1
|
Pinello JF, Loidl J, Seltzer ES, Cassidy-Hanley D, Kolbin D, Abdelatif A, Rey FA, An R, Newberger NJ, Bisharyan Y, Papoyan H, Byun H, Aguilar HC, Lai AL, Freed JH, Maugel T, Cole ES, Clark TG. Novel requirements for HAP2/GCS1-mediated gamete fusion in Tetrahymena. iScience 2024; 27:110146. [PMID: 38904066 PMCID: PMC11187246 DOI: 10.1016/j.isci.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
The ancestral gamete fusion protein, HAP2/GCS1, plays an essential role in fertilization in a broad range of taxa. To identify factors that may regulate HAP2/GCS1 activity, we screened mutants of the ciliate Tetrahymena thermophila for behaviors that mimic Δhap2/gcs1 knockout phenotypes in this species. Using this approach, we identified two new genes, GFU1 and GFU2, whose products are necessary for membrane pore formation following mating type recognition and adherence. GFU2 is predicted to be a single-pass transmembrane protein, while GFU1, though lacking obvious transmembrane domains, has the potential to interact directly with membrane phospholipids in the cytoplasm. Like Tetrahymena HAP2/GCS1, expression of GFU1 is required in both cells of a mating pair for efficient fusion to occur. To explain these bilateral requirements, we propose a model that invokes cooperativity between the fusion machinery on apposed membranes of mating cells and accounts for successful fertilization in Tetrahymena's multiple mating type system.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Josef Loidl
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Ethan S. Seltzer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Donna Cassidy-Hanley
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Kolbin
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Anhar Abdelatif
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Félix A. Rey
- Unité de Virologie Structurale, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3569, 75724 Paris, France
| | - Rocky An
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole J. Newberger
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Yelena Bisharyan
- Office of Technology Development, Harvard University, Cambridge, MA 02138, USA
| | - Hayk Papoyan
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Alex L. Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Timothy Maugel
- Department of Biology, Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD 20742, USA
| | - Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN 55057, USA
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Pourhashem Z, Nourani L, Sani JJ, Yousefi H, Pirahmadi S, Sabouri M, Raz A, Djadid ND, Zakeri S, Mehrizi AA. Evaluation of a new fusion antigen, cd loop and HAP2-GCS1 domain (cd-HAP) of Plasmodium falciparum Generative Cell Specific 1 antigen formulated with various adjuvants, as a transmission blocking vaccine. Malar J 2023; 22:374. [PMID: 38071314 PMCID: PMC10710725 DOI: 10.1186/s12936-023-04798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Malaria is a major global health challenge, and for the elimination and eradication of this disease, transmission-blocking vaccines (TBVs) are a priority. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising TBV candidate, is essential for gamete fertilization. The HAP2-GCS1 domain of this antigen as well as its cd loop could induce antibodies that partially inhibit transmission of P. falciparum. METHODS In the current study, a new synthetic fusion antigen containing cd loop and HAP2-GCS1 domain (cd-HAP) of PfGCS1 was evaluated as a transmission blocking vaccine candidate. Initially, the profile of naturally acquired IgG antibodies to the cd-HAP antigen was analysed in Iranian individuals infected with P. falciparum, to confirm that this new fusion protein has the appropriate structure containing common epitopes with the native form of PfGCS1. Then, the immunogenicity of cd-HAP was evaluated in BALB/c mice, using different adjuvant systems such as CpG, MPL, QS-21, and a combination of them (CMQ). Furthermore, the blocking efficacy of polyclonal antibodies induced against these formulations was also assessed by oocyst intensity and infection prevalence in the Standard Membrane Feeding Assay (SMFA). RESULTS The naturally acquired antibodies (dominantly IgG1 and IgG3 subclasses) induced in P. falciparum-infected individuals could recognize the cd-HAP antigen which implies that the new fusion protein has a proper conformation that mimics the native structure of PfGCS1. Concerning the immunogenicity of cd-HAP antigen, the highest IgG levels and titers, by a Th1-type immune profile, and elevated antibody avidity were induced in mice immunized with the cd-HAP antigen formulated with a combination of adjuvants (P < 0.0001). Additionally, cytokine profiling of the immunized mice displayed that a high level of IFN-γ response, a Th1-type immune response, was produced by splenocytes from immunized mice that received cd-HAP antigen in combination with CMQ adjuvants (P < 0.0001). This formulation of cd-HAP antigen with CMQ adjuvants could reduce oocyst intensity and infection prevalence by 82%, evidenced by the SMFA and hold significant implications for future malaria vaccine development. CONCLUSION Altogether, the results showed that cd-HAP antigen formulated with a combination of the adjuvants (CMQ), could be a promising formulation to develop a PfGCS1-based transmission-blocking vaccine.
Collapse
Affiliation(s)
- Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Jafar J Sani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hemn Yousefi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mobina Sabouri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Silva MG, Bastos RG, Laughery JM, Alzan HF, Rathinasamy VA, Cooke BM, Suarez CE. Vaccination of cattle with the Babesia bovis sexual-stage protein HAP2 abrogates parasite transmission by Rhipicephalus microplus ticks. NPJ Vaccines 2023; 8:140. [PMID: 37758790 PMCID: PMC10533483 DOI: 10.1038/s41541-023-00741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The apicomplexan parasite Babesia bovis is responsible for bovine babesiosis, a poorly controlled tick-borne disease of global impact. The widely conserved gametocyte protein HAPLESS2/GCS1 (HAP2) is uniquely expressed on the surface of B. bovis sexual stage parasites and is a candidate for transmission-blocking vaccines (TBV). Here, we tested whether vaccination of calves with recombinant HAP2 (rHAP2) interferes with the transmission of B. bovis by competent ticks. Calves vaccinated with rHAP2 (n = 3), but not control animals (n = 3) developed antibodies specific to the vaccine antigen. Vaccinated and control animals were infested with Rhipicephalus microplus larvae and subsequently infected with virulent blood stage B. bovis parasites by needle inoculation, with all animals developing clinical signs of acute babesiosis. Engorged female ticks fed on the infected calves were collected for oviposition, hatching, and obtention of larvae. Transmission feeding was then conducted using pools of larvae derived from ticks fed on rHAP2-vaccinated or control calves. Recipient calves (n = 3) exposed to larvae derived from control animals, but none of the recipient calves (n = 3) challenged with larvae from ticks fed on rHAP2-vaccinated animals, developed signs of acute babesiosis within 11 days after tick infestation. Antibodies against B. bovis antigens and parasite DNA were found in all control recipient animals, but not in any of the calves exposed to larvae derived from HAP2-vaccinated animals, consistent with the absence of B. bovis infection via tick transmission. Overall, our results are consistent with the abrogation of parasite tick transmission in rHAP2-vaccinated calves, confirming this antigen as a prime TBV candidate against B. bovis.
Collapse
Affiliation(s)
- Marta G Silva
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, USA
| | - Jacob M Laughery
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, USA
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Vignesh A Rathinasamy
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Brian M Cooke
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
4
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Wang L, Wang G, Mao W, Chen Y, Rahman MM, Zhu C, Prisinzano PM, Kong B, Wang J, Lee LP, Wan Y. Bioinspired engineering of fusogen and targeting moiety equipped nanovesicles. Nat Commun 2023; 14:3366. [PMID: 37291242 PMCID: PMC10250350 DOI: 10.1038/s41467-023-39181-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Cell-derived small extracellular vesicles have been exploited as potent drug vehicles. However, significant challenges hamper their clinical translation, including inefficient cytosolic delivery, poor target-specificity, low yield, and inconsistency in production. Here, we report a bioinspired material, engineered fusogen and targeting moiety co-functionalized cell-derived nanovesicle (CNV) called eFT-CNV, as a drug vehicle. We show that universal eFT-CNVs can be produced by extrusion of genetically modified donor cells with high yield and consistency. We demonstrate that bioinspired eFT-CNVs can efficiently and selectively bind to targets and trigger membrane fusion, fulfilling endo-lysosomal escape and cytosolic drug delivery. We find that, compared to counterparts, eFT-CNVs significantly improve the treatment efficacy of drugs acting on cytosolic targets. We believe that our bioinspired eFT-CNVs will be promising and powerful tools for nanomedicine and precision medicine.
Collapse
Affiliation(s)
- Lixue Wang
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Guosheng Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Mao
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Chuandong Zhu
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Peter M Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Bo Kong
- Deparment of General, Visceral and Transplantation Surgery, Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Jing Wang
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, Jiangsu, China.
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
6
|
Shiba Y, Takahashi T, Ohashi Y, Ueda M, Mimuro A, Sugimoto J, Noguchi Y, Igawa T. Behavior of Male Gamete Fusogen GCS1/HAP2 and the Regulation in Arabidopsis Double Fertilization. Biomolecules 2023; 13:biom13020208. [PMID: 36830580 PMCID: PMC9953686 DOI: 10.3390/biom13020208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In the sexual reproduction of flowering plants, two independent fertilization events occur almost simultaneously: two identical sperm cells fuse with either the egg cell or the central cell, resulting in embryo and endosperm development to produce a seed. GCS1/HAP2 is a sperm cell membrane protein essential for plasma membrane fusion with both female gametes. Other sperm membrane proteins, DMP8 and DMP9, are more important for egg cell fertilization than that of the central cell, suggesting its regulatory mechanism in GCS1/HAP2-driving gamete membrane fusion. To assess the GCS1/HAP2 regulatory cascade in the double fertilization system of flowering plants, we produced Arabidopsis transgenic lines expressing different GCS1/HAP2 variants and evaluated the fertilization in vivo. The fertilization pattern observed in GCS1_RNAi transgenic plants implied that sperm cells over the amount of GCS1/HAP2 required for fusion on their surface could facilitate membrane fusion with both female gametes. The cytological analysis of the dmp8dmp9 sperm cell arrested alone in an embryo sac supported GCS1/HAP2 distribution on the sperm surface. Furthermore, the fertilization failures with both female gametes were caused by GCS1/HAP2 secretion from the egg cell. These results provided a possible scenario of GCS1/HAP2 regulation, showing a potential scheme for capturing additional GCS1/HAP2-interacting proteins.
Collapse
Affiliation(s)
- Yuka Shiba
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Taro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yukino Ohashi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Department of Ecological Developmental Adaptability Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Sendai 980-8578, Japan
| | - Amane Mimuro
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Jin Sugimoto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Yuka Noguchi
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo-shi 271-8510, Japan
- Plant Molecular Science Center, Chiba University, 1-33 Yayoi, Chiba-shi 263-8522, Japan
- Correspondence:
| |
Collapse
|
7
|
Evolutionary Relationships and Divergence of Filamin Gene Family Involved in Development and Stress in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2022; 13:genes13122313. [PMID: 36553581 PMCID: PMC9777546 DOI: 10.3390/genes13122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.
Collapse
|
8
|
Abstract
In sexually reproducing organisms, the genetic information is transmitted from one generation to the next via the merger of male and female gametes. Gamete fusion is a two-step process involving membrane recognition and apposition through ligand-receptor interactions and lipid mixing mediated by fusion proteins. HAP2 (also known as GCS1) is a bona fide gamete fusogen in flowering plants and protists. In vertebrates, a multitude of surface proteins have been demonstrated to be pivotal for sperm-egg fusion, yet none of them exhibit typical fusogenic features. In this Cell Science at a Glance article and the accompanying poster, we summarize recent advances in the mechanistic understanding of gamete fusion in eukaryotes, with a particular focus on mammalian species.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. Proc Natl Acad Sci U S A 2022; 119:e2207608119. [PMID: 36322734 PMCID: PMC9659367 DOI: 10.1073/pnas.2207608119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sexual reproduction involves the fusion of two gametes of opposite sex. Although the sperm-expressed fusogen HAPLESS 2 (HAP2) or GENERATIVE CELL SPECIFIC 1 (GCS1) plays a vital role in this process in many eukaryotic organisms and an understanding of its regulation is emerging in unicellular systems [J. Zhang et al., Nat. Commun. 12, 4380 (2021); J. F. Pinello et al. Dev. Cell 56, 3380-3392.e9 (2021)], neither HAP2/GCS1 interactors nor mechanisms for delivery and activation at the fusion site are known in multicellular plants. Here, we show that Arabidopsis thaliana HAP2/GCS1 interacts with two sperm DUF679 membrane proteins (DMP8 and DMP9), which are required for the EGG CELL 1 (EC1)-induced translocation of HAP2/GCS1 from internal storage vesicle to the sperm plasma membrane to ensure successful fertilization. Our studies in Arabidopsis and tobacco provide evidence for a conserved function of DMP8/9-like proteins as HAP2/GCS1 partner in seed plants. Our data suggest that seed plants evolved a DMP8/9-dependent fusogen translocation process to achieve timely acquisition of sperm fusion competence in response to egg cell-derived signals, revealing a previously unknown critical step for successful fertilization.
Collapse
|
10
|
Snell WJ. Uncovering an ancestral green ménage à trois: Contributions of Chlamydomonas to the discovery of a broadly conserved triad of plant fertilization proteins. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102275. [PMID: 36007296 PMCID: PMC9899528 DOI: 10.1016/j.pbi.2022.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 05/10/2023]
Abstract
During sexual reproduction in the unicellular green alga Chlamydomonas, gametes undergo the conserved cellular events that define fertilization across the tree of life. After initial ciliary adhesion, plus and minus gametes attach to each other at plasma membrane sites specialized for fusion, their bilayers merge, and cell coalescence into a quadri-ciliated cell signals for nuclear fusion. Recent findings show that these conserved cellular events are driven by 3 conserved protein families, FUS1/GEX2, HAP2/GCS1, and KAR5/GEX1. New results also show that species-specific recognition in Chlamydomonas activates the ancestral, viral-like fusogen HAP2 to drive fusion; that the conserved nuclear envelope fusion protein KAR5/GEX1 is also essential for nuclear fusion in Arabidopsis; and that heterodimerization of BELL-KNOX proteins signals for nuclear fusion in Chlamydomonas through early diverging land plants. This review outlines how Chlamydomonas's Janus-like position in evolution along with the ease of working with its gametes have revealed broadly conserved mechanisms.
Collapse
Affiliation(s)
- William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
11
|
Feng J, Dong X, Su Y, Lu C, Springer TA. Monomeric prefusion structure of an extremophile gamete fusogen and stepwise formation of the postfusion trimeric state. Nat Commun 2022; 13:4064. [PMID: 35831325 PMCID: PMC9279424 DOI: 10.1038/s41467-022-31744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Here, we study the gamete fusogen HAP2 from Cyanidioschyzon merolae (Cyani), an extremophile red algae that grows at acidic pH at 45 °C. HAP2 has a trimeric postfusion structure with similarity to viral class II fusion proteins, but its prefusion structure has been elusive. The crystal structure of a monomeric prefusion state of Cyani HAP2 shows it is highly extended with three domains in the order D2, D1, and D3. Three hydrophobic fusion loops at the tip of D2 are each required for postfusion state formation. We followed by negative stain electron microscopy steps in the process of detergent micelle-stimulated postfusion state formation. In an intermediate state, two or three linear HAP2 monomers associate at the end of D2 bearing its fusion loops. Subsequently, D2 and D1 line the core of a trimer and D3 folds back over the exterior of D1 and D2. D3 is not required for formation of intermediate or postfusion-like states.
Collapse
Affiliation(s)
- Juan Feng
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Su
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Moi D, Nishio S, Li X, Valansi C, Langleib M, Brukman NG, Flyak K, Dessimoz C, de Sanctis D, Tunyasuvunakool K, Jumper J, Graña M, Romero H, Aguilar PS, Jovine L, Podbilewicz B. Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nat Commun 2022; 13:3880. [PMID: 35794124 PMCID: PMC9259645 DOI: 10.1038/s41467-022-31564-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.
Collapse
Affiliation(s)
- David Moi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Clari Valansi
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Mauricio Langleib
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | | | | | | | - Martin Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Héctor Romero
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
- Centro Universitario Regional Este - CURE, Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático - CICADA, Universidad de la República, Montevideo, Uruguay.
| | - Pablo S Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina.
- Instituto de Investigaciones Biotecnológicas Universidad Nacional de San Martín (IIB-CONICET), San Martín, Buenos Aires, Argentina.
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|
13
|
Merchant M, Mata CP, Liu Y, Zhai H, Protasio AV, Modis Y. A bioactive phlebovirus-like envelope protein in a hookworm endogenous virus. SCIENCE ADVANCES 2022; 8:eabj6894. [PMID: 35544562 PMCID: PMC9094657 DOI: 10.1126/sciadv.abj6894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/25/2022] [Indexed: 05/02/2023]
Abstract
Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus-an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from the family Phenuiviridae. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.
Collapse
Affiliation(s)
- Monique Merchant
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Carlos P. Mata
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Anna V. Protasio
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Christ’s College, University of Cambridge, St Andrew’s Street, Cambridge, CB2 3BU, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| |
Collapse
|
14
|
Brukman NG, Li X, Podbilewicz B. Fusexins, HAP2/GCS1 and Evolution of Gamete Fusion. Front Cell Dev Biol 2022; 9:824024. [PMID: 35083224 PMCID: PMC8784728 DOI: 10.3389/fcell.2021.824024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by specialized proteins, named fusogens, that overcome the energetic barriers during this process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being both essential and sufficient for the membrane merger in some species. The identification of HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form the Fusexin superfamily. While some attributes are shared among fusexins, for example the overall structure and the possibility of assembly into trimers, some other characteristics seem to be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates nor in fungi, raising the question of whether these genes were lost during evolution and were replaced by other fusion machinery or a significant divergence makes their identification difficult. Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the structural, mechanistic and evolutionary relationships with other fusexins.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
15
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Feng J, Dong X, DeCosta A, Su Y, Angrisano F, Sala KA, Blagborough AM, Lu C, Springer TA. Structural basis of malaria transmission blockade by a monoclonal antibody to gamete fusogen HAP2. eLife 2021; 10:74707. [PMID: 34939934 PMCID: PMC8806182 DOI: 10.7554/elife.74707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
HAP2 is a transmembrane gamete fusogen found in multiple eukaryotic kingdoms and is structurally homologous to viral class II fusogens. Studies in Plasmodium have suggested that HAP2 is an attractive target for vaccines that block transmission of malaria. HAP2 has three extracellular domains, arranged in the order D2, D1, and D3. Here, we report monoclonal antibodies against the D3 fragment of Plasmodium berghei HAP2 and crystal structures of D3 in complex with Fab fragments of two of these antibodies, one of which blocks fertilization of Plasmodium berghei in vitro and transmission of malaria in mosquitoes. We also show how this Fab binds the complete HAP2 ectodomain with electron microscopy. The two antibodies cross-react with HAP2 among multiple plasmodial species. Our characterization of the Plasmodium D3 structure, HAP2 ectodomain architecture, and mechanism of inhibition provide insights for the development of a vaccine to block malaria transmission.
Collapse
Affiliation(s)
- Juan Feng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | | | - Adam DeCosta
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | | | | | | | - Chafen Lu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
| | | |
Collapse
|
17
|
Pinello JF, Liu Y, Snell WJ. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev Cell 2021; 56:3380-3392.e9. [PMID: 34813735 DOI: 10.1016/j.devcel.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic Class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
Sharma V, Clark AJ, Kawashima T. Insights into the molecular evolution of fertilization mechanism in land plants. PLANT REPRODUCTION 2021; 34:353-364. [PMID: 34061252 DOI: 10.1007/s00497-021-00414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/14/2021] [Indexed: 05/27/2023]
Abstract
Comparative genetics and genomics among green plants, including algae, provide deep insights into the evolution of land plant sexual reproduction. Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Anthony J Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
19
|
Guardado-Calvo P, Rey FA. The Viral Class II Membrane Fusion Machinery: Divergent Evolution from an Ancestral Heterodimer. Viruses 2021; 13:v13122368. [PMID: 34960636 PMCID: PMC8706100 DOI: 10.3390/v13122368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane–fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a β-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles—heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design.
Collapse
|
20
|
Affiliation(s)
- Tyler D R Vance
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Zhang J, Pinello JF, Fernández I, Baquero E, Fedry J, Rey FA, Snell WJ. Species-specific gamete recognition initiates fusion-driving trimer formation by conserved fusogen HAP2. Nat Commun 2021; 12:4380. [PMID: 34282138 PMCID: PMC8289870 DOI: 10.1038/s41467-021-24613-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Recognition and fusion between gametes during fertilization is an ancient process. Protein HAP2, recognized as the primordial eukaryotic gamete fusogen, is a structural homolog of viral class II fusion proteins. The mechanisms that regulate HAP2 function, and whether virus-fusion-like conformational changes are involved, however, have not been investigated. We report here that fusion between plus and minus gametes of the green alga Chlamydomonas indeed requires an obligate conformational rearrangement of HAP2 on minus gametes from a labile, prefusion form into the stable homotrimers observed in structural studies. Activation of HAP2 to undergo its fusogenic conformational change occurs only upon species-specific adhesion between the two gamete membranes. Following a molecular mechanism akin to fusion of enveloped viruses, the membrane insertion capacity of the fusion loop is required to couple formation of trimers to gamete fusion. Thus, species-specific membrane attachment is the gateway to fusion-driving HAP2 rearrangement into stable trimers. HAP2 is essential for gamete fusion during fertilization and is conserved among eukaryotes. Here the authors show that species-specific adhesion between Chlamydomonas plus and minus gametes initiates HAP2 to undergo a fusogenic conformational change into homotrimers via a molecular mechanism akin to that of enveloped viruses.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ignacio Fernández
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Eduard Baquero
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Juliette Fedry
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Félix A Rey
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Evolutionarily related small viral fusogens hijack distinct but modular actin nucleation pathways to drive cell-cell fusion. Proc Natl Acad Sci U S A 2021; 118:2007526118. [PMID: 33443166 DOI: 10.1073/pnas.2007526118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.
Collapse
|
23
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
24
|
Moi D, Kilchoer L, Aguilar PS, Dessimoz C. Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. PLoS Comput Biol 2020; 16:e1007553. [PMID: 32697802 PMCID: PMC7423146 DOI: 10.1371/journal.pcbi.1007553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/12/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
Phylogenetic profiling is a computational method to predict genes involved in the same biological process by identifying protein families which tend to be jointly lost or retained across the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes than eukaryotes, because the method is thought to require many diverse genomes. There are now many eukaryotic genomes available, but these are considerably larger, and typical phylogenetic profiling methods require at least quadratic time as a function of the number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which leverages hierarchical orthologous groups for the construction of large profiles and locality-sensitive hashing for efficient retrieval of similar profiles. We show that the approach outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to reconstruct networks and query for interactors of the kinetochore complex as well as conserved proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale phylogenetic profiling across the three domains of life, and will be useful to predict biological pathways among the hundreds of thousands of eukaryotic species that will become available in the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf. Genes that are involved in the same biological process tend to co-evolve. This property is exploited by the technique of phylogenetic profiling, which identifies co-evolving (and therefore likely functionally related) genes through patterns of correlated gene retention and loss in evolution and across species. However, conventional methods to computing and clustering these correlated genes do not scale with increasing numbers of genomes. HogProf is a novel phylogenetic profiling tool built on probabilistic data structures. It allows the user to construct searchable databases containing the evolutionary history of hundreds of thousands of protein families. Such fast detection of coevolution takes advantage of the rapidly increasing amount of genomic data publicly available, and can uncover unknown biological networks and guide in-vivo research and experimentation. We have applied our tool to describe the biological networks underpinning sexual reproduction in eukaryotes.
Collapse
Affiliation(s)
- David Moi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DM); (CD)
| | - Laurent Kilchoer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pablo S. Aguilar
- Instituto de Investigaciones Biotecnologicas (IIBIO), Universidad Nacional de San Martín, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
- * E-mail: (DM); (CD)
| |
Collapse
|
25
|
Chan KMC, Son S, Schmid EM, Fletcher DA. A viral fusogen hijacks the actin cytoskeleton to drive cell-cell fusion. eLife 2020; 9:51358. [PMID: 32441254 PMCID: PMC7244324 DOI: 10.7554/elife.51358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/08/2020] [Indexed: 01/01/2023] Open
Abstract
Cell-cell fusion, which is essential for tissue development and used by some viruses to form pathological syncytia, is typically driven by fusogenic membrane proteins with tall (>10 nm) ectodomains that undergo conformational changes to bring apposing membranes in close contact prior to fusion. Here we report that a viral fusogen with a short (<2 nm) ectodomain, the reptilian orthoreovirus p14, accomplishes the same task by hijacking the actin cytoskeleton. We show that phosphorylation of the cytoplasmic domain of p14 triggers N-WASP-mediated assembly of a branched actin network. Using p14 mutants, we demonstrate that fusion is abrogated when binding of an adaptor protein is prevented and that direct coupling of the fusogenic ectodomain to branched actin assembly is sufficient to drive cell-cell fusion. This work reveals how the actin cytoskeleton can be harnessed to overcome energetic barriers to cell-cell fusion.
Collapse
Affiliation(s)
- Ka Man Carmen Chan
- UC Berkeley-UC San Francisco Graduate Group in Bioengineering, Berkeley, United States.,Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Sungmin Son
- Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Eva M Schmid
- Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Daniel A Fletcher
- UC Berkeley-UC San Francisco Graduate Group in Bioengineering, Berkeley, United States.,Department of Bioengineering & Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
26
|
Qiu Y, Zhao Y, Liu F, Ye B, Zhao Z, Thongpoon S, Roobsoong W, Sattabongkot J, Cui L, Fan Q, Cao Y. Evaluation of Plasmodium vivax HAP2 as a transmission-blocking vaccine candidate. Vaccine 2020; 38:2841-2848. [PMID: 32093983 DOI: 10.1016/j.vaccine.2020.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Ye
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
27
|
Sprunck S. Twice the fun, double the trouble: gamete interactions in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:106-116. [PMID: 31841779 DOI: 10.1016/j.pbi.2019.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 05/13/2023]
Abstract
During sexual reproduction two gametes of opposite sex unite to produce a zygote. Gamete fusion is a highly controlled process and it has become evident that, across species, common concepts apply to this ancient and fundamental event. Sexual reproduction in flowering plants is even more complex in that two sperm cells fertilize two female reproductive cells (egg and central cell) in a process called double fertilization. Due to the coordinated developmental progression and mutual dependency of the two fertilization products (embryo and endosperm), the success and timing of the two fusion events substantially affects seed set. So far, four proteins are known to act on the surfaces of Arabidopsis gametes to accomplish double fertilization. The molecular and evolutionary characteristics of these players prove that flowering plants integrate plant-specific and widely conserved mechanisms to accomplish the timely fusion of each sperm cell with one female reproductive cell.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
28
|
Bloomfield G. The molecular foundations of zygosis. Cell Mol Life Sci 2020; 77:323-330. [PMID: 31203379 PMCID: PMC11105095 DOI: 10.1007/s00018-019-03187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Zygosis is the generation of new biological individuals by the sexual fusion of gamete cells. Our current understanding of eukaryotic phylogeny indicates that sex is ancestral to all extant eukaryotes. Although sexual development is extremely diverse, common molecular elements have been retained. HAP2-GCS1, a protein that promotes the fusion of gamete cell membranes that is related in structure to certain viral fusogens, is conserved in many eukaryotic lineages, even though gametes vary considerably in form and behaviour between species. Similarly, although zygotes have dramatically different forms and fates in different organisms, diverse eukaryotes share a common developmental programme in which homeodomain-containing transcription factors play a central role. These common mechanistic elements suggest possible common evolutionary histories that, if correct, would have profound implications for our understanding of eukaryogenesis.
Collapse
|
29
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|