1
|
Duan W, Hosea R, Wang L, Ruan C, Zhao F, Liu J, Zhao H, Miyagishi M, Wu S, Kasim V. Chromosome Missegregation Triggers Tumor Cell Pyroptosis and Enhances Anti-Tumor Immunotherapy in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409769. [PMID: 39903759 DOI: 10.1002/advs.202409769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Immune checkpoint inhibitor (ICI) therapy is a promising anti-tumor therapeutic strategy; however, its efficacy in solid tumors is limited. Chromosome missegregation is common in various solid tumors; however, its role in tumor progression remains poorly understood, and its correlation with ICI is yet to be explored. Here, it is found that increased chromosome missegregation promotes tumor immune microenvironment, and eventually immunotherapeutic efficacy, by triggering pyroptosis. yin yang 2 (YY2) is identified as a mitotic checkpoint regulator, which promotes chromosome missegregation by upregulating BUB1B transcription. Increased chromosome missegregation promoted the formation of micronuclei and release of double-stranded DNA (dsDNA) into the cytosol, triggering an AIM2-mediated cytosolic dsDNA response. The subsequent pyroptosis strengthened the tumor immune microenvironment, thereby enhancing immunoinfiltration and cytotoxicity of CD8+ T cells, while preventing their exhaustion. Finally, through in vitro and in vivo experiments, it is demonstrated that combining YY2 overexpression-induced chromosome missegregation/cytosolic dsDNA response and PD-1 inhibitor significantly enhanced the efficacy of ICI immunotherapy in microsatellite instable and microsatellite stable colorectal cancer cells. Together, these findings provide new insights on the role of chromosome missegregation in triggering cytosolic dsDNA response-mediated pyroptosis and modulating the tumor immune microenvironment, suggesting a novel strategy for improving ICI therapeutic efficacy in colorectal cancer.
Collapse
Affiliation(s)
- Wei Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lingxian Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Ruan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jingyi Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
2
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Grand RS, Pregnolato M, Baumgartner L, Hoerner L, Burger L, Schübeler D. Genome access is transcription factor-specific and defined by nucleosome position. Mol Cell 2024; 84:3455-3468.e6. [PMID: 39208807 PMCID: PMC11420395 DOI: 10.1016/j.molcel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Mammalian gene expression is controlled by transcription factors (TFs) that engage sequence motifs in a chromatinized genome, where nucleosomes can restrict DNA access. Yet, how nucleosomes affect individual TFs remains unclear. Here, we measure the ability of over one hundred TF motifs to recruit TFs in a defined chromosomal locus in mouse embryonic stem cells. This identifies a set sufficient to enable the binding of TFs with diverse tissue specificities, functions, and DNA-binding domains. These chromatin-competent factors are further classified when challenged to engage motifs within a highly phased nucleosome. The pluripotency factors OCT4-SOX2 preferentially engage non-nucleosomal and entry-exit motifs, but not nucleosome-internal sites, a preference that also guides binding genome wide. By contrast, factors such as BANP, REST, or CTCF engage throughout, causing nucleosomal displacement. This supports that TFs vary widely in their sensitivity to nucleosomes and that genome access is TF specific and influenced by nucleosome position in the cell.
Collapse
Affiliation(s)
- Ralph Stefan Grand
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland
| | - Lisa Baumgartner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
4
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Tsaytler P, Blaess G, Scholze-Wittler M, Koch F, Herrmann BG. Early neural specification of stem cells is mediated by a set of SOX2-dependent neural-associated enhancers. Stem Cell Reports 2024; 19:618-628. [PMID: 38579708 PMCID: PMC11103784 DOI: 10.1016/j.stemcr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.
Collapse
Affiliation(s)
- Pavel Tsaytler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Gaby Blaess
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
6
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Brahma S, Henikoff S. The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nat Genet 2024; 56:100-111. [PMID: 38049663 PMCID: PMC10786724 DOI: 10.1038/s41588-023-01603-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023]
Abstract
Chromatin accessibility is a hallmark of active transcription and entails ATP-dependent nucleosome remodeling, which is carried out by complexes such as Brahma-associated factor (BAF). However, the mechanistic links between transcription, nucleosome remodeling and chromatin accessibility are unclear. Here, we used a chemical-genetic approach coupled with time-resolved chromatin profiling to dissect the interplay between RNA Polymerase II (RNAPII), BAF and DNA-sequence-specific transcription factors in mouse embryonic stem cells. We show that BAF dynamically unwraps and evicts nucleosomes at accessible chromatin regions, while RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances ATP-dependent nucleosome eviction by BAF. We find that although RNAPII and BAF dynamically probe both transcriptionally active and Polycomb-repressed genomic regions, pluripotency transcription factor chromatin binding confers locus specificity for productive chromatin remodeling and nucleosome eviction by BAF. Our study suggests a paradigm for how functional synergy between dynamically acting chromatin factors regulates locus-specific nucleosome organization and chromatin accessibility.
Collapse
Affiliation(s)
- Sandipan Brahma
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
8
|
Yoo W, Song YW, Kim J, Ahn J, Kim J, Shin Y, Ryu JK, Kim KK. Molecular basis for SOX2-dependent regulation of super-enhancer activity. Nucleic Acids Res 2023; 51:11999-12019. [PMID: 37930832 PMCID: PMC10711550 DOI: 10.1093/nar/gkad908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Pioneer transcription factors (TFs) like SOX2 are vital for stemness and cancer through enhancing gene expression within transcriptional condensates formed with coactivators, RNAs and mediators on super-enhancers (SEs). Despite their importance, how these factors work together for transcriptional condensation and activation remains unclear. SOX2, a pioneer TF found in SEs of pluripotent and cancer stem cells, initiates SE-mediated transcription by binding to nucleosomes, though the mechanism isn't fully understood. To address SOX2's role in SEs, we identified mSE078 as a model SOX2-enriched SE and p300 as a coactivator through bioinformatic analysis. In vitro and cell assays showed SOX2 forms condensates with p300 and SOX2-binding motifs in mSE078. We further proved that SOX2 condensation is highly correlated with mSE078's enhancer activity in cells. Moreover, we successfully demonstrated that p300 not only elevated transcriptional activity but also triggered chromatin acetylation via its direct interaction with SOX2 within these transcriptional condensates. Finally, our validation of SOX2-enriched SEs showcased their contribution to target gene expression in both stem cells and cancer cells. In its entirety, this study imparts valuable mechanistic insights into the collaborative interplay of SOX2 and its coactivator p300, shedding light on the regulation of transcriptional condensation and activation within SOX2-enriched SEs.
Collapse
Affiliation(s)
- Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yi Wei Song
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Je-Kyung Ryu
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Maresca M, van den Brand T, Li H, Teunissen H, Davies J, de Wit E. Pioneer activity distinguishes activating from non-activating SOX2 binding sites. EMBO J 2023; 42:e113150. [PMID: 37691488 PMCID: PMC10577566 DOI: 10.15252/embj.2022113150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 09/12/2023] Open
Abstract
Genome-wide transcriptional activity involves the binding of many transcription factors (TFs) to thousands of sites in the genome. Pioneer TFs are a class of TFs that maintain open chromatin and allow non-pioneer TFs access to their target sites. Determining which TF binding sites directly drive transcription remains a challenge. Here, we use acute protein depletion of the pioneer TF SOX2 to establish its functionality in maintaining chromatin accessibility. We show that thousands of accessible sites are lost within an hour of protein depletion, indicating rapid turnover of these sites in the absence of the pioneer factor. To understand the relationship with transcription, we performed nascent transcription analysis and found that open chromatin sites that are maintained by SOX2 are highly predictive of gene expression, in contrast to all other SOX2 binding sites. We use CRISPR-Cas9 genome editing in the Klf2 locus to functionally validate a predicted regulatory element. We conclude that the regulatory activity of SOX2 is exerted mainly at sites where it maintains accessibility and that other binding sites are largely dispensable for gene regulation.
Collapse
Affiliation(s)
- Michela Maresca
- Division of Gene RegulationThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Teun van den Brand
- Division of Gene RegulationThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hangpeng Li
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Hans Teunissen
- Division of Gene RegulationThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Elzo de Wit
- Division of Gene RegulationThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
10
|
Poulet A, Kratkiewicz AJ, Li D, van Wolfswinkel JC. Chromatin analysis of adult pluripotent stem cells reveals a unique stemness maintenance strategy. SCIENCE ADVANCES 2023; 9:eadh4887. [PMID: 37801496 PMCID: PMC10558129 DOI: 10.1126/sciadv.adh4887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Many highly regenerative organisms maintain adult pluripotent stem cells throughout their life, but how the long-term maintenance of pluripotency is accomplished is unclear. To decipher the regulatory logic of adult pluripotent stem cells, we analyzed the chromatin organization of stem cell genes in the planarian Schmidtea mediterranea. We identify a special chromatin state of stem cell genes, which is distinct from that of tissue-specific genes and resembles constitutive genes. Where tissue-specific promoters have detectable transcription factor binding sites, the promoters of stem cell-specific genes instead have sequence features that broadly decrease nucleosome binding affinity. This genic organization makes pluripotency-related gene expression the default state in these cells, which is maintained by the activity of chromatin remodelers ISWI and SNF2 in the stem cells.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Arcadia J. Kratkiewicz
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C. van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Riesle AJ, Gao M, Rosenblatt M, Hermes J, Hass H, Gebhard A, Veil M, Grüning B, Timmer J, Onichtchouk D. Activator-blocker model of transcriptional regulation by pioneer-like factors. Nat Commun 2023; 14:5677. [PMID: 37709752 PMCID: PMC10502082 DOI: 10.1038/s41467-023-41507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Zygotic genome activation (ZGA) in the development of flies, fish, frogs and mammals depends on pioneer-like transcription factors (TFs). Those TFs create open chromatin regions, promote histone acetylation on enhancers, and activate transcription. Here, we use the panel of single, double and triple mutants for zebrafish genome activators Pou5f3, Sox19b and Nanog, multi-omics and mathematical modeling to investigate the combinatorial mechanisms of genome activation. We show that Pou5f3 and Nanog act differently on synergistic and antagonistic enhancer types. Pou5f3 and Nanog both bind as pioneer-like TFs on synergistic enhancers, promote histone acetylation and activate transcription. Antagonistic enhancers are activated by binding of one of these factors. The other TF binds as non-pioneer-like TF, competes with the activator and blocks all its effects, partially or completely. This activator-blocker mechanism mutually restricts widespread transcriptional activation by Pou5f3 and Nanog and prevents premature expression of late developmental regulators in the early embryo.
Collapse
Affiliation(s)
- Aileen Julia Riesle
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Meijiang Gao
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany
| | - Marcus Rosenblatt
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Jacques Hermes
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Helge Hass
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Anna Gebhard
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Marina Veil
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Björn Grüning
- Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104, Freiburg, Germany
| | - Jens Timmer
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany.
| | - Daria Onichtchouk
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.
- Institute of Developmental Biology RAS, 119991, Moscow, Russia.
| |
Collapse
|
13
|
Miyazaki S, Yamano H, Motooka D, Tashiro F, Matsuura T, Miyazaki T, Miyazaki JI. Zfp296 knockout enhances chromatin accessibility and induces a unique state of pluripotency in embryonic stem cells. Commun Biol 2023; 6:771. [PMID: 37488353 PMCID: PMC10366109 DOI: 10.1038/s42003-023-05148-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The Zfp296 gene encodes a zinc finger-type protein. Its expression is high in mouse embryonic stem cells (ESCs) but rapidly decreases following differentiation. Zfp296-knockout (KO) ESCs grew as flat colonies, which were reverted to rounded colonies by exogenous expression of Zfp296. KO ESCs could not form teratomas when transplanted into mice but could efficiently contribute to germline-competent chimeric mice following blastocyst injection. Transcriptome analysis revealed that Zfp296 deficiency up- and down-regulates a distinct group of genes, among which Dppa3, Otx2, and Pou3f1 were markedly downregulated. Chromatin immunoprecipitation sequencing demonstrated that ZFP296 binding is predominantly seen in the vicinity of the transcription start sites (TSSs) of a number of genes, and ZFP296 was suggested to negatively regulate transcription. Consistently, chromatin accessibility assay clearly showed that ZFP296 binding reduces the accessibility of the TSS regions of target genes. Zfp296-KO ESCs showed increased histone H3K9 di- and trimethylation. Co-immunoprecipitation analyses revealed interaction of ZFP296 with G9a and GLP. These results show that ZFP296 plays essential roles in maintaining the global epigenetic state of ESCs through multiple mechanisms including activation of Dppa3, attenuation of chromatin accessibility, and repression of H3K9 methylation, but that Zfp296-KO ESCs retain a unique state of pluripotency while lacking the teratoma-forming ability.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Yamano
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumi Tashiro
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takumi Matsuura
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Toray Industries, Inc., Tokyo, Japan
| | - Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
14
|
Bobbitt JR, Seachrist DD, Keri RA. Chromatin Organization and Transcriptional Programming of Breast Cancer Cell Identity. Endocrinology 2023; 164:bqad100. [PMID: 37394919 PMCID: PMC10370366 DOI: 10.1210/endocr/bqad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The advent of sequencing technologies for assessing chromosome conformations has provided a wealth of information on the organization of the 3-dimensional genome and its role in cancer progression. It is now known that changes in chromatin folding and accessibility can promote aberrant activation or repression of transcriptional programs that can drive tumorigenesis and progression in diverse cancers. This includes breast cancer, which comprises several distinct subtypes defined by their unique transcriptomes that dictate treatment response and patient outcomes. Of these, basal-like breast cancer is an aggressive subtype controlled by a pluripotency-enforcing transcriptome. Meanwhile, the more differentiated luminal subtype of breast cancer is driven by an estrogen receptor-dominated transcriptome that underlies its responsiveness to antihormone therapies and conveys improved patient outcomes. Despite the clear differences in molecular signatures, the genesis of each subtype from normal mammary epithelial cells remains unclear. Recent technical advances have revealed key distinctions in chromatin folding and organization between subtypes that could underlie their transcriptomic and, hence, phenotypic differences. These studies also suggest that proteins controlling particular chromatin states may be useful targets for treating aggressive disease. In this review, we explore the current state of understanding of chromatin architecture in breast cancer subtypes and its potential role in defining their phenotypic characteristics.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Zhang H, Blobel GA. Genome folding dynamics during the M-to-G1-phase transition. Curr Opin Genet Dev 2023; 80:102036. [PMID: 37099832 PMCID: PMC10280458 DOI: 10.1016/j.gde.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/28/2023]
Abstract
All measurable features of higher-order chromosomal architecture undergo drastic reorganization as cells enter and exit mitosis. During mitosis, gene transcription is temporarily halted, the nuclear envelope is dismantled, and chromosomes undergo condensation. At this time, chromatin compartments, topologically associating domains (TADs), and loops that connect enhancers with promoters as well as CTCF/cohesin loops are dissolved. Upon G1 entry, genome organization is rebuilt in the daughter nuclei to resemble that of the mother nucleus. We survey recent studies that traced these features in relation to gene expression during the mitosis-to-G1-phase transition at high temporal resolution. Dissection of fluctuating architectural features informed the hierarchical relationships of chromosomal organization, the mechanisms by which they are formed, and their mutual (in-) dependence. These studies highlight the importance of considering the cell cycle dynamics for studies of chromosomal organization.
Collapse
Affiliation(s)
- Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Oses C, Francia MG, Verneri P, Vazquez Echegaray C, Guberman AS, Levi V. The dynamical organization of the core pluripotency transcription factors responds to differentiation cues in early S-phase. Front Cell Dev Biol 2023; 11:1125015. [PMID: 37215075 PMCID: PMC10192714 DOI: 10.3389/fcell.2023.1125015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
DNA replication in stem cells is a major challenge for pluripotency preservation and cell fate decisions. This process involves massive changes in the chromatin architecture and the reorganization of many transcription-related molecules in different spatial and temporal scales. Pluripotency is controlled by the master transcription factors (TFs) OCT4, SOX2 and NANOG that partition into condensates in the nucleus of embryonic stem cells. These condensates are proposed to play relevant roles in the regulation of gene expression and the maintenance of pluripotency. Here, we asked whether the dynamical distribution of the pluripotency TFs changes during the cell cycle, particularly during DNA replication. Since the S phase is considered to be a window of opportunity for cell fate decisions, we explored if differentiation cues in G1 phase trigger changes in the distribution of these TFs during the subsequent S phase. Our results show a spatial redistribution of TFs condensates during DNA replication which was not directly related to chromatin compaction. Additionally, fluorescence fluctuation spectroscopy revealed TF-specific, subtle changes in the landscape of TF-chromatin interactions, consistent with their particularities as key players of the pluripotency network. Moreover, we found that differentiation stimuli in the preceding G1 phase triggered a relatively fast and massive reorganization of pluripotency TFs in early-S phase. Particularly, OCT4 and SOX2 condensates dissolved whereas the lifetimes of TF-chromatin interactions increased suggesting that the reorganization of condensates is accompanied with a change in the landscape of TF-chromatin interactions. Notably, NANOG showed impaired interactions with chromatin in stimulated early-S cells in line with its role as naïve pluripotency TF. Together, these findings provide new insights into the regulation of the core pluripotency TFs during DNA replication of embryonic stem cells and highlight their different roles at early differentiation stages.
Collapse
Affiliation(s)
- Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
18
|
Brahma S, Henikoff S. RNA Polymerase II, the BAF remodeler and transcription factors synergize to evict nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525083. [PMID: 36711459 PMCID: PMC9882304 DOI: 10.1101/2023.01.22.525083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromatin accessibility is a hallmark of active transcription and requires ATP-dependent nucleosome remodeling by Brahma-Associated Factor (BAF). However, the mechanistic link between transcription, nucleosome remodeling, and chromatin accessibility is unclear. Here, we used a chemical-genetic approach to dissect the interplay between RNA Polymerase II (RNAPII), BAF, and DNA-sequence-specific transcription factors (TFs) in mouse embryonic stem cells. By time-resolved chromatin profiling with acute transcription block at distinct stages, we show that RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances nucleosome eviction by BAF. We find that RNAPII and BAF probe both transcriptionally active and Polycomb-repressed genomic regions and provide evidence that TFs capture transient site exposure due to nucleosome unwrapping by BAF to confer locus specificity for persistent chromatin remodeling. Our study reveals the mechanistic basis of cell-type-specific chromatin accessibility. We propose a new paradigm for how functional synergy between dynamically acting chromatin factors regulates nucleosome organization.
Collapse
Affiliation(s)
- Sandipan Brahma
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave North, Seattle, WA, 98109
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave North, Seattle, WA, 98109
- Howard Hughes Medical Institute, USA
| |
Collapse
|
19
|
Frederick MA, Williamson KE, Fernandez Garcia M, Ferretti MB, McCarthy RL, Donahue G, Luzete Monteiro E, Takenaka N, Reynaga J, Kadoch C, Zaret KS. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat Struct Mol Biol 2023; 30:31-37. [PMID: 36536103 PMCID: PMC10004348 DOI: 10.1038/s41594-022-00886-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
To determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPβ. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns. The DNA binding domain of PU.1 binds mononucleosomes, but requires an additional intrinsically disordered domain to bind and open compacted chromatin. The canonical mammalian SWI/SNF (cBAF) remodeler was unable to act upon two forms of locally open chromatin unless cBAF was enabled by a separate transactivation domain of PU.1. cBAF potentiates the PU.1 DNA binding domain to weakly open chromatin in the absence of the PU.1 disordered domain. Our findings reveal a hierarchy by which chromatin is opened and show that pioneer factors can provide specificity for action by nucleosome remodelers.
Collapse
Affiliation(s)
- Megan A Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn E Williamson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Meilin Fernandez Garcia
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan L McCarthy
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edgar Luzete Monteiro
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janice Reynaga
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
21
|
Wang G, Li X, Shen W, Li MW, Huang M, Zhang J, Li H. The chromatin accessibility landscape of pistils and anthers in rice. PLANT PHYSIOLOGY 2022; 190:2797-2811. [PMID: 36149297 PMCID: PMC9706442 DOI: 10.1093/plphys/kiac448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Transcription activation is tightly associated with the openness of chromatin and allows direct contact between transcriptional regulators and their targeted DNA for gene expression. However, there are limited studies on the annotation of open chromatin regions (OCRs) in rice (Oryza sativa), especially those in reproductive organs. Here, we characterized OCRs in rice pistils and anthers with an assay for transposase-accessible chromatin using sequencing. Despite a large overlap, we found more OCRs in pistils than in anthers. These OCRs were enriched in gene transcription start sites (TSSs) and showed tight associations with gene expression. Transcription factor (TF) binding motifs were enriched at these OCRs as validated by TF chromatin immunoprecipitation followed by sequencing. Pistil-specific OCRs provided potential regulatory networks by binding directly to the targets, indicating that pistil-specific OCRs may be indicators of cis-regulatory elements in regulating pistil development, which are absent in anthers. We also found that open chromatin of pistils and anthers responded differently to low temperature (LT). These data offer a comprehensive overview of OCRs regulating reproductive organ development and LT responses in rice.
Collapse
Affiliation(s)
- Guanqun Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
| | - Wei Shen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Man-Wah Li
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Mingkun Huang
- Lushan Botanical Garden Jiangxi Province, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| | - Haoxuan Li
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| |
Collapse
|
22
|
Moreno DF, Acar M. Phenotypic selection during laboratory evolution of yeast populations leads to a genome-wide sustainable chromatin compaction shift. Front Microbiol 2022; 13:974055. [PMID: 36312917 PMCID: PMC9615041 DOI: 10.3389/fmicb.2022.974055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In a previous study, we have shown how microbial evolution has resulted in a persistent reduction in expression after repeatedly selecting for the lowest PGAL1-YFP-expressing cells. Applying the ATAC-seq assay on samples collected from this 28-day evolution experiment, here we show how genome-wide chromatin compaction changes during evolution under selection pressure. We found that the chromatin compaction was altered not only on GAL network genes directly impacted by the selection pressure, showing an example of selection-induced non-genetic memory, but also at the whole-genome level. The GAL network genes experienced chromatin compaction accompanying the reduction in PGAL1-YFP reporter expression. Strikingly, the fraction of global genes with differentially compacted chromatin states accounted for about a quarter of the total genome. Moreover, some of the ATAC-seq peaks followed well-defined temporal dynamics. Comparing peak intensity changes on consecutive days, we found most of the differential compaction to occur between days 0 and 3 when the selection pressure was first applied, and between days 7 and 10 when the pressure was lifted. Among the gene sets enriched for the differential compaction events, some had increased chromatin availability once selection pressure was applied and decreased availability after the pressure was lifted (or vice versa). These results intriguingly show that, despite the lack of targeted selection, transcriptional availability of a large fraction of the genome changes in a very diverse manner during evolution, and these changes can occur in a relatively short number of generations.
Collapse
Affiliation(s)
- David F. Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
- Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
- *Correspondence: Murat Acar,
| |
Collapse
|
23
|
Li J, Dai C, Xie W, Zhang H, Huang X, Chronis C, Ye Y, Zhang W. A One-step strategy to target essential factors with auxin-inducible degron system in mouse embryonic stem cells. Front Cell Dev Biol 2022; 10:964119. [PMID: 36003152 PMCID: PMC9393215 DOI: 10.3389/fcell.2022.964119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The self-renewal and pluripotency of embryonic stem cells (ESCs) are conferred by networks including transcription factors and histone modifiers. The Auxin-inducible degron (AID) system can rapidly and reversibly degrade its target proteins and is becoming a powerful tool to explore novel function of key pluripotent and histone modifier genes in ESCs. However, the low biallelic tagging efficiency and a basal degradation level of the current AID systems deem it unsuitable to target key pluripotent genes with tightly controlled expression levels. Here, we develop a one-step strategy to successfully target and repress the endogenous pluripotent genes in mouse ESCs and replace their expression with AID fused transgenes. Therefore, this work provides an efficient way for employing the AID system to uncover novel function of essential pluripotent and chromatin modifier genes in ESCs.
Collapse
Affiliation(s)
- Jingsheng Li
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Chunhong Dai
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Wenyan Xie
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Heyao Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xin Huang
- Department of Computational Biology St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, Chicago, IL, United States
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
- *Correspondence: Ying Ye, ; Wensheng Zhang,
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
- Department of Physiology School of Basic Medical Sciences Binzhou Medical University, Yantai, China
- *Correspondence: Ying Ye, ; Wensheng Zhang,
| |
Collapse
|
24
|
Luzete-Monteiro E, Zaret KS. Structures and consequences of pioneer factor binding to nucleosomes. Curr Opin Struct Biol 2022; 75:102425. [PMID: 35863165 PMCID: PMC9976633 DOI: 10.1016/j.sbi.2022.102425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Pioneer transcription factors are able to bind a partially exposed motif on the surface of a nucleosome, enabling the proteins to target sites in silent regions of chromatin that have been compacted by linker histone. The targeting of nucleosomal DNA by pioneer factors has been observed in vitro and in vivo, where binding can promote local nucleosome exposure that allows other transcription factors, nucleosome remodelers, and histone modifiers to engage the chromatin and elicit gene activation or further repression. Pioneer factors thereby establish new gene expression programs during cell fate changes that occur during embryonic development, regeneration, and cancer. Here, we review recent biophysical studies that reveal the structural features and strategies used by pioneer factors to accomplish nucleosome binding and the consequential changes to nucleosomes that can lead to DNA accessibility.
Collapse
Affiliation(s)
- Edgar Luzete-Monteiro
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 9-131 SCTR, 3400 Civic Center Blvd., Philadelphia, PA 19104-5157, USA.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104-4544
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 9-131 SCTR, 3400 Civic Center Blvd., Philadelphia, PA 19104-5157, USA
| |
Collapse
|
25
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Interplay between regulatory elements and chromatin topology in cellular lineage determination. Trends Genet 2022; 38:1048-1061. [DOI: 10.1016/j.tig.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
|
27
|
Soares MAF, Oliveira RA, Castro DS. Function and regulation of transcription factors during mitosis-to-G1 transition. Open Biol 2022; 12:220062. [PMID: 35642493 PMCID: PMC9157305 DOI: 10.1098/rsob.220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
During cell division, drastic cellular changes characteristic of mitosis result in the inactivation of the transcriptional machinery, and global downregulation of transcription. Sequence-specific transcription factors (TFs) have thus been considered mere bystanders, devoid of any regulatory function during mitosis. This view changed significantly in recent years, upon the conclusion that many TFs associate with condensed chromosomes during cell division, even occupying a fraction of their genomic target sites in mitotic chromatin. This finding was at the origin of the concept of mitotic bookmarking by TFs, proposed as a mechanism to propagate gene regulatory information across cell divisions, by facilitating the reactivation of specific bookmarked genes. While the underlying mechanisms and biological significance of this model remain elusive, recent developments in this fast-moving field have cast new light into TF activity during mitosis, beyond a bookmarking role. Here, we start by reviewing the most recent findings on the complex nature of TF-chromatin interactions during mitosis, and on mechanisms that may regulate them. Next, and in light of recent reports describing how transcription is reinitiated in temporally distinct waves during mitosis-to-G1 transition, we explore how TFs may contribute to defining this hierarchical gene expression process. Finally, we discuss how TF activity during mitotic exit may impact the acquisition of cell identity upon cell division, and propose a model that integrates dynamic changes in TF-chromatin interactions during this cell-cycle period, with the execution of cell-fate decisions.
Collapse
Affiliation(s)
- Mário A. F. Soares
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | | | - Diogo S. Castro
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
28
|
Xiong L, Tolen EA, Choi J, Velychko S, Caizzi L, Velychko T, Adachi K, MacCarthy CM, Lidschreiber M, Cramer P, Schöler HR. Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells. eLife 2022; 11:71533. [PMID: 35621159 PMCID: PMC9142147 DOI: 10.7554/elife.71533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2.
Collapse
Affiliation(s)
- Le Xiong
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Erik A Tolen
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Jinmi Choi
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Livia Caizzi
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Caitlin M MacCarthy
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| |
Collapse
|
29
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
30
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
31
|
Zhao Y, Dong Y, Hong W, Jiang C, Yao K, Cheng C. Computational modeling of chromatin accessibility identified important epigenomic regulators. BMC Genomics 2022; 23:19. [PMID: 34996354 PMCID: PMC8742372 DOI: 10.1186/s12864-021-08234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022] Open
Abstract
Chromatin accessibility is essential for transcriptional activation of genomic regions. It is well established that transcription factors (TFs) and histone modifications (HMs) play critical roles in chromatin accessibility regulation. However, there is a lack of studies that quantify these relationships. Here we constructed a two-layer model to predict chromatin accessibility by integrating DNA sequence, TF binding, and HM signals. By applying the model to two human cell lines (GM12878 and HepG2), we found that DNA sequences had limited power for accessibility prediction, while both TF binding and HM signals predicted chromatin accessibility with high accuracy. According to the HM model, HM features determined chromatin accessibility in a cell line shared manner, with the prediction power attributing to five core HM types. Results from the TF model indicated that chromatin accessibility was determined by a subset of informative TFs including both cell line-specific and generic TFs. The combined model of both TF and HM signals did not further improve the prediction accuracy, indicating that they provide redundant information in terms of chromatin accessibility prediction. The TFs and HM models can also distinguish the chromatin accessibility of proximal versus distal transcription start sites with high accuracy.
Collapse
Affiliation(s)
- Yanding Zhao
- Department of Medicine, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yadong Dong
- Department of Medicine, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin Yao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA.
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Kramer ET, Godoy PM, Kaufman CK. Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors. G3 (BETHESDA, MD.) 2022; 12:jkab379. [PMID: 34791221 PMCID: PMC8727958 DOI: 10.1093/g3journal/jkab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/02/2021] [Indexed: 11/14/2022]
Abstract
Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant (BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using fluorescence-activated cell sorting to isolate these populations, we performed high-quality RNA- and ATAC-seq on sorted zebrafish melanocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as did melanoma cells. Comparing melanocytes and melanoma, we note 4128 differentially expressed genes and 56,936 differentially accessible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining the RNA- and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more refined gene expression program driving cancerous melanoma. These data serve as a resource to identify candidate regulators of the normal vs. diseased states in a genetically controlled in vivo context.
Collapse
Affiliation(s)
- Eva T Kramer
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Paula M Godoy
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| |
Collapse
|
33
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
34
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. Biochem Soc Trans 2021; 49:1489-1503. [PMID: 34431497 DOI: 10.1042/bst20190960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.
Collapse
|
36
|
Tallan A, Stanton BZ. Inducible Protein Degradation to Understand Genome Architecture. Biochemistry 2021; 60:2387-2396. [PMID: 34292716 DOI: 10.1021/acs.biochem.1c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We review exciting recent advances in protein degradation, with a focus on chromatin structure. In our analysis of the literature, we highlight studies of kinetic control of protein stability for cohesin, condensin, ATP-dependent chromatin remodeling, and pioneer transcription factors. With new connections emerging between chromatin remodeling and genome structure, we anticipate exciting developments at the intersection of these topics to be revealed in the coming years. Moreover, we pay special attention to the 20-year anniversary of PROTACs, with an overview of E3 ligase/target pairings and central questions that might lead to the next generation of PROTACs with an expanded scope and generality. While steady-state experimental measurements with constitutive genome editing are impactful, we highlight complementary approaches for rapid kinetic protein degradation to uncover early targeting functions and to understand the central determinants of genome structure-function relationships.
Collapse
Affiliation(s)
- Alexi Tallan
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, 700 Children's Drive, Columbus, Ohio 43205, United States.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Benjamin Z Stanton
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, 700 Children's Drive, Columbus, Ohio 43205, United States.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States.,Department of Pediatrics, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, Ohio 43210, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
37
|
Soares MAF, Soares DS, Teixeira V, Heskol A, Bressan RB, Pollard SM, Oliveira RA, Castro DS. Hierarchical reactivation of transcription during mitosis-to-G1 transition by Brn2 and Ascl1 in neural stem cells. Genes Dev 2021; 35:1020-1034. [PMID: 34168041 PMCID: PMC8247608 DOI: 10.1101/gad.348174.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
During mitosis, chromatin condensation is accompanied by a global arrest of transcription. Recent studies suggest transcriptional reactivation upon mitotic exit occurs in temporally coordinated waves, but the underlying regulatory principles have yet to be elucidated. In particular, the contribution of sequence-specific transcription factors (TFs) remains poorly understood. Here we report that Brn2, an important regulator of neural stem cell identity, associates with condensed chromatin throughout cell division, as assessed by live-cell imaging of proliferating neural stem cells. In contrast, the neuronal fate determinant Ascl1 dissociates from mitotic chromosomes. ChIP-seq analysis reveals that Brn2 mitotic chromosome binding does not result in sequence-specific interactions prior to mitotic exit, relying mostly on electrostatic forces. Nevertheless, surveying active transcription using single-molecule RNA-FISH against immature transcripts reveals differential reactivation kinetics for key targets of Brn2 and Ascl1, with transcription onset detected in early (anaphase) versus late (early G1) phases, respectively. Moreover, by using a mitotic-specific dominant-negative approach, we show that competing with Brn2 binding during mitotic exit reduces the transcription of its target gene Nestin Our study shows an important role for differential binding of TFs to mitotic chromosomes, governed by their electrostatic properties, in defining the temporal order of transcriptional reactivation during mitosis-to-G1 transition.
Collapse
Affiliation(s)
- Mário A F Soares
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Diogo S Soares
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vera Teixeira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Abeer Heskol
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | | | - Diogo S Castro
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
38
|
Mazzocca M, Fillot T, Loffreda A, Gnani D, Mazza D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem Soc Trans 2021; 49:1121-1132. [PMID: 34003257 PMCID: PMC8286828 DOI: 10.1042/bst20200709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) regulate transcription of their target genes by identifying and binding to regulatory regions of the genome among billions of potential non-specific decoy sites, a task that is often presented as a 'needle in the haystack' challenge. The TF search process is now well understood in bacteria, but its characterization in eukaryotes needs to account for the complex organization of the nuclear environment. Here we review how live-cell single molecule tracking is starting to shed light on the TF search mechanism in the eukaryotic cell and we outline the future challenges to tackle in order to understand how nuclear organization modulates the TF search process in physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tom Fillot
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Gnani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
39
|
Hass MR, Brissette D, Parameswaran S, Pujato M, Donmez O, Kottyan LC, Weirauch MT, Kopan R. Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genet 2021; 17:e1009574. [PMID: 34111109 PMCID: PMC8219162 DOI: 10.1371/journal.pgen.1009574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/22/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression. Runt-related transcription factor (Runx) 1 & 2 impact development and disease by activating or repressing transcription. In this manuscript we used genome editing tools to remove Runx1, and as expected, observed widespread changes in chromatin accessibility. Newly closed areas contained Runx1 binding sites and were enriched near genes whose expression depended on Runx1. Interestingly, this occurred despite continued binding of Runx2 to the same regions of DNA, which suggests that Runx2 is insufficient to maintain open chromatin and expression of Runx1 target genes in this cellular context. By contrast, newly opened chromatin regions, many near genes that were upregulated in Runx1 knockout cells, did not enrich for Runx1 binding sites. Instead, these regions were enriched for sites for the repressor Zeb proteins. We found that the loss of Zeb 1 & 2 expression, direct transcriptional targets of Runx1, resulted in the opening of chromatin and upregulation of genes residing near the newly open sites in Runx1 knockout cells. The same sites were also open and nearby genes expressed in edited Zeb1 and Zeb2 knockout cells. Among them were transcription factors, such as the Grhl2 gene, which in turn bind to and upregulate their target genes. Thus, the loss of a single transcription factor initiates a cascade of direct and indirect ramifications with likely negative effects on development and health.
Collapse
Affiliation(s)
- Matthew R. Hass
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Daniel Brissette
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sreeja Parameswaran
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mario Pujato
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Omer Donmez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Leah C. Kottyan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| |
Collapse
|
40
|
Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int J Mol Sci 2021; 22:ijms22115949. [PMID: 34073089 PMCID: PMC8198692 DOI: 10.3390/ijms22115949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Collapse
|
41
|
Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, Fropf R, McAnany C, Gagneur J, Kundaje A, Zeitlinger J. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat Genet 2021; 53:354-366. [PMID: 33603233 PMCID: PMC8812996 DOI: 10.1038/s41588-021-00782-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
Collapse
Affiliation(s)
- Žiga Avsec
- Department of Informatics, Technical University of Munich, Garching, Germany,Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany,Currently at DeepMind, London, UK
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Amr Alexandari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Khyati Dalal
- Stowers Institute for Medical Research, Kansas City, MO, USA,The University of Kansas Medical Center, Kansas City, KS, USA
| | - Robin Fropf
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Charles McAnany
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA,Department of Genetics, Stanford University, Stanford, CA, USA,correspondence: ,
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA,The University of Kansas Medical Center, Kansas City, KS, USA,correspondence: ,
| |
Collapse
|
42
|
Sox2 modulation increases naïve pluripotency plasticity. iScience 2021; 24:102153. [PMID: 33665571 PMCID: PMC7903329 DOI: 10.1016/j.isci.2021.102153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Induced pluripotency provides a tool to explore mechanisms underlying establishment, maintenance, and differentiation of naive pluripotent stem cells (nPSCs). Here, we report that self-renewal of nPSCs requires minimal Sox2 expression (Sox2-low). Sox2-low nPSCs do not show impaired neuroectoderm specification and differentiate efficiently in vitro into all embryonic germ lineages. Strikingly, upon the removal of self-renewing cues Sox2-low nPSCs differentiate into both embryonic and extraembryonic cell fates in vitro and in vivo. This differs from previous studies which only identified conditions that allowed cells to differentiate to one fate or the other. At the single-cell level self-renewing Sox2-low nPSCs exhibit a naive molecular signature. However, they display a nearer trophoblast identity than controls and decreased ability of Oct4 to bind naïve-associated regulatory sequences. In sum, this work defines wild-type levels of Sox2 as a restrictor of developmental potential and suggests perturbation of naive network as a mechanism to increase cell plasticity. Low Sox2 expression is sufficient for naive pluripotent stem cell self-renewal Low Sox2 expression does not impair neurectoderm differentiation in vitro Low Sox2 expression impairs Oct4 genomic occupancy Low Sox2 increases naive pluripotent stem cell plasticity in vitro and in vivo
Collapse
|
43
|
Robinson M, Gilbert SF, Waters JA, Lujano-Olazaba O, Lara J, Alexander LJ, Green SE, Burkeen GA, Patrus O, Sarwar Z, Holmberg R, Wang C, House CD. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers (Basel) 2021; 13:cancers13020262. [PMID: 33445692 PMCID: PMC7828139 DOI: 10.3390/cancers13020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of tumor-initiating cells (TICs) has traditionally relied on surface markers including CD133, CD44, CD117, and the aldehyde dehydrogenase (ALDH) enzyme, which have diverse expression across samples. A more reliable indication of TICs may include the expression of embryonic transcription factors that support long-term self-renewal, multipotency, and quiescence. We hypothesize that SOX2, OCT4, and NANOG will be enriched in ovarian TICs and may indicate TICs with high relapse potential. We evaluated a panel of eight ovarian cancer cell lines grown in standard 2-D culture or in spheroid-enriching 3-D culture, and correlated expression with growth characteristics, TIC marker expression, and chemotherapy resistance. RNA-sequencing showed that cell cycle regulation pathways involving SOX2 were elevated in 3-D conditions. HGSOC lines had longer doubling-times, greater chemoresistance, and significantly increased expression of SOX2, OCT4, and NANOG in 3-D conditions. CD117+ or ALDH+/CD133+ cells had increased SOX2, OCT4, and NANOG expression. Limiting dilution in in vivo experiments implicated SOX2, but not OCT4 or NANOG, with early tumor-initiation. An analysis of patient data suggested a stronger role for SOX2, relative to OCT4 or NANOG, for tumor relapse potential. Overall, our findings suggest that SOX2 may be a more consistent indicator of ovarian TICs that contribute to tumor repopulation following chemotherapy. Future studies evaluating SOX2 in TIC biology will increase our understanding of the mechanisms that drive ovarian cancer relapse.
Collapse
Affiliation(s)
- Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Samuel F. Gilbert
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Omar Lujano-Olazaba
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Jacqueline Lara
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Logan J. Alexander
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Samuel E. Green
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Gregory A. Burkeen
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Omid Patrus
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Zinia Sarwar
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Ryne Holmberg
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Christine Wang
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +1-(619)-594-3053
| |
Collapse
|
44
|
Abstract
Chromatin ‘blobs’ were recently identified by live super-resolution imaging of labeled nucleosomes as pervasive but fleeting structural entities. However, the mechanisms leading to the formation of these blobs and their functional implications are unknown. We explore here whether causal relationships exist between parameters that characterize the chromatin blob dynamics and structure, by adapting a framework for spatio-temporal Granger-causality inference. Our analysis reveals that chromatin dynamics is a key determinant for both blob area and local density. Such causality, however, could be demonstrated only in 10–20% of the nucleus, suggesting that chromatin dynamics and structure at the nanometer scale are dominated by stochasticity. We show that the theory of active semiflexible polymers can be invoked to provide potential mechanisms leading to the organization of chromatin into blobs. Our results represent a first step toward elucidating the mechanisms that govern the dynamic and stochastic organization of chromatin in the cell nucleus.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Delft University of Technology , Delft, The Netherlands
| | - Genevieve Fourel
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS UMR 5239, Inserm U1210 , Lyon, France.,Centre Blaise Pascal, ENS de Lyon , Lyon, France
| | - Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre , Cairo, Egypt.,Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University , Cambridge, MA, USA
| |
Collapse
|
45
|
Yoo H, La H, Lee EJ, Choi HJ, Oh J, Thang NX, Hong K. ATP-Dependent Chromatin Remodeler CHD9 Controls the Proliferation of Embryonic Stem Cells in a Cell Culture Condition-Dependent Manner. BIOLOGY 2020; 9:biology9120428. [PMID: 33261017 PMCID: PMC7760864 DOI: 10.3390/biology9120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022]
Abstract
Emerging evidence suggests that chromodomain-helicase-DNA-binding (CHD) proteins are involved in stem cell maintenance and differentiation via the coordination of chromatin structure and gene expression. However, the molecular function of some CHD proteins in stem cell regulation is still poorly understood. Herein, we show that Chd9 knockdown (KD) in mouse embryonic stem cells (ESCs) cultured in normal serum media, not in 2i-leukemia inhibitory factor (LIF) media, causes rapid cell proliferation. This is caused by transcriptional regulation related to the cell cycle and the response to growth factors. Our analysis showed that, unlike the serum cultured-Chd9 KD ESCs, the 2i-LIF-cultured-Chd9 KO ESCs displayed elevated levels of critical G1 phase regulators such as p21 and p27. Consistently, the DNA binding sites of CHD9 overlap with some transcription factor DNA motifs that are associated with genes regulating the cell cycle and growth pathways. These transcription factors include the cycle gene homology region (CHR), Arid5a, and LIN54. Collectively, our results provide new insights into CHD9-mediated gene transcription for controlling the cell cycle of ESCs.
Collapse
|
46
|
Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol 2020; 21:278. [PMID: 33203432 PMCID: PMC7670612 DOI: 10.1186/s13059-020-02185-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic genome is hierarchically structured yet highly dynamic. Regulating transcription in this environment demands a high level of coordination to permit many proteins to interact with chromatin fiber at appropriate sites in a timely manner. We describe how recent advances in quantitative imaging techniques overcome caveats of sequencing-based methods (Hi-C and related) by enabling direct visualization of transcription factors and chromatin at high resolution, from single genes to the whole nucleus. We discuss the contribution of fluorescence imaging to deciphering the principles underlying this coordination within the crowded nuclear space in living cells and discuss challenges ahead.
Collapse
Affiliation(s)
- Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Current Address: Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
47
|
Pryzhkova MV, Xu MJ, Jordan PW. Adaptation of the AID system for stem cell and transgenic mouse research. Stem Cell Res 2020; 49:102078. [PMID: 33202307 PMCID: PMC7784532 DOI: 10.1016/j.scr.2020.102078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The auxin-inducible degron (AID) system is becoming a widely used method for rapid and reversible degradation of target proteins. This system has been successfully used to study gene and protein functions in eukaryotic cells and common model organisms, such as nematode and fruit fly. To date, applications of the AID system in mammalian stem cell research are limited. Furthermore, standard mouse models harboring the AID system have not been established. Here we have explored the utility of the H11 safe-harbor locus for integration of the TIR1 transgene, an essential component of auxin-based protein degradation system. We have shown that the H11 locus can support constitutive and conditional TIR1 expression in mouse and human embryonic stem cells, as well as in mice. We demonstrate that the AID system can be successfully employed for rapid degradation of stable proteins in embryonic stem cells, which is crucial for investigation of protein functions in quickly changing environments, such as stem cell proliferation and differentiation. As embryonic stem cells possess unlimited proliferative capacity, differentiation potential, and can mimic organ development, we believe that these research tools will be an applicable resource to a broad scientific audience.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Sun Y, Dong L, Zhang Y, Lin D, Xu W, Ke C, Han L, Deng L, Li G, Jackson D, Li X, Yang F. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biol 2020; 21:143. [PMID: 32546248 PMCID: PMC7296987 DOI: 10.1186/s13059-020-02063-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maize ears and tassels are two separate types of inflorescence which are initiated by similar developmental processes but gradually develop distinct architectures. However, coordinated trans and cis regulation of differentially expressed genes determining ear and tassel architecture within the 3D genome context is largely unknown. RESULTS We identify 56,055 and 52,633 open chromatin regions (OCRs) in developing maize ear and tassel primordia using ATAC-seq and characterize combinatorial epigenome features around these OCRs using ChIP-seq, Bisulfite-seq, and RNA-seq datasets. Our integrative analysis of coordinated epigenetic modification and transcription factor binding to OCRs highlights the cis and trans regulation of differentially expressed genes in ear and tassel controlling inflorescence architecture. We further systematically map chromatin interactions at high-resolution in corresponding tissues using in situ digestion-ligation-only Hi-C (DLO Hi-C). The extensive chromatin loops connecting OCRs and genes provide a 3D view on cis- and trans-regulatory modules responsible for ear- and tassel-specific gene expression. We find that intergenic SNPs tend to locate in distal OCRs, and our chromatin interaction maps provide a potential mechanism for trait-associated intergenic SNPs that may contribute to phenotypic variation by influencing target gene expression through chromatin loops. CONCLUSIONS Our comprehensive epigenome annotations and 3D genome maps serve as valuable resource and provide a deep understanding of the complex regulatory mechanisms of genes underlying developmental and morphological diversities between maize ear and tassel.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Changxiong Ke
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lulu Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
49
|
Michael AK, Grand RS, Isbel L, Cavadini S, Kozicka Z, Kempf G, Bunker RD, Schenk AD, Graff-Meyer A, Pathare GR, Weiss J, Matsumoto S, Burger L, Schübeler D, Thomä NH. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science 2020; 368:1460-1465. [PMID: 32327602 DOI: 10.1126/science.abb0074] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo-electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ganesh R Pathare
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Syota Matsumoto
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. .,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
50
|
Suter DM. Transcription Factors and DNA Play Hide and Seek. Trends Cell Biol 2020; 30:491-500. [PMID: 32413318 DOI: 10.1016/j.tcb.2020.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/12/2023]
Abstract
Transcription factors (TFs) bind to specific DNA motifs to regulate the expression of target genes. To reach their binding sites, TFs diffuse in 3D and perform local motions such as 1D sliding, hopping, or intersegmental transfer. TF-DNA interactions depend on multiple parameters, such as the chromatin environment, TF partitioning into distinct subcellular regions, and cooperativity with other DNA-binding proteins. In this review, how current understanding of the search process has initially been shaped by prokaryotic studies is discussed, as well as what is known about the parameters regulating TF search efficiency in the context of the complex eukaryotic chromatin landscape.
Collapse
Affiliation(s)
- David M Suter
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|