement of neural crest derived cells (NCC) in most if not all adult regenerative models studied so far. This review underlines the regenerative potential of NCC and the limitations of MSC-based therapy to open new avenues for the treatment of degenerative diseases such as OA.
Collapse
Affiliation(s)
| | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,CHU Montpellier, Montpellier, France
| | | |
Collapse
|
22
|
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY, Wei S. The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development 2021; 148:dev.184341. [PMID: 33318149 DOI: 10.1242/dev.184341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3β, leading to reduced levels of β-catenin and Snai1: two GSK3β substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Shi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha Yousaf
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
23
|
Copeland J, Simoes-Costa M. Post-transcriptional tuning of FGF signaling mediates neural crest induction. Proc Natl Acad Sci U S A 2020; 117:33305-33316. [PMID: 33376218 PMCID: PMC7777031 DOI: 10.1073/pnas.2009997117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ectodermal patterning is required for the establishment of multiple components of the vertebrate body plan. Previous studies have demonstrated that precise combinations of extracellular signals induce distinct ectodermal cell populations, such as the neural crest and the neural plate. Yet, we still lack understanding of how the response to inductive signals is modulated to generate the proper transcriptional output in target cells. Here we show that posttranscriptional attenuation of fibroblast growth factor (FGF) signaling is essential for the establishment of the neural crest territory. We found that neural crest progenitors display elevated expression of DICER, which promotes enhanced maturation of a set of cell-type-specific miRNAs. These miRNAs collectively target components of the FGF signaling pathway, a central player in the process of neural induction in amniotes. Inactivation of this posttranscriptional circuit results in a fate switch, in which neural crest cells are converted into progenitors of the central nervous system. Thus, the posttranscriptional attenuation of signaling systems is a prerequisite for proper segregation of ectodermal cell types. These findings demonstrate how posttranscriptional repression may alter the activity of signaling systems to generate distinct spatial domains of progenitor cells.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| |
Collapse
|
24
|
Luo L, Zhang Y, Chen H, Hu F, Wang X, Xing Z, Albashari AA, Xiao J, He Y, Ye Q. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif 2020; 54:e12969. [PMID: 33332682 PMCID: PMC7848956 DOI: 10.1111/cpr.12969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Department of Stomatology, Ningbo Women and Children Hospital, Ningbo, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020; 41:1289-1300. [PMID: 32123299 PMCID: PMC7608263 DOI: 10.1038/s41401-019-0338-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve injury (PNI), one of the most common concerns following trauma, can result in a significant loss of sensory or motor function. Restoration of the injured nerves requires a complex cellular and molecular response to rebuild the functional axons so that they can accurately connect with their original targets. However, there is no optimized therapy for complete recovery after PNI. Supplementation with exogenous growth factors (GFs) is an emerging and versatile therapeutic strategy for promoting nerve regeneration and functional recovery. GFs activate the downstream targets of various signaling cascades through binding with their corresponding receptors to exert their multiple effects on neurorestoration and tissue regeneration. However, the simple administration of GFs is insufficient for reconstructing PNI due to their short half‑life and rapid deactivation in body fluids. To overcome these shortcomings, several nerve conduits derived from biological tissue or synthetic materials have been developed. Their good biocompatibility and biofunctionality made them a suitable vehicle for the delivery of multiple GFs to support peripheral nerve regeneration. After repairing nerve defects, the controlled release of GFs from the conduit structures is able to continuously improve axonal regeneration and functional outcome. Thus, therapies with growth factor (GF) delivery systems have received increasing attention in recent years. Here, we mainly review the therapeutic capacity of GFs and their incorporation into nerve guides for repairing PNI. In addition, the possible receptors and signaling mechanisms of the GF family exerting their biological effects are also emphasized.
Collapse
Affiliation(s)
- Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Duo-Hui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Wang
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China
| | - Xiao-Kun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China.
| |
Collapse
|
27
|
Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:79. [PMID: 32133359 PMCID: PMC7040165 DOI: 10.3389/fcell.2020.00079] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) isolated in vitro from embryonic stem cells (ESCs), induced PSC (iPSC) and also post-implantation epiblast-derived stem cells (EpiSCs) are known for their two unique characteristics: the ability to give rise to all somatic lineages and the self-renewal capacity. Numerous intrinsic signaling pathways contribute to the maintenance of the pluripotency state of stem cells by tightly controlling key transcriptional regulators of stemness including sex determining region Y box 2 (Sox-2), octamer-binding transcription factor (Oct)3/4, krueppel-like factor 4 (Klf-4), Nanog, and c-Myc. Signaling by fibroblast growth factor (FGF) is of critical importance in regulating stem cells pluripotency. The FGF family is comprised of 22 ligands that interact with four FGF receptors (FGFRs). FGF/FGFR signaling governs fundamental cellular processes such as cell survival, proliferation, migration, differentiation, embryonic development, organogenesis, tissue repair/regeneration, and metabolism. FGF signaling is mediated by the activation of RAS - mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT, Phospholipase C Gamma (PLCγ), and signal transducers and activators of transcription (STAT), which intersects and synergizes with other signaling pathways such as Wnt, retinoic acid (RA) and transforming growth factor (TGF)-β signaling. In the current review, we summarize the role of FGF signaling in the maintenance of pluripotency state of stem cells through regulation of key transcriptional factors.
Collapse
Affiliation(s)
- Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Meiyu Quan
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Britton G, Heemskerk I, Hodge R, Qutub AA, Warmflash A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 2019; 146:dev.179093. [PMID: 31519692 DOI: 10.1242/dev.179093] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- George Britton
- Systems Synthetic and Physical Biology Program, Rice University Houston, Houston, TX 77005, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Rachel Hodge
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA .,Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| |
Collapse
|
29
|
MEK Inhibition Targets Cancer Stem Cells and Impedes Migration of Pancreatic Cancer Cells In Vitro and In Vivo. Stem Cells Int 2019; 2019:8475389. [PMID: 31281387 PMCID: PMC6589314 DOI: 10.1155/2019/8475389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a very poor prognosis. At the same time, its incidence is on the rise, and PDAC is expected to become the second leading cause of cancer-related death by 2030. Despite extensive work on new therapeutic approaches, the median overall survival is only 6-12 months after diagnosis and the 5-year survival is less than 7%. While pancreatic cancer is particularly difficult to treat, patients usually succumb not to the growth of the primary tumor, but to extensive metastasis; therefore, strategies to reduce the migratory and metastatic capacity of pancreatic cancer cells merit close attention. The vast majority of pancreatic cancers harbor RAS mutations. The outstanding relevance of the RAS/MEK/ERK pathway in pancreatic cancer biology has been extensively shown previously. Due to their high dependency on Ras mutations, pancreatic cancers might be particularly sensitive to inhibitors acting downstream of Ras. Herein, we use a genetically engineered mouse model of pancreatic cancer and primary pancreatic cancer cells were derived from this model to demonstrate that small-molecule MEK inhibitors functionally abrogate cancer stem cell populations as demonstrated by reduced sphere and organoid formation capacity. Furthermore, we demonstrate that MEK inhibition suppresses TGFβ-induced epithelial-to-mesenchymal transition and migration in vitro and ultimately results in a highly significant reduction in circulating tumor cells in mice.
Collapse
|
30
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
31
|
Tseropoulos G, Moghadasi Boroujeni S, Bajpai VK, Lei P, Andreadis ST. Derivation of neural crest stem cells from human epidermal keratinocytes requires FGF-2, IGF-1, and inhibition of TGF-β1. Bioeng Transl Med 2018; 3:256-264. [PMID: 30377664 PMCID: PMC6195909 DOI: 10.1002/btm2.10109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022] Open
Abstract
Neural crest (NC) cells play a central role in forming the peripheral nervous system, the craniofacial skeleton, and the pigmentation of the skin during development due to their broad multilineage differentiation potential into neurons, Schwann cells, melanocytes, and mesenchymal stem cells. Recently, we identified an easily accessible source of pluripotent NC stem cells from human inter‐follicular keratinocyte (KC) cultures (KC‐NC). In this work, we examined specific conditions for the derivation of NC from KC cultures. More specifically, we examined the role of two growth factors, FGF2 and IGF1, in NC proliferation and in expression of two potent NC transcription factors, Sox10 and FoxD3. Using specific chemical inhibitors, we uncovered that the downstream regulatory pathways AKT/PI3K, MEK/ERK, and JNK/cJun may be critical in Sox10 and FoxD3 regulation in KC‐NC. The TGF‐β1 pathway was also implicated in suppressing Sox10 expression and NC proliferation. In summary, our study shed light into the role of FGF2, IGF1, and TGF‐β1 on the induction of NC from KC cultures and the pathways that regulate Sox10 and FoxD3. We also established culture conditions for sustaining KC‐NC multipotency and, therefore, the potential of these cells for regenerative medicine and cellular therapies.
Collapse
Affiliation(s)
- Georgios Tseropoulos
- Dept. of Chemical and Biological Engineering University at Buffalo Buffalo NY 14260
| | | | - Vivek K Bajpai
- Dept. of Chemical and Biological Engineering University at Buffalo Buffalo NY 14260
| | - Pedro Lei
- Dept. of Chemical and Biological Engineering University at Buffalo Buffalo NY 14260
| | - Stelios T Andreadis
- Dept. of Chemical and Biological Engineering University at Buffalo Buffalo NY 14260.,Dept. of Biomedical Engineering University at Buffalo Buffalo NY 14228.,Center of Excellence in Bioinformatics and Life Sciences Buffalo NY 14203
| |
Collapse
|
32
|
Buitrago-Delgado E, Schock EN, Nordin K, LaBonne C. A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells. Dev Biol 2018; 444:50-61. [PMID: 30144418 DOI: 10.1016/j.ydbio.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 01/30/2023]
Abstract
The neural crest is a stem cell population unique to vertebrate embryos that gives rise to derivatives from multiple embryonic germ layers. The molecular underpinnings of potency that govern neural crest potential are highly conserved with that of pluripotent blastula stem cells, suggesting that neural crest cells may have evolved through retention of aspects of the pluripotency gene regulatory network (GRN). A striking difference in the regulatory factors utilized in pluripotent blastula cells and neural crest cells is the deployment of different sub-families of Sox transcription factors; SoxB1 factors play central roles in the pluripotency of naïve blastula and ES cells, whereas neural crest cells require SoxE function. Here we explore the shared and distinct activities of these factors to shed light on the role that this molecular hand-off of Sox factor activity plays in the genesis of neural crest and the lineages derived from it. Our findings provide evidence that SoxB1 and SoxE factors have both overlapping and distinct activities in regulating pluripotency and lineage restriction in the embryo. We hypothesize that SoxE factors may transiently replace SoxB1 factors to control pluripotency in neural crest cells, and then poise these cells to contribute to glial, chondrogenic and melanocyte lineages at stages when SoxB1 factors promote neuronal progenitor formation.
Collapse
Affiliation(s)
- Elsy Buitrago-Delgado
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States
| | - Elizabeth N Schock
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States
| | - Kara Nordin
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States
| | - Carole LaBonne
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
33
|
Rao A, LaBonne C. Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest. Development 2018; 145:dev.163386. [PMID: 30002130 DOI: 10.1242/dev.163386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
The neural crest, a progenitor population that drove vertebrate evolution, retains the broad developmental potential of the blastula cells it is derived from, even as neighboring cells undergo lineage restriction. The mechanisms that enable these cells to preserve their developmental potential remain poorly understood. Here, we explore the role of histone deacetylase (HDAC) activity in this process in Xenopus We show that HDAC activity is essential for the formation of neural crest, as well as for proper patterning of the early ectoderm. The requirement for HDAC activity initiates in naïve blastula cells; HDAC inhibition causes loss of pluripotency gene expression and blocks the ability of blastula stem cells to contribute to lineages of the three embryonic germ layers. We find that pluripotent naïve blastula cells and neural crest cells are both characterized by low levels of histone acetylation, and show that increasing HDAC1 levels enhance the ability of blastula cells to be reprogrammed to a neural crest state. Together, these findings elucidate a previously uncharacterized role for HDAC activity in establishing the neural crest stem cell state.
Collapse
Affiliation(s)
- Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
34
|
Pla P, Monsoro-Burq AH. The neural border: Induction, specification and maturation of the territory that generates neural crest cells. Dev Biol 2018; 444 Suppl 1:S36-S46. [PMID: 29852131 DOI: 10.1016/j.ydbio.2018.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022]
Abstract
The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions.
Collapse
Affiliation(s)
- Patrick Pla
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
| | - Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Universitaire de France, F-75005, Paris.
| |
Collapse
|