1
|
Perez A, Johnson BR. Centrality of Hygienic Honey Bee Workers in Colony Social Networks. INSECTS 2025; 16:58. [PMID: 39859639 PMCID: PMC11766216 DOI: 10.3390/insects16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Many social and environmental variables can affect the interactions among individuals in an insect colony that fundamentally structure its social organization. Along with important attributes such as age and caste, immunity-related factors such as the performance of sanitary tasks or exposure to a pathogen can also influence an individual's social interactions and their place in the resulting social network. Most work on this subject has supported the hypothesis that health-compromised individuals will exhibit altered social or spatial behavior that presumably limits the spread of infection. Here, we test this hypothesis using honey bee workers recently involved in hygienic behavior, an important set of sanitary tasks in which unhealthy brood are uncapped and then removed from the colony. Using static social networks, we quantify the interaction patterns of workers recently involved in hygienic tasks and compare their network centrality to non-hygienic workers. Using dynamic networks, we analyze the capability of hygienic workers to spread a potential infection throughout the colony. We find no substantial differences in how connected hygienic workers are in the network, and we show that hygienic workers would spread a novel infection throughout the colony to the same extent as non-hygienic workers. Our results suggest that experience with certain sanitary tasks may not necessarily produce rapid changes in social behavior. This work highlights the importance of considering the benefits of remaining socially integrated in important information networks and the temporal limitations for how quickly organized immune responses can occur in response to potential infections.
Collapse
Affiliation(s)
- Adrian Perez
- Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | | |
Collapse
|
2
|
Kannan K, Galizia CG, Nouvian M. Consistency and individuality of honeybee stinging behaviour across time and social contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241295. [PMID: 39881791 PMCID: PMC11774586 DOI: 10.1098/rsos.241295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Whether individuals exhibit consistent behavioural variation is a central question in the field of animal behaviour. This question is particularly interesting in the case of social animals, as their behaviour may be strongly modulated by the collective. In this study, we ask whether honeybees exhibit individual differences in stinging behaviour. We demonstrate that bees are relatively stable in their decision to sting-or not-in a specific context and show temporal consistency suggestive of an internal state modulation. We also investigated how social factors such as the alarm pheromone or another bee modulated this behaviour. The presence of alarm pheromone increased the likelihood of a bee to sting but this response decayed over trials, while the presence of a conspecific decreased individual stinging likelihood. These factors, however, did not alter stinging consistency. We therefore propose that social modulation acts by shifting the stinging threshold of individuals. Finally, experimental manipulation of group composition with respect to the ratio of aggressive and gentle bees within a group did not affect the behaviour of focal bees. Overall, our results establish honeybee stinging behaviour as a promising model for studying mechanistically how collective and individual traits interact to regulate individual variability.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- International Max Plank Research School for Quantitative Behaviour Ecology and Evolution, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Rodríguez-León DS, Uzunov A, Costa C, Elen D, Charistos L, Galea T, Gabel M, Scheiner R, Pinto MA, Schmitt T. Deciphering the variation in cuticular hydrocarbon profiles of six European honey bee subspecies. BMC Ecol Evol 2024; 24:131. [PMID: 39468449 PMCID: PMC11520070 DOI: 10.1186/s12862-024-02325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The Western honey bee (Apis mellifera) subspecies exhibit local adaptive traits that evolved in response to the different environments that characterize their native distribution ranges. An important trait is the cuticular hydrocarbon (CHC) profile, which helps to prevent desiccation and mediate communication. We compared the CHC profiles of six European subspecies (A. m. mellifera, A. m. carnica, A. m. ligustica, A. m. macedonica, A. m. iberiensis, and A. m. ruttneri) and investigated potential factors shaping their composition. We did not find evidence of adaptation of the CHC profiles of the subspecies to the climatic conditions in their distribution range. Subspecies-specific differences in CHC composition might be explained by phylogenetic constraints or genetic drift. The CHC profiles of foragers were more subspecies-specific than those of nurse bees, while the latter showed more variation in their CHC profiles, likely due to the lower desiccation stress exerted by the controlled environment inside the hive. The strongest profile differences appeared between nurse bees and foragers among all subspecies, suggesting an adaptation to social task and a role in communication. Foragers also showed an increase in the relative amount of alkanes in their profiles compared to nurses, indicating adaptation to climatic conditions.
Collapse
Affiliation(s)
| | - Aleksandar Uzunov
- Faculty for Agricultural Science and Food, Ss. Cyril and Methodius University in Skopje, Skopje, 1000, Republic of Macedonia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, Bologna, 40128, Italy
| | - Dylan Elen
- School of Natural Sciences, Department of Molecular Ecology & Evolution, Bangor University, Bangor, LL57 2DG, UK
- ZwarteBij.org vzw, Taskforce Research, Gavere, 9890, Belgium
| | - Leonidas Charistos
- Hellenic Agricultural Organization DIMITRA, Institute of Animal Science, Department of Apiculture, Nea, 63200, Moudania, Greece
| | - Thomas Galea
- Breeds of Origin Conservancy, Ħaż - Żebbuġ, Malta
| | - Martin Gabel
- LLH Bee Institute Kirchhain, Erlenstraße 9, 35274, Kirchhain, Germany
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, 5300- 253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, 5300-253, Portugal
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Kwong WK, Raymann K. Is it me or is it you? Physiological effects of the honey bee microbiota may instead be due to host maturation. mBio 2024; 15:e0210724. [PMID: 39324808 PMCID: PMC11481534 DOI: 10.1128/mbio.02107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Microbiota-mediated impacts on host physiology and behavior have been widely reported in honey bees (Apis mellifera). However, most of these studies are conducted in artificial lab settings and fail to take into account, or make incorrect assumptions about, the complex physical and social structures inherent to natural hive conditions. A new study by Liberti et al. (J. Liberti, E. T. Frank, T. Kay, L. Kesner, et al., mBio 15:e01034-24, 2024, https://doi.org/10.1128/mbio.01034-24) identifies one such overlooked aspect-the behavioral maturation from nurses to foragers-that can be a serious confounding factor in bee microbiota experiments. Using cuticular hydrocarbon profiling to discern between the two maturation states, they find that multiple physiological and behavioral differences between age-matched lab bees could potentially be explained by their maturation state instead of the intended treatment conditions, such as microbial inoculation. This study serves as a stark wake-up call on the necessity of careful replication and cross-disciplinary knowledge transfer (e.g., between animal specialists and microbiologists) in order to truly understand complex host-microbe systems.
Collapse
Affiliation(s)
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Vernier CL, Nguyen LA, Gernat T, Ahmed AC, Chen Z, Robinson GE. Gut microbiota contribute to variations in honey bee foraging intensity. THE ISME JOURNAL 2024; 18:wrae030. [PMID: 38412118 PMCID: PMC11008687 DOI: 10.1093/ismejo/wrae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Gut microbiomes are increasingly recognized for mediating diverse biological aspects of their hosts, including complex behavioral phenotypes. Although many studies have reported that experimental disruptions to the gut microbial community result in atypical host behavior, studies that address how gut microbes contribute to adaptive behavioral trait variation are rare. Eusocial insects represent a powerful model to test this, because of their simple gut microbiota and complex division of labor characterized by colony-level variation in behavioral phenotypes. Although previous studies report correlational differences in gut microbial community associated with division of labor, here, we provide evidence that gut microbes play a causal role in defining differences in foraging behavior between European honey bees (Apis mellifera). We found that gut microbial community structure differed between hive-based nurse bees and bees that leave the hive to forage for floral resources. These differences were associated with variation in the abundance of individual microbes, including Bifidobacterium asteroides, Bombilactobacillus mellis, and Lactobacillus melliventris. Manipulations of colony demography and individual foraging experience suggested that differences in gut microbial community composition were associated with task experience. Moreover, single-microbe inoculations with B. asteroides, B. mellis, and L. melliventris caused effects on foraging intensity. These results demonstrate that gut microbes contribute to division of labor in a social insect, and support a role of gut microbes in modulating host behavioral trait variation.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Lan Anh Nguyen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61810, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
6
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the microbiome have distinct roles in Hawaiian drosophila reproduction. ISME COMMUNICATIONS 2024; 4:ycae134. [PMID: 39678232 PMCID: PMC11643357 DOI: 10.1093/ismeco/ycae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The microbiome provides numerous physiological benefits for host animals. The role of bacterial members of microbiomes to host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members, even though fungi are integral components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, Drosophila grimshawi, and identified distinct effects for each treatment on microbiome community stability, reproduction, and lipid metabolism. Female oogenesis, fecundity, and mating drive were significantly diminished with antifungal treatment. In contrast, male fecundity was affected by antibacterial but not antifungal treatment. For males and females, simultaneous treatment with both antibacterial and antifungal drugs resulted in severely reduced fecundity and changes in fatty acid levels and composition. Microbial transplants using frass harvested from control flies partially restored microbiome composition and female fecundity. Overall, our results reveal that antibacterial and antifungal treatments have distinct effects on host fecundity, mating behavior, and lipid metabolism, and that interkingdom interactions contribute to microbial community stability and reproduction.
Collapse
Affiliation(s)
- Matthew J Medeiros
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Laura Seo
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Aziel Macias
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| |
Collapse
|
7
|
Castaños CE, Boyce MC, Bates T, Millar AH, Flematti G, Lawler NG, Grassl J. Lipidomic features of honey bee and colony health during limited supplementary feeding. INSECT MOLECULAR BIOLOGY 2023; 32:658-675. [PMID: 37477164 DOI: 10.1111/imb.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Honey bee nutritional health depends on nectar and pollen, which provide the main source of carbohydrates, proteins and lipids to individual bees. During malnutrition, insect metabolism accesses fat body reserves. However, this process in bees and its repercussions at the colony level are poorly understood. Using untargeted lipidomics and gene expression analysis, we examined the effects of different feeding treatments (starvation, sugar feeding and sugar + pollen feeding) on bees and correlated them with colony health indicators. We found that nutritional stress led to an increase in unsaturated triacylglycerols and diacylglycerols, as well as a decrease in free fatty acids in the bee fat body. Here, we hypothesise that stored lipids are made available through a process where unsaturations change lipid's structure. Increased gene expression of three lipid desaturases in response to malnutrition supports this hypothesis, as these desaturases may be involved in releasing fatty acyl chains for lipolysis. Although nutritional stress was evident in starving and sugar-fed bees at the colony and physiological level, only starved colonies presented long-term effects in honey production.
Collapse
Affiliation(s)
- Clara E Castaños
- Cooperative Research Centre (CRC) for Honey Bee Products, Perth, Western Australia, Australia
- Honey Bee Health Research Group, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mary C Boyce
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tiffane Bates
- Cooperative Research Centre (CRC) for Honey Bee Products, Perth, Western Australia, Australia
- Honey Bee Health Research Group, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gavin Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nathan G Lawler
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Julia Grassl
- Cooperative Research Centre (CRC) for Honey Bee Products, Perth, Western Australia, Australia
- Honey Bee Health Research Group, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Caselli A, Favaro R, Petacchi R, Valicenti M, Angeli S. The Cuticular Hydrocarbons of Dasineura Oleae Show Differences Between Sex, Adult Age and Mating Status. J Chem Ecol 2023; 49:369-383. [PMID: 37093418 PMCID: PMC10611616 DOI: 10.1007/s10886-023-01428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
In insects, cuticular lipids prevent water loss and act as semiochemicals. Because of their ecological function, the profile change across the insects' sex and development offers insight into insect biology and possible tools for pest management. Here, the first work on cecidomyiid cuticular extracts is proposed considering Dasineura oleae (Diptera: Cecidomyiidae) males and females at different adult ages (0-12 h, 12-24 h, 24-36 h) and distinct sexual conditions (virgin and mated). A set of 49 compounds were recorded (12 alkanes, 1 monomethyl alkane, 11 fatty acids, 4 esters, 1 aldehyde, 1 allylbenzene, 1 amine, 1 flavonoid, 1 ketone, 1 phenol, 1 steradiene, 1 sterol, 1 terpene, 1 triterpene and 11 unknown compounds), and 18 of them showed significant differences between groups. Among alkanes, hexacosane (nC26) exhibited a decreasing trend from the youngest to the oldest females, while pentacosane (nC25) and nonacosane (nC29) showed a decreasing trend from 0 to 12 h to 12-24 h virgin females. In addition, nonadecane (nC19) was significantly more abundant in the youngest males compared to older males and females. The alkanes nC25, nC26 and nC29 have been reported to be age-related also in other dipterans, while nC19 has been described as gender-specific chemical cue for platygastrid parasitoids. Further behavioural trials and analyses are required to assign the specific ecological roles to the characterized compounds. Our results may contribute to develop new low-impact control strategies relying on the manipulation of D. oleae's chemical communication (e.g. disruption of mating or species recognition). HIGHLIGHTS: • Cuticular hydrocarbons are often involved in dipteran intraspecific communication. • We explored the cuticular profile of D. oleae at different age, sex, mating condition. • Five alkanes and one mono-methyl alkane showed differences among groups. • Linoleic acid is the most abundant compound in virgins, absent in mated insects. • Eleven compounds disappear in mated insects, but were present in all virgins.
Collapse
Affiliation(s)
- Alice Caselli
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| | - Riccardo Favaro
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
| | - Ruggero Petacchi
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Marta Valicenti
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| |
Collapse
|
9
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the gut microbiome have distinct, sex-specific roles in Hawaiian Drosophila reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549088. [PMID: 37503295 PMCID: PMC10370118 DOI: 10.1101/2023.07.14.549088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gut microbiomes provide numerous physiological benefits for host animals. The role of bacterial members of microbiomes in host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members of the microbiome even though fungi are significant components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, D. grimshawi, and identified distinct, sex-specific roles for the bacteria and fungi in microbiome community stability and reproduction. Female oogenesis, fecundity and mating drive were significantly diminished when fungal communities were suppressed. By contrast, male fecundity was more strongly affected by bacterial but not fungal populations. For males and females, suppression of both bacteria and fungi severely reduced fecundity and altered fatty acid levels and composition, implicating the importance of interkingdom interactions on reproduction and lipid metabolism. Overall, our results reveal that bacteria and fungi have distinct, sexually-dimorphic effects on host physiology and interkingdom dynamics in the gut help to maintain microbiome community stability and enhance reproduction.
Collapse
Affiliation(s)
- Matthew J. Medeiros
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Laura Seo
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Aziel Macias
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Donald K. Price
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| |
Collapse
|
10
|
Kuwabara T, Kohno H, Hatakeyama M, Kubo T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. SCIENCE ADVANCES 2023; 9:eadd4201. [PMID: 37146148 PMCID: PMC10162674 DOI: 10.1126/sciadv.add4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Evolutionary dynamics of diversification of brain neuronal cell types that have underlain behavioral evolution remain largely unknown. Here, we compared transcriptomes and functions of Kenyon cell (KC) types that compose the mushroom bodies between the honey bee and sawfly, a primitive hymenopteran insect whose KCs likely have the ancestral properties. Transcriptome analyses show that the sawfly KC type shares some of the gene expression profile with each honey bee KC type, although unique gene expression profiles have also been acquired in each honey bee KC type. In addition, functional analysis of two sawfly genes suggested that the functions in learning and memory of the ancestral KC type were heterogeneously inherited among the KC types in the honey bee. Our findings strongly suggest that the functional evolution of KCs in Hymenoptera involved two previously hypothesized processes for evolution of cell function: functional segregation and divergence.
Collapse
Affiliation(s)
- Takayoshi Kuwabara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatsugu Hatakeyama
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Ebrahim SA, Dweck HK, Weiss BL, Carlson JR. A volatile sex attractant of tsetse flies. Science 2023; 379:eade1877. [PMID: 36795837 PMCID: PMC10204727 DOI: 10.1126/science.ade1877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/18/2023]
Abstract
Tsetse flies transmit trypanosomes-parasites that cause devastating diseases in humans and livestock-across much of sub-Saharan Africa. Chemical communication through volatile pheromones is common among insects; however, it remains unknown if and how such chemical communication occurs in tsetse flies. We identified methyl palmitoleate (MPO), methyl oleate, and methyl palmitate as compounds that are produced by the tsetse fly Glossina morsitans and elicit strong behavioral responses. MPO evoked a behavioral response in male-but not virgin female-G. morsitans. G. morsitans males mounted females of another species, Glossina fuscipes, when they were treated with MPO. We further identified a subpopulation of olfactory neurons in G. morsitans that increase their firing rate in response to MPO and showed that infecting flies with African trypanosomes alters the flies' chemical profile and mating behavior. The identification of volatile attractants in tsetse flies may be useful for reducing disease spread.
Collapse
Affiliation(s)
- Shimaa A.M. Ebrahim
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Hany K.M. Dweck
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Brian L. Weiss
- Dept. of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, USA
| | - John R. Carlson
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH. Metabolomics-Guided Comparison of Pollen and Microalgae-Based Artificial Diets in Honey Bees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9790-9801. [PMID: 35881882 PMCID: PMC9372997 DOI: 10.1021/acs.jafc.2c02583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Managed honey bee colonies used for crop pollination are fed artificial diets to offset nutritional deficiencies related to land-use intensification and climate change. In this study, we formulated novel microalgae diets using Chlorella vulgaris and Arthrospira platensis (spirulina) biomass and fed them to young adult honey bee workers. Diet-induced changes in bee metabolite profiles were studied relative to a natural pollen diet using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) metabolomics. Untargeted analyses of pollen- and microalgae-fed bees revealed significant overlap, with 248 shared features determined by LC-MS and 87 shared features determined by GC-MS. Further metabolomic commonalities were evident upon subtraction of unique diet features. Twenty-five identified metabolites were influenced by diet, which included complex lipids, essential fatty acids, vitamins, and phytochemicals. The metabolomics results are useful to understand mechanisms underlying favorable growth performance as well as increased antioxidant and heat shock protein gene expression in bees fed the microalgae diets. We conclude that the tested microalgae have potential as sustainable feed additives and as a source of bee health-modulating natural products. Metabolomics-guided diet development could eventually help tailor feed interventions to achieve precision nutrition in honey bees and other livestock animals.
Collapse
Affiliation(s)
- Vincent A. Ricigliano
- Vincent
A. Ricigliano—Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton
Rouge, Louisiana 70820, United States
| | - Kristof B. Cank
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Daniel A. Todd
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Sonja L. Knowles
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
- .
Fax: (336) 334-5402
| |
Collapse
|
13
|
Honey robbing causes coordinated changes in foraging and nest defence in the honey bee, Apis mellifera. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
McKinney RM, Valdez R, Ben-Shahar Y. The genetic architecture of larval aggregation behavior in Drosophila. J Neurogenet 2021; 35:274-284. [PMID: 33629904 DOI: 10.1080/01677063.2021.1887174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many insect species exhibit basal social behaviors such as aggregation, which play important roles in their feeding and mating ecologies. However, the evolutionary, genetic, and physiological mechanisms that regulate insect aggregation remain unknown for most species. Here, we used natural populations of Drosophila melanogaster to identify the genetic architecture that drives larval aggregation feeding behavior. By using quantitative and reverse genetic approaches, we have identified a complex neurogenetic network that plays a role in regulating the decision of larvae to feed in either solitude or as a group. Results from single gene, RNAi-knockdown experiments show that several of the identified genes represent key nodes in the genetic network that determines the level of aggregation while feeding. Furthermore, we show that a single non-coding variant in the gene CG14205, a putative acyltransferase, is associated with both decreased mRNA expression and increased aggregate formation, which suggests that it has a specific role in inhibiting aggregation behavior. Our results identify, for the first time, the genetic components which interact to regulate naturally occurring levels of aggregation in D. melanogaster larvae.
Collapse
Affiliation(s)
- Ross M McKinney
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan Valdez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Wilk JT, Bąk B, Artiemjew P, Wilde J, Siuda M. Classifying the Biological Status of Honeybee Workers Using Gas Sensors. SENSORS 2020; 21:s21010166. [PMID: 33383770 PMCID: PMC7795461 DOI: 10.3390/s21010166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/03/2022]
Abstract
Honeybee workers have a specific smell depending on the age of workers and the biological status of the colony. Laboratory tests were carried out at the Department of Apiculture at UWM Olsztyn, using gas sensors installed in two twin prototype multi-sensor detectors. The study aimed to compare the responses of sensors to the odor of old worker bees (3–6 weeks old), young ones (0–1 days old), and those from long-term queenless colonies. From the experimental colonies, 10 samples of 100 workers were taken for each group and placed successively in the research chambers for the duration of the study. Old workers came from outer nest combs, young workers from hatching out brood in an incubator, and laying worker bees from long-term queenless colonies from brood combs (with laying worker bee’s eggs, humped brood, and drones). Each probe was measured for 10 min, and then immediately for another 10 min ambient air was given to regenerate sensors. The results were analyzed using 10 different classifiers. Research has shown that the devices can distinguish between the biological status of bees. The effectiveness of distinguishing between classes, determined by the parameters of accuracy balanced and true positive rate, of 0.763 and 0.742 in the case of the best euclidean.1nn classifier, may be satisfactory in the context of practical beekeeping. Depending on the environment accompanying the tested objects (a type of insert in the test chamber), the introduction of other classifiers as well as baseline correction methods may be considered, while the selection of the appropriate classifier for the task may be of great importance for the effectiveness of the classification.
Collapse
Affiliation(s)
- Jakub T. Wilk
- Apiculture Division, Faculty of Animal Bioengineering, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (B.B.); (J.W.); (M.S.)
- Correspondence:
| | - Beata Bąk
- Apiculture Division, Faculty of Animal Bioengineering, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (B.B.); (J.W.); (M.S.)
| | - Piotr Artiemjew
- Mathematical Methods and Computer Science Division, Faculty of Mathematics and Computer Science, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland;
| | - Jerzy Wilde
- Apiculture Division, Faculty of Animal Bioengineering, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (B.B.); (J.W.); (M.S.)
| | - Maciej Siuda
- Apiculture Division, Faculty of Animal Bioengineering, University Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (B.B.); (J.W.); (M.S.)
| |
Collapse
|
16
|
Rossini C, Rodrigo F, Davyt B, Umpiérrez ML, González A, Garrido PM, Cuniolo A, Porrini LP, Eguaras MJ, Porrini MP. Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS One 2020; 15:e0241666. [PMID: 33147299 PMCID: PMC7641371 DOI: 10.1371/journal.pone.0241666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
When developing new products to be used in honeybee colonies, further than acute toxicity, it is imperative to perform an assessment of risks, including various sublethal effects. The long-term sublethal effects of xenobiotics on honeybees, more specifically of acaricides used in honeybee hives, have been scarcely studied, particularly so in the case of essential oils and their components. In this work, chronic effects of the ingestion of Eupatorium buniifolium (Asteraceae) essential oil were studied on nurse honeybees using laboratory assays. Survival, food consumption, and the effect on the composition of cuticular hydrocarbons (CHC) were assessed. CHC were chosen due to their key role as pheromones involved in honeybee social recognition. While food consumption and survival were not affected by the consumption of the essential oil, CHC amounts and profiles showed dose-dependent changes. All groups of CHC (linear and branched alkanes, alkenes and alkadienes) were altered when honeybees were fed with the highest essential oil dose tested (6000 ppm). The compounds that significantly varied include n-docosane, n-tricosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, tritriacontene, pentacosadiene, hentriacontadiene, tritriacontadiene and all methyl alkanes. All of them but pentacosadiene were up-regulated. On the other hand, CHC profiles were similar in healthy and Nosema-infected honeybees when diets included the essential oil at 300 and 3000 ppm. Our results show that the ingestion of an essential oil can impact CHC and that the effect is dose-dependent. Changes in CHC could affect the signaling process mediated by these pheromonal compounds. To our knowledge this is the first report of changes in honeybee cuticular hydrocarbons as a result of essential oil ingestion.
Collapse
Affiliation(s)
- Carmen Rossini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- * E-mail:
| | - Federico Rodrigo
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Belén Davyt
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - María Laura Umpiérrez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Andrés González
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Antonella Cuniolo
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Leonardo P. Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín P. Porrini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Vernier CL, Chin IM, Adu-Oppong B, Krupp JJ, Levine J, Dantas G, Ben-Shahar Y. The gut microbiome defines social group membership in honey bee colonies. SCIENCE ADVANCES 2020; 6:eabd3431. [PMID: 33055169 PMCID: PMC7556842 DOI: 10.1126/sciadv.abd3431] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
In the honey bee, genetically related colony members innately develop colony-specific cuticular hydrocarbon profiles, which serve as pheromonal nestmate recognition cues. Yet, despite high intracolony relatedness, the innate development of colony-specific chemical signatures by individual colony members is largely determined by the colony environment, rather than solely relying on genetic variants shared by nestmates. Therefore, it is puzzling how a nongenic factor could drive the innate development of a quantitative trait that is shared by members of the same colony. Here, we provide one solution to this conundrum by showing that nestmate recognition cues in honey bees are defined, at least in part, by shared characteristics of the gut microbiome across individual colony members. These results illustrate the importance of host-microbiome interactions as a source of variation in animal behavioral traits.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Iris M Chin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Boahemaa Adu-Oppong
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua J Krupp
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Joel Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gautam Dantas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Butterworth NJ, Drijfhout FP, Byrne PG, Keller PA, Wallman JF. Major Transitions in Cuticular Hydrocarbon Expression Coincide with Sexual Maturity in a Blowfly (Diptera: Calliphoridae). J Chem Ecol 2020; 46:610-618. [DOI: 10.1007/s10886-020-01194-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/06/2023]
|
19
|
Sheehan MJ, Reeve HK. Evolutionarily stable investments in recognition systems explain patterns of discrimination failure and success. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190465. [PMID: 32420853 DOI: 10.1098/rstb.2019.0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many animals are able to perform recognition feats that astound us-such as a rodent recognizing kin it has never met. Yet in other contexts, animals appear clueless as when reed warblers rear cuckoo chicks that bear no resemblance to their own species. Failures of recognition when it would seem adaptive have been especially puzzling. Here, we present a simple tug-of-war game theory model examining how individuals should optimally invest in affecting the accuracy of discrimination between desirable and undesirable recipients. In the game, discriminating individuals (operators) and desirable and undesirable recipients (targets and mimics, respectively) can all invest effort into their own preferred outcome. We demonstrate that stable inaccurate recognition will arise when undesirable recipients have large fitness gains from inaccurate recognition relative to the pay-offs that the other two parties receive from accurate recognition. The probability of accurate recognition is often determined by just the relative pay-offs to the desirable and undesirable recipients, rather than to the discriminator. Our results provide a new lens on long-standing puzzles including a lack of nepotism in social insect colonies, tolerance of brood parasites and male birds caring for extra-pair young in their nests, which our model suggests should often lack accurate discrimination. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - H Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Honey bee virus causes context-dependent changes in host social behavior. Proc Natl Acad Sci U S A 2020; 117:10406-10413. [PMID: 32341145 DOI: 10.1073/pnas.2002268117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes create evolutionarily novel environments that present opportunities for emerging diseases, potentially changing the balance between host and pathogen. Honey bees provide essential pollination services, but intensification and globalization of honey bee management has coincided with increased pathogen pressure, primarily due to a parasitic mite/virus complex. Here, we investigated how honey bee individual and group phenotypes are altered by a virus of concern, Israeli acute paralysis virus (IAPV). Using automated and manual behavioral monitoring of IAPV-inoculated individuals, we find evidence for pathogen manipulation of worker behavior by IAPV, and reveal that this effect depends on social context; that is, within versus between colony interactions. Experimental inoculation reduced social contacts between honey bee colony members, suggesting an adaptive host social immune response to diminish transmission. Parallel analyses with double-stranded RNA (dsRNA)-immunostimulated bees revealed these behaviors are part of a generalized social immune defensive response. Conversely, inoculated bees presented to groups of bees from other colonies experienced reduced aggression compared with dsRNA-immunostimulated bees, facilitating entry into susceptible colonies. This reduction was associated with a shift in cuticular hydrocarbons, the chemical signatures used by bees to discriminate colony members from intruders. These responses were specific to IAPV infection, suggestive of pathogen manipulation of the host. Emerging bee pathogens may thus shape host phenotypes to increase transmission, a strategy especially well-suited to the unnaturally high colony densities of modern apiculture. These findings demonstrate how anthropogenic changes could affect arms races between human-managed hosts and their pathogens to potentially affect global food security.
Collapse
|