1
|
El Safadi M, Wilson KA, Strudwicke IJ, O'Mara ML, Bhadbhade M, Rawling T, McDonagh AM. Amphetamine-like Deferiprone and Clioquinol Derivatives as Iron Chelating Agents. Molecules 2024; 29:4213. [PMID: 39275060 PMCID: PMC11397356 DOI: 10.3390/molecules29174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
The accumulation of iron in dopaminergic neurons can cause oxidative stress and dopaminergic neuron degeneration. Iron chelation therapy may reduce dopaminergic neurodegeneration, but chelators should be targeted towards dopaminergic cells. In this work, two series of compounds based on 8-hydroxyquinoline and deferiprone, iron chelators that have amphetamine-like structures, have been designed, synthesized and characterized. Each of these compounds chelated iron ions in aqueous solution. The hydroxyquinoline-based compounds exhibited stronger iron-binding constants than those of the deferiprone derivatives. The hydroxyquinoline-based compounds also exhibited greater free radical scavenging activities compared to the deferiprone derivatives. Molecular dynamics simulations showed that the hydroxyquinoline-based compounds generally bound well within human dopamine transporter cavities. Thus, these compounds are excellent candidates for future exploration as drugs against diseases that are affected by iron-induced dopaminergic neuron damage, such as Parkinson's disease.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Katie A Wilson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Indigo J Strudwicke
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Andrew M McDonagh
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Chater RC, Quinn AS, Wilson K, Frangos ZJ, Sutton P, Jayakumar S, Cioffi CL, O'Mara ML, Vandenberg RJ. The efficacy of the analgesic GlyT2 inhibitor, ORG25543, is determined by two connected allosteric sites. J Neurochem 2024; 168:1973-1992. [PMID: 38131125 DOI: 10.1111/jnc.16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Ryan Cantwell Chater
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Ada S Quinn
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Katie Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zachary J Frangos
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Patrick Sutton
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Srinivasan Jayakumar
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Christopher L Cioffi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Robert J Vandenberg
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Newstead S. Future opportunities in solute carrier structural biology. Nat Struct Mol Biol 2024; 31:587-590. [PMID: 38637662 DOI: 10.1038/s41594-024-01271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Solute carriers (SLCs) control the flow of small molecules and ions across biological membranes. Over the last 20 years, the pace of research in SLC biology has accelerated markedly, opening new opportunities to treat metabolic diseases, cancer and neurological disorders. Recently, new families of atypical SLCs, with roles in organelle biology, metabolite signaling and trafficking, have expanded their roles in the cell. This Perspective discusses work leading to current advances and the emerging opportunities to target and modulate SLCs to uncover new biology and treat human disease.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
5
|
Schlessinger A, Zatorski N, Hutchinson K, Colas C. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities. Trends Biochem Sci 2023; 48:801-814. [PMID: 37355450 PMCID: PMC10525040 DOI: 10.1016/j.tibs.2023.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023]
Abstract
Solute carrier (SLCs) transporters mediate the transport of a broad range of solutes across biological membranes. Dysregulation of SLCs has been associated with various pathologies, including metabolic and neurological disorders, as well as cancer and rare diseases. SLCs are therefore emerging as key targets for therapeutic intervention with several recently approved drugs targeting these proteins. Unlocking this large and complex group of proteins is essential to identifying unknown SLC targets and developing next-generation SLC therapeutics. Recent progress in experimental and computational techniques has significantly advanced SLC research, including drug discovery. Here, we review emerging topics in therapeutic discovery of SLCs, focusing on state-of-the-art approaches in structural, chemical, and computational biology, and discuss current challenges in transporter drug discovery.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Nicole Zatorski
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keino Hutchinson
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria.
| |
Collapse
|
6
|
Gallagher CI, Frangos ZJ, Sheipouri D, Shimmon S, Duman MN, Jayakumar S, Cioffi CL, Rawling T, Vandenberg RJ. Novel Phenylene Lipids That Are Positive Allosteric Modulators of Glycine Receptors and Inhibitors of Glycine Transporter 2. ACS Chem Neurosci 2023; 14:2634-2647. [PMID: 37466545 DOI: 10.1021/acschemneuro.3c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Chronic pain is a complex condition that remains resistant to current therapeutics. We previously synthesized a series of N-acyl amino acids (NAAAs) that inhibit the glycine transporter, GlyT2, some of which are also positive allosteric modulators of glycine receptors (GlyRs). In this study, we have synthesized a library of NAAAs that contain a phenylene ring within the acyl tail with the objective of improving efficacy at both GlyT2 and GlyRs and also identifying compounds that are efficacious as dual-acting modulators to enhance glycine neurotransmission. The most efficacious positive allosteric modulator of GlyRs was 2-[8-(2-octylphenyl)octanoylamino]acetic acid (8-8 OPGly) which potentiates the EC5 for glycine activation of GlyRα1 by 1500% with an EC50 of 664 nM. Phenylene-containing NAAAs with a lysine headgroup were the most potent inhibitors of GlyT2 with (2S)-6-amino-2-[8-(3-octylphenyl)octanoylamino]hexanoic acid (8-8 MPLys) inhibiting GlyT2 with an IC50 of 32 nM. The optimal modulator across both proteins was (2S)-6-amino-2-[8-(2-octylphenyl)octanoylamino]hexanoic acid (8-8 OPLys), which inhibits GlyT2 with an IC50 of 192 nM and potentiates GlyRs by up to 335% at 1 μM. When tested in a dual GlyT2/GlyRα1 expression system, 8-8 OPLys caused the greatest reductions in the EC50 for glycine. This suggests that the synergistic effects of a dual-acting modulator cause greater enhancements in glycinergic activity compared to single-target modulators and may provide an alternate approach to the development of new non-opioid analgesics for the treatment of chronic pain.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular and Cellular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Zachary J Frangos
- Molecular and Cellular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Diba Sheipouri
- Molecular and Cellular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Meryem-Nur Duman
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Srinivasan Jayakumar
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Christopher L Cioffi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Robert J Vandenberg
- Molecular and Cellular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Frangos ZJ, Wilson KA, Aitken HM, Cantwell Chater R, Vandenberg RJ, O'Mara ML. Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2. Life Sci Alliance 2023; 6:e202201708. [PMID: 36690444 PMCID: PMC9873984 DOI: 10.26508/lsa.202201708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Membrane cholesterol binds to and modulates the function of various SLC6 neurotransmitter transporters, including stabilizing the outward-facing conformation of the dopamine and serotonin transporters. Here, we investigate how cholesterol binds to GlyT2 (SLC6A5), modulates glycine transport rate, and influences bioactive lipid inhibition of GlyT2. Bioactive lipid inhibitors are analgesics that bind to an allosteric site accessible from the extracellular solution when GlyT2 adopts an outward-facing conformation. Using molecular dynamics simulations, mutagenesis, and cholesterol depletion experiments, we show that bioactive lipid inhibition of glycine transport is modulated by the recruitment of membrane cholesterol to a binding site formed by transmembrane helices 1, 5, and 7. Recruitment involves cholesterol flipping from its membrane orientation, and insertion of the 3' hydroxyl group into the cholesterol binding cavity, close to the allosteric site. The synergy between cholesterol and allosteric inhibitors provides a novel mechanism of inhibition and a potential avenue for the development of potent GlyT2 inhibitors as alternative therapeutics for the treatment of neuropathic pain and therapeutics that target other SLC6 transporters.
Collapse
Affiliation(s)
- Zachary J Frangos
- Molecular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Heather M Aitken
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Ryan Cantwell Chater
- Molecular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Robert J Vandenberg
- Molecular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
8
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
9
|
Joseph D, Nayak SR, Penmatsa A. Structural insights into GABA transport inhibition using an engineered neurotransmitter transporter. EMBO J 2022; 41:e110735. [PMID: 35796008 PMCID: PMC9340486 DOI: 10.15252/embj.2022110735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023] Open
Abstract
γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and its levels in the synaptic space are controlled by the GABA transporter isoforms (GATs). GATs are structurally related to biogenic amine transporters but display interactions with distinct inhibitors used as anti-epileptics. In this study, we engineer the binding pocket of Drosophila melanogaster dopamine transporter to resemble GAT1 and determine high-resolution X-ray structures of the modified transporter in the substrate-free state and in complex with GAT1 inhibitors NO711 and SKF89976a that are analogs of tiagabine, a medication prescribed for the treatment of partial seizures. We observe that the primary binding site undergoes substantial shifts in subsite architecture in the modified transporter to accommodate the two GAT1 inhibitors. We also observe that SKF89976a additionally interacts at an allosteric site in the extracellular vestibule, yielding an occluded conformation. Interchanging SKF89976a interacting residue in the extracellular loop 4 between GAT1 and dDAT suggests a role for this motif in the selective control of neurotransmitter uptake. Our findings, therefore, provide vital insights into the organizational principles dictating GAT1 activity and inhibition.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | | - Aravind Penmatsa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
10
|
Analysis of Binding Determinants for Different Classes of Competitive and Noncompetitive Inhibitors of Glycine Transporters. Int J Mol Sci 2022; 23:ijms23148050. [PMID: 35887394 PMCID: PMC9317360 DOI: 10.3390/ijms23148050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glycine transporters are interesting therapeutic targets as they play significant roles in glycinergic and glutamatergic systems. The search for new selective inhibitors of particular types of glycine transporters (GlyT-1 and GlyT-2) with beneficial kinetics is hampered by limited knowledge about the spatial structure of these proteins. In this study, a pool of homology models of GlyT-1 and GlyT-2 in different conformational states was constructed using the crystal structures of related transporters from the SLC6 family and the recently revealed structure of GlyT-1 in the inward-open state, in order to investigate their binding sites. The binding mode of the known GlyT-1 and GlyT-2 inhibitors was determined using molecular docking studies, molecular dynamics simulations, and MM-GBSA free energy calculations. The results of this study indicate that two amino acids, Gly373 and Leu476 in GlyT-1 and the corresponding Ser479 and Thr582 in GlyT-2, are mainly responsible for the selective binding of ligands within the S1 site. Apart from these, one pocket of the S2 site, which lies between TM3 and TM10, may also be important. Moreover, selective binding of noncompetitive GlyT-1 inhibitors in the intracellular release pathway is affected by hydrophobic interactions with Ile399, Met382, and Leu158. These results can be useful in the rational design of new glycine transporter inhibitors with desired selectivity and properties in the future.
Collapse
|
11
|
Frangos ZJ, Cantwell Chater RP, Vandenberg RJ. Glycine Transporter 2: Mechanism and Allosteric Modulation. Front Mol Biosci 2021; 8:734427. [PMID: 34805268 PMCID: PMC8602798 DOI: 10.3389/fmolb.2021.734427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotransmitter sodium symporters (NSS) are a subfamily of SLC6 transporters responsible for regulating neurotransmitter signalling. They are a major target for psychoactive substances including antidepressants and drugs of abuse, prompting substantial research into their modulation and structure-function dynamics. Recently, a series of allosteric transport inhibitors have been identified, which may reduce side effect profiles, compared to orthosteric inhibitors. Allosteric inhibitors are also likely to provide different clearance kinetics compared to competitive inhibitors and potentially better clinical outcomes. Crystal structures and homology models have identified several allosteric modulatory sites on NSS including the vestibule allosteric site (VAS), lipid allosteric site (LAS) and cholesterol binding site (CHOL1). Whilst the architecture of eukaryotic NSS is generally well conserved there are differences in regions that form the VAS, LAS, and CHOL1. Here, we describe ligand-protein interactions that stabilize binding in each allosteric site and explore how differences between transporters could be exploited to generate NSS specific compounds with an emphasis on GlyT2 modulation.
Collapse
Affiliation(s)
- Zachary J Frangos
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ryan P Cantwell Chater
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robert J Vandenberg
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat Commun 2021; 12:5063. [PMID: 34417466 PMCID: PMC8379219 DOI: 10.1038/s41467-021-25363-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is a common mental disorder. The standard medical treatment is the selective serotonin reuptake inhibitors (SSRIs). All characterized SSRIs are competitive inhibitors of the serotonin transporter (SERT). A non-competitive inhibitor may produce a more favorable therapeutic profile. Vilazodone is an antidepressant with limited information on its molecular interactions with SERT. Here we use molecular pharmacology and cryo-EM structural elucidation to characterize vilazodone binding to SERT. We find that it exhibits non-competitive inhibition of serotonin uptake and impedes dissociation of [3H]imipramine at low nanomolar concentrations. Our SERT structure with bound imipramine and vilazodone reveals a unique binding pocket for vilazodone, expanding the boundaries of the extracellular vestibule. Characterization of the binding site is substantiated with molecular dynamics simulations and systematic mutagenesis of interacting residues resulting in decreased vilazodone binding to the allosteric site. Our findings underline the versatility of SERT allosteric ligands and describe the unique binding characteristics of vilazodone. Vilazodone (VLZ) is a drug for the treatment of major depressive disorders that targets the serotonin transporter (SERT). Here, the authors combine pharmacology measurements and cryo-EM structural analysis to characterize VLZ binding to SERT and observe that VLZ exhibits non-competitive inhibition of serotonin transport and binds with nanomolar affinity to an allosteric site in SERT.
Collapse
|
13
|
Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021; 11:biom11060864. [PMID: 34200954 PMCID: PMC8230656 DOI: 10.3390/biom11060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.
Collapse
|
14
|
Aggarwal S, Cheng MH, Salvino JM, Bahar I, Mortensen OV. Functional Characterization of the Dopaminergic Psychostimulant Sydnocarb as an Allosteric Modulator of the Human Dopamine Transporter. Biomedicines 2021; 9:634. [PMID: 34199621 PMCID: PMC8227285 DOI: 10.3390/biomedicines9060634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
The dopamine transporter (DAT) serves a critical role in controlling dopamine (DA)-mediated neurotransmission by regulating the clearance of DA from the synapse and extrasynaptic regions and thereby modulating DA action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DATs to alter their actions resulting in an enhancement in extracellular DA concentrations. We previously identified a novel allosteric site in the DAT and the related human serotonin transporter that lies outside the central orthosteric substrate- and cocaine-binding pocket. Here, we demonstrate that the dopaminergic psychostimulant sydnocarb is a ligand of this novel allosteric site. We identified the molecular determinants of the interaction between sydnocarb and DAT at the allosteric site using molecular dynamics simulations. Biochemical-substituted cysteine scanning accessibility experiments have supported the computational predictions by demonstrating the occurrence of specific interactions between sydnocarb and amino acids within the allosteric site. Functional dopamine uptake studies have further shown that sydnocarb is a noncompetitive inhibitor of DAT in accord with the involvement of a site different from the orthosteric site in binding this psychostimulant. Finally, DA uptake studies also demonstrate that sydnocarb affects the interaction of DAT with both cocaine and amphetamine. In summary, these studies further strengthen the prospect that allosteric modulation of DAT activity could have therapeutic potential.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.H.C.); (I.B.)
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.H.C.); (I.B.)
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| |
Collapse
|
15
|
Pidathala S, Mallela AK, Joseph D, Penmatsa A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat Commun 2021; 12:2199. [PMID: 33850134 PMCID: PMC8044178 DOI: 10.1038/s41467-021-22385-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Norepinephrine is a biogenic amine neurotransmitter that has widespread effects on alertness, arousal and pain sensation. Consequently, blockers of norepinephrine uptake have served as vital tools to treat depression and chronic pain. Here, we employ the Drosophila melanogaster dopamine transporter as a surrogate for the norepinephrine transporter and determine X-ray structures of the transporter in its substrate-free and norepinephrine-bound forms. We also report structures of the transporter in complex with inhibitors of chronic pain including duloxetine, milnacipran and a synthetic opioid, tramadol. When compared to dopamine, we observe that norepinephrine binds in a different pose, in the vicinity of subsite C within the primary binding site. Our experiments reveal that this region is the binding site for chronic pain inhibitors and a determinant for norepinephrine-specific reuptake inhibition, thereby providing a paradigm for the design of specific inhibitors for catecholamine neurotransmitter transporters.
Collapse
Affiliation(s)
| | | | - Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
16
|
Halloy F, Iyer PS, Ghidini A, Lysenko V, Barman-Aksözen J, Grubenmann CP, Jucker J, Wildner-Verhey van Wijk N, Ruepp MD, Minder EI, Minder AE, Schneider-Yin X, Theocharides APA, Schümperli D, Hall J. Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria. Cell Chem Biol 2021; 28:1221-1234.e6. [PMID: 33756123 DOI: 10.1016/j.chembiol.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietic protoporphyria (EPP) is a rare disease in which patients experience severe light sensitivity. It is caused by a deficiency of ferrochelatase (FECH), the last enzyme in heme biosynthesis (HBS). The lack of FECH causes accumulation of its photoreactive substrate protoporphyrin IX (PPIX) in patients' erythrocytes. Here, we explored an approach for the treatment of EPP by decreasing PPIX synthesis using small-molecule inhibitors directed to factors in the HBS pathway. We generated a FECH-knockout clone from K562 erythroleukemia cells, which accumulates PPIX and undergoes oxidative stress upon light exposure. We used these matched cell lines to screen a set of publicly available inhibitors of factors in the HBS pathway. Inhibitors of the glycine transporters GlyT1 and GlyT2 lowered levels of PPIX and markers of oxidative stress selectively in K56211B4 cells, and in primary erythroid cultures from an EPP patient. Our findings open the door to investigation of glycine transport inhibitors for HBS disorders.
Collapse
Affiliation(s)
- François Halloy
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Pavithra S Iyer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alice Ghidini
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jasmin Barman-Aksözen
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Chia-Pei Grubenmann
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Jessica Jucker
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | | | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, SE5 9RT London, UK; Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| | - Elisabeth I Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Anna-Elisabeth Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Xiaoye Schneider-Yin
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Daniel Schümperli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
18
|
Abstract
Allosteric regulation in proteins is fundamental to many important biological processes. Allostery has been employed to control protein functions by regulating protein activity. Engineered allosteric regulation allows controlling protein activity in subsecond time scale and has a broad range of applications, from dissecting spatiotemporal dynamics in biochemical cascades to applications in biotechnology and medicine. Here, we review the concept of allostery in proteins and various approaches to identify allosteric sites and pathways. We then provide an overview of strategies and tools used in allosteric protein regulation and their utility in biological applications. We highlight various classes of proteins, where regulation is achieved through allostery. Finally, we analyze the current problems, critical challenges, and future prospective in achieving allosteric regulation in proteins.
Collapse
Affiliation(s)
| | - Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Wilson KA, Mostyn SN, Frangos ZJ, Shimmon S, Rawling T, Vandenberg RJ, O'Mara ML. The allosteric inhibition of glycine transporter 2 by bioactive lipid analgesics is controlled by penetration into a deep lipid cavity. J Biol Chem 2021; 296:100282. [PMID: 33450225 PMCID: PMC7949037 DOI: 10.1016/j.jbc.2021.100282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
The role of lipids in modulating membrane protein function is an emerging and rapidly growing area of research. The rational design of lipids that target membrane proteins for the treatment of pathological conditions is a novel extension in this field and provides a step forward in our understanding of membrane transporters. Bioactive lipids show considerable promise as analgesics for the treatment of chronic pain and bind to a high-affinity allosteric-binding site on the human glycine transporter 2 (GlyT2 or SLC6A5). Here, we use a combination of medicinal chemistry, electrophysiology, and computational modeling to develop a rational structure-activity relationship for lipid inhibitors and demonstrate the key role of the lipid tail interactions for GlyT2 inhibition. Specifically, we examine how lipid inhibitor head group stereochemistry, tail length, and double-bond position promote enhanced inhibition. Overall, the l-stereoisomer is generally a better inhibitor than the d-stereoisomer, longer tail length correlates with greater potency, and the position of the double bond influences the activity of the inhibitor. We propose that the binding of the lipid inhibitor deep into the allosteric-binding pocket is critical for inhibition. Furthermore, this provides insight into the mechanism of inhibition of GlyT2 and highlights how lipids can modulate the activity of membrane proteins by binding to cavities between helices. The principles identified in this work have broader implications for the development of a larger class of compounds that could target SLC6 transporters for disease treatment.
Collapse
Affiliation(s)
- Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT, Australia
| | - Shannon N Mostyn
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zachary J Frangos
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
20
|
Ackermann TM, Allmendinger L, Höfner G, Wanner KT. MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem 2021; 16:199-215. [PMID: 32734692 PMCID: PMC7821181 DOI: 10.1002/cmdc.202000342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
This study describes the first binding assay for glycine transporter 2 (GlyT2) following the concept of MS Binding Assays. The selective GlyT2 inhibitor Org25543 was employed as a reporter ligand and it was quantified with a highly sensitive and rapid LC-ESI-MS/MS method. Binding of Org25543 at GlyT2 was characterized in kinetic and saturation experiments with an off-rate of 7.07×10-3 s-1 , an on-rate of 1.01×106 M-1 s-1 , and an equilibrium dissociation constant of 7.45 nM. Furthermore, the inhibitory constants of 19 GlyT ligands were determined in competition experiments. The validity of the GlyT2 affinities determined with the binding assay was examined by a comparison with published inhibitory potencies from various functional assays. With the capability for affinity determination towards GlyT2 the developed MS Binding Assays provide the first tool for affinity profiling of potential ligands and it represents a valuable new alternative to functional assays addressing GlyT2.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Lars Allmendinger
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
21
|
Sheipouri D, Gallagher CI, Shimmon S, Rawling T, Vandenberg RJ. A System for Assessing Dual Action Modulators of Glycine Transporters and Glycine Receptors. Biomolecules 2020; 10:E1618. [PMID: 33266066 PMCID: PMC7760315 DOI: 10.3390/biom10121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced inhibitory glycinergic neurotransmission is implicated in a number of neurological conditions such as neuropathic pain, schizophrenia, epilepsy and hyperekplexia. Restoring glycinergic signalling may be an effective method of treating these pathologies. Glycine transporters (GlyTs) control synaptic and extra-synaptic glycine concentrations and slowing the reuptake of glycine using specific GlyT inhibitors will increase glycine extracellular concentrations and increase glycine receptor (GlyR) activation. Glycinergic neurotransmission can also be improved through positive allosteric modulation (PAM) of GlyRs. Despite efforts to manipulate this synapse, no therapeutics currently target it. We propose that dual action modulators of both GlyTs and GlyRs may show greater therapeutic potential than those targeting individual proteins. To show this, we have characterized a co-expression system in Xenopus laevis oocytes consisting of GlyT1 or GlyT2 co-expressed with GlyRα1. We use two electrode voltage clamp recording techniques to measure the impact of GlyTs on GlyRs and the effects of modulators of these proteins. We show that increases in GlyT density in close proximity to GlyRs diminish receptor currents. Reductions in GlyR mediated currents are not observed when non-transportable GlyR agonists are applied or when Na+ is not available. GlyTs reduce glycine concentrations across different concentration ranges, corresponding with their ion-coupling stoichiometry, and full receptor currents can be restored when GlyTs are blocked with selective inhibitors. We show that partial inhibition of GlyT2 and modest GlyRα1 potentiation using a dual action compound, is as useful in restoring GlyR currents as a full and potent single target GlyT2 inhibitor or single target GlyRα1 PAM. The co-expression system developed in this study will provide a robust means for assessing the likely impact of GlyR PAMs and GlyT inhibitors on glycine neurotransmission.
Collapse
Affiliation(s)
- Diba Sheipouri
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Casey I. Gallagher
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Robert J. Vandenberg
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| |
Collapse
|
22
|
Seckler JM, Lewis SJ. Advances in D-Amino Acids in Neurological Research. Int J Mol Sci 2020; 21:ijms21197325. [PMID: 33023061 PMCID: PMC7582301 DOI: 10.3390/ijms21197325] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
D-amino acids have been known to exist in the human brain for nearly 40 years, and they continue to be a field of active study to today. This review article aims to give a concise overview of the recent advances in D-amino acid research as they relate to the brain and neurological disorders. This work has largely been focused on modulation of the N-methyl-D-aspartate (NMDA) receptor and its relationship to Alzheimer’s disease and Schizophrenia, but there has been a wealth of novel research which has elucidated a novel role for several D-amino acids in altering brain chemistry in a neuroprotective manner. D-amino acids which have no currently known activity in the brain but which have active derivatives will also be reviewed.
Collapse
Affiliation(s)
- James M. Seckler
- Department Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Stephen J. Lewis
- Department Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
23
|
Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol Sci 2020; 41:446-463. [PMID: 32471654 PMCID: PMC7610661 DOI: 10.1016/j.tips.2020.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed. Some of them are in clinical use for the management of different neuropsychiatric conditions. The majority of these compounds have been found to selectively interact with the orthosteric site of NTTs. Recently, diverse allosteric sites have been described in a number of NTTs, modulating their function. A more complex NTT pharmacology may be useful in the development of novel therapeutics. Here, we summarize current knowledge on such modulatory allosteric sites, with specific focus on their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Marco Niello
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics. Department of Neuroscience. University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; AddRess, Centre for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Identification of N-acyl amino acids that are positive allosteric modulators of glycine receptors. Biochem Pharmacol 2020; 180:114117. [PMID: 32579961 DOI: 10.1016/j.bcp.2020.114117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/31/2023]
Abstract
Glycine receptors (GlyRs) mediate inhibitory neurotransmission within the spinal cord and play a crucial role in nociceptive signalling. This makes them primary targets for the development of novel chronic pain therapies. Endogenous lipids have previously been shown to modulate glycine receptors and produce analgesia in pain models, however little is known about what chemical features mediate these effects. In this study, we characterised lipid modulation of GlyRs by screening a library of N-acyl amino acids across all receptor subtypes and determined chemical features crucial for their activity. Acyl-glycine's with a C18 carbon tail were found to produce the greatest potentiation, and require a cis double bond within the central region of the carbon tail (ω6 - ω9) to be active. At 1 µM, C18 ω6,9 glycine potentiated glycine induced currents in α3 and α3β receptors by over 50%, and α1, α2, α1β and α2β receptors by over 100%. C18 ω9 glycine (N-oleoyl glycine) significantly enhance glycine induced peak currents and cause a dose-dependent shift in the glycine concentration response. In the presence of 3 µM C18 ω9 glycine, the EC5o of glycine at the α1 receptor was reduced from 17 µM to 10 µM. This study has identified several acyl-amino acids which are positive allosteric modulators of GlyRs and make promising lead compounds for the development of novel chronic pain therapies.
Collapse
|
25
|
Forster YM, Green JL, Khatiwada A, Liberato JL, Narayana Reddy PA, Salvino JM, Bienz S, Bigler L, dos Santos WF, Karklin Fontana AC. Elucidation of the Structure and Synthesis of Neuroprotective Low Molecular Mass Components of the Parawixia bistriata Spider Venom. ACS Chem Neurosci 2020; 11:1573-1596. [PMID: 32343555 DOI: 10.1021/acschemneuro.0c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.
Collapse
Affiliation(s)
- Yvonne M. Forster
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Apeksha Khatiwada
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - José Luiz Liberato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | | | - Joseph M. Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Bienz
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | | | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
26
|
Kim JT, Terrell SM, Li VL, Wei W, Fischer CR, Long JZ. Cooperative enzymatic control of N-acyl amino acids by PM20D1 and FAAH. eLife 2020; 9:55211. [PMID: 32271712 PMCID: PMC7145423 DOI: 10.7554/elife.55211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/21/2020] [Indexed: 12/28/2022] Open
Abstract
The N-acyl amino acids are a family of bioactive lipids with pleiotropic physiologic functions, including in energy homeostasis. Their endogenous levels are regulated by an extracellular mammalian N-acyl amino acid synthase/hydrolase called PM20D1 (peptidase M20 domain containing 1). Using an activity-guided biochemical approach, we report the molecular identification of fatty acid amide hydrolase (FAAH) as a second intracellular N-acyl amino acid synthase/hydrolase. In vitro, FAAH exhibits a more restricted substrate scope compared to PM20D1. In mice, genetic ablation or selective pharmacological inhibition of FAAH bidirectionally dysregulates intracellular, but not circulating, N-acyl amino acids. Dual blockade of both PM20D1 and FAAH reveals a dramatic and non-additive biochemical engagement of these two enzymatic pathways. These data establish FAAH as a second intracellular pathway for N-acyl amino acid metabolism and underscore enzymatic division of labor as an enabling strategy for the regulation of a structurally diverse bioactive lipid family.
Collapse
Affiliation(s)
- Joon T Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Stanford ChEM-H, Stanford University, Stanford, United States
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Stanford ChEM-H, Stanford University, Stanford, United States
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Stanford ChEM-H, Stanford University, Stanford, United States
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Stanford ChEM-H, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Curt R Fischer
- Stanford ChEM-H, Stanford University, Stanford, United States
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Stanford ChEM-H, Stanford University, Stanford, United States
| |
Collapse
|