1
|
Zeng ZX, Shi JH, Qiu CL, Fan T, Lu J, Abdelnabby H, Wang MQ. Nitrogen input reduces the physical defense of rice plant against planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae240. [PMID: 39436764 DOI: 10.1093/jee/toae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Nitrogen has important effects on plant growth and defense. Although studies on the alternation in plant chemical defense by nitrogen fertilization have been extensively reported, how it affects physical defense is poorly understood. Two rice (Oryza sativa L.) (Poales: Poaceae) varieties (LDQ7 and YLY1) were applied with varying nitrogen regimes (0.90 and 180 kg ha-1) to study their physical defense against the brown planthopper (BPH) Nilaparvata lugens (Hemiptera: Delphacidae) in this study. Results of the electrical penetration graph showed that BPH searching and penetrating duration time was shortened with increasing nitrogen application. Also, the tubercle papicle of rice leaves decreased with increasing nitrogen application, while rice leaves' surface structure and waxy composition changed with increasing nitrogen application. In field experiments, BPH populations increased with the application of nitrogen fertilizer. These findings suggest that nitrogen input can affect plant-insect interactions by reducing the physical defense of plants, which provides new ideas for the organic combinations of yield increase and pest control in rice fields.
Collapse
Affiliation(s)
- Zi-Xuan Zeng
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Hua Shi
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang-Lai Qiu
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Fan
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lu
- Department of Plant Protection, State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hazem Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, Egypt
| | - Man-Qun Wang
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Xu S, Hu X, Liu Y, Wang X, Wang Y, Li G, Turlings TCJ, Li Y. The Threat of the Fall Armyworm to Asian Rice Production Is Amplified by the Brown Planthopper. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400920 DOI: 10.1111/pce.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
The recent invasion of the fall armyworm (FAW) into Asia not only has had a major impact on maize yield but is feared to also pose a risk to rice production. We hypothesized that the brown planthopper (BPH) may aggravate this risk based on a recently discovered mutualism between the planthopper and the rice striped stem borer. Here we show that BPH may indeed facilitate a shift of FAW to rice. FAW females were found to strongly prefer to oviposit on BPH-infested rice plants, which emitted significantly elevated levels of five volatile compounds. A synthetic mixture of these compounds had a potent stimulatory effect on ovipositing females. Although FAW caterpillars exhibited relatively poor growth on both uninfested and BPH-infested rice, a considerable portion completed their development on young plants. Moreover, FAW were found to readily pupate and survive in exceedingly moist soils typical for rice cultivation, further highlighting FAW's potential to switch to rice. We conclude that BPH, by changing the bouquet of volatiles emitted by rice plants, may greatly facilitate this switch. These findings, together with a current increase of nonflooded upland rice in Asia, warrant careful monitoring and specific control measures against FAW to safeguard Asian rice production.
Collapse
Affiliation(s)
- Shengliang Xu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou, Henan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun Hu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou, Henan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuexian Liu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou, Henan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanan Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou, Henan, China
| | - Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Ted C J Turlings
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou, Henan, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchȃtel, Neuchȃtel, Switzerland
| | - Yunhe Li
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Wang A, Tang H, Sun J, Wang L, Rasmann S, Ruan W, Wei X. Entomopathogenic Nematodes-Killed Insect Cadavers in the Rhizosphere Activate Plant Direct and Indirect Defences Aboveground. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370758 DOI: 10.1111/pce.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Plants can perceive and respond to external stimuli by activating both direct and indirect defences against herbivores. Soil-dwelling entomopathogenic nematodes (EPNs), natural enemies of root-feeding herbivores, carry symbiotic bacteria that grow and reproduce once inside arthropod hosts. We hypothesized that the metabolites produced by EPN-infected insect cadavers could be perceived by plants, thereby activating plant defences systemically. We tested this hypothesis by adding three EPN-infected Galleria mellonella cadavers to maize plants and testing plant responses against a major maize pest (Spodoptera frugiperda) and one of its parasitoids (Trichogramma dendrolimi). We found that S. frugiperda females deposited fewer, and caterpillars fed less on maize plants growing near EPN-infected cadavers than on control plants. Accordingly, EPN-infected cadavers triggered the systemic accumulation of defence hormones (SA), genes (PR1), and enzymes (SOD, POD, and CAT) in maize leaves. Furthermore, four volatile organic compounds produced by plants exposed to EPN-infected cadavers deterred S. frugiperda caterpillars and female adults. However, these compounds were more attractive to T. dendrolimi parasitoids. Our study enhances the understanding of the intricate relationships within the above- and belowground ecosystems and provides crucial insights for advancing sustainable pest management strategies.
Collapse
Affiliation(s)
- Ailing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Tang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Qiu CL, Li W, Wang LN, Wang SC, Falert S, Wang C, Yu SY, Abdelkhalek ST, Lu J, Lin YJ, Wang MQ. Limonene enhances rice plant resistance to a piercing-sucking herbivore and rice pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39340817 DOI: 10.1111/pbi.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Terpene synthases (TPSs) are key enzymes in terpenoids synthesis of plants and play crucial roles in regulating plant defence against pests and diseases. Here, we report the functional characterization of OsTPS19 and OsTPS20, which were upregulated by the attack of brown planthopper (BPH). BPH female adults performed concentration-dependent behavioural responses to (S)-limonene showing preference behaviour at low concentrations and avoidance behaviour at high concentrations. Overexpression lines of OsTPS19 and OsTPS20, which emitted higher amounts of the monoterpene (S)-limonene, decreased the hatching rate of BPH eggs, reduced the lesion length of sheath blight caused by Rhizoctonia solani and bacterial blight caused by Xanthomonas oryzae. While knockout lines of OsTPS19 and OsTPS20, which emitted lower amounts of (S)-limonene, were more susceptible to these pathogens. Overexpression of OsTPS19 and OsTPS20 in rice plants had adverse effects on the incidence of BPH, rice blast, and sheath blight in the field and had no significant impacts on rice yield traits. OsTPS19 and OsTPS20 were found to be involved in fine-tuning the emission of (S)-limonene in rice plants and play an important role in defence against both BPH and rice pathogens.
Collapse
Affiliation(s)
- Chang-Lai Qiu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling-Nan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Shi-Cheng Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Supaporn Falert
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shi-Yu Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara Taha Abdelkhalek
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Jing Lu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Jun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Mu YP, Chen DY, Liu YJ, Zhu MY, Zhang X, Tang Y, Lin JL, Wang MY, Shangguan XX, Chen XY, Wang C, Mao YB. Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants. MOLECULAR PLANT 2024:S1674-2052(24)00297-1. [PMID: 39318096 DOI: 10.1016/j.molp.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.
Collapse
Affiliation(s)
- Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dian-Yang Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming-Yu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Xia Shangguan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
6
|
Shen C, Yu S, Tan X, Luo G, Yu Z, Ju J, Yang L, Huang Y, Li S, Ji R, Zhao C, Fang J. Infestation of Rice Striped Stem Borer ( Chilo suppressalis) Larvae Induces Emission of Volatile Organic Compounds in Rice and Repels Female Adult Oviposition. Int J Mol Sci 2024; 25:8827. [PMID: 39201513 PMCID: PMC11354779 DOI: 10.3390/ijms25168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Plants regulate the biosynthesis and emission of metabolic compounds to manage herbivorous stresses. In this study, as a destructive pest, the pre-infestation of rice striped stem borer (SSB, Chilo suppressalis) larvae on rice (Oryza sativa) reduced the subsequent SSB female adult oviposition preference. Widely targeted volatilomics and transcriptome sequencing were used to identify released volatile metabolic profiles and differentially expressed genes in SSB-infested and uninfested rice plants. SSB infestation significantly altered the accumulation of 71 volatile organic compounds (VOCs), including 13 terpenoids. A total of 7897 significantly differentially expressed genes were identified, and genes involved in the terpenoid and phenylpropanoid metabolic pathways were highly enriched. Correlation analysis revealed that DEGs in terpenoid metabolism-related pathways were likely involved in the regulation of VOC biosynthesis in SSB-infested rice plants. Furthermore, two terpenoids, (-)-carvone and cedrol, were selected to analyse the behaviour of SSB and predators. Y-tube olfactometer tests demonstrated that both (-)-carvone and cedrol could repel SSB adults at higher concentrations; (-)-carvone could simultaneously attract the natural enemies of SSB, Cotesia chilonis and Trichogramma japonicum, and cedrol could only attract T. japonicum at lower concentrations. These findings provide a better understanding of the response of rice plants to SSB and contribute to the development of new strategies to control herbivorous pests.
Collapse
Affiliation(s)
- Chen Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Shan Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Xinyang Tan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
| | - Guanghua Luo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Zhengping Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
| | - Jiafei Ju
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Lei Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Yuxuan Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Shuai Li
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| | - Chunqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
| | - Jichao Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.S.); (S.Y.); (X.T.)
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.L.); (R.J.)
| |
Collapse
|
7
|
Ju JF, Yang L, Shen C, Li JC, Hoffmann AA, Huang YX, Zhu F, Ji R, Luo GH, Fang JC. Defence and nutrition synergistically contribute to the distinct tolerance of rice subspecies to the stem borer, Chilo suppressalis. PLANT, CELL & ENVIRONMENT 2024; 47:2426-2442. [PMID: 38497544 DOI: 10.1111/pce.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Damage caused by the rice striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is much more severe on indica/xian rice than on japonica/geng rice (Oryza sativa) which matches pest outbreak data in cropping regions of China. The mechanistic basis of this difference among rice subspecies remains unclear. Using transcriptomic, metabolomic and genetic analyses in combination with insect bioassay experiments, we showed that japonica and indica rice utilise different defence responses to repel SSB, and that SSB exploited plant nutrition deficiencies in different ways in the subspecies. The more resistant japonica rice induced patterns of accumulation of methyl jasmonate (MeJA-part of a defensive pathway) and vitamin B1 (VB1-a nutrition pathway) distinct from indica cultivars. Using gene-edited rice plants and SSB bioassays, we found that MeJA and VB1 jointly affected the performance of SSB by disrupting juvenile hormone levels. In addition, genetic variants of key biosynthesis genes in the MeJA and VB1 pathways (OsJMT and OsTH1, respectively) differed between japonica and indica rice and contributed to performance differences; in indica rice, SSB avoided the MeJA defence pathway and hijacked the VB1 nutrition-related pathway to promote development. The findings highlight important genetic and mechanistic differences between rice subspecies affecting SSB damage which could be exploited in plant breeding for resistance.
Collapse
Affiliation(s)
- Jia-Fei Ju
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chen Shen
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian-Cai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yu-Xuan Huang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Feng Zhu
- Jiangsu Plant Protection and Quarantine Station, Nanjing, China
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guang-Hua Luo
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ji-Chao Fang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
8
|
Choi MS, Lee J, Kim JM, Kim SG, Joo Y. Girdling behavior of the longhorn beetle modulates the host plant to enhance larval performance. BMC Ecol Evol 2024; 24:49. [PMID: 38637737 PMCID: PMC11025245 DOI: 10.1186/s12862-024-02228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Preingestive behavioral modulations of herbivorous insects on the host plant are abundant over insect taxa. Those behaviors are suspected to have functions such as deactivation of host plant defenses, nutrient accumulation, or modulating plant-mediated herbivore interactions. To understand the functional consequence of behavioral modulation of insect herbivore, we studied the girdling behavior of Phytoecia rufiventris Gautier (Lamiinae; Cerambycidae) on its host plant Erigeron annuus L. (Asteraceae) that is performed before endophytic oviposition in the stem. RESULTS The girdling behavior significantly increased the larval performance in both field monitoring and lab experiment. The upper part of the girdled stem exhibited lack of jasmonic acid induction upon larval attack, lowered protease inhibitor activity, and accumulated sugars and amino acids in compared to non-girdled stem. The girdling behavior had no effect on the larval performance of a non-girdling longhorn beetle Agapanthia amurensis, which also feeds on the stem of E. annuus during larval phase. However, the girdling behavior decreased the preference of A. amurensis females for oviposition, which enabled P. rufiventris larvae to avoid competition with A. amurensis larvae. CONCLUSIONS In conclusion, the girdling behavior modulates plant physiology and morphology to provide a modulated food source for larva and hide it from the competitor. Our study implies that the insect behavior modulations can have multiple functions, providing insights into adaptation of insect behavior in context of plant-herbivore interaction.
Collapse
Affiliation(s)
- Min-Soo Choi
- School of Biological Sciences, Seoul National University, 00826, Seoul, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Juhee Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 28644, Cheongju, Republic of Korea
| | - Jeong-Min Kim
- School of Biological Sciences, Seoul National University, 00826, Seoul, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 28644, Cheongju, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea.
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, 00826, Seoul, Republic of Korea.
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 28644, Cheongju, Republic of Korea.
| |
Collapse
|
9
|
Xiao L, Gheysen G, Yang M, Xiao X, Xu L, Guo X, Yang L, Liu W, He Y, Peng D, Peng H, Ma K, Long H, Wang G, Xiao Y. Brown planthopper infestation on rice reduces plant susceptibility to Meloidogyne graminicola by reducing root sugar allocation. THE NEW PHYTOLOGIST 2024; 242:262-277. [PMID: 38332248 DOI: 10.1111/nph.19570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.
Collapse
Affiliation(s)
- Liying Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Mingwei Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihe Xu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueping He
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Kangsheng Ma
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haibo Long
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Gaofeng Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Chen S, Ye M, Kuai P, Chen L, Lou Y. Silencing an ATP-Dependent Caseinolytic Protease Proteolytic Subunit Gene Enhances the Resistance of Rice to Nilaparvata lugens. Int J Mol Sci 2024; 25:3699. [PMID: 38612510 PMCID: PMC11011769 DOI: 10.3390/ijms25073699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The ATP-dependent caseinolytic protease (Clp) system has been reported to play an important role in plant growth, development, and defense against pathogens. However, whether the Clp system is involved in plant defense against herbivores remains largely unclear. We explore the role of the Clp system in rice defenses against brown planthopper (BPH) Nilaparvata lugens by combining chemical analysis, transcriptome, and molecular analyses, as well as insect bioassays. We found the expression of a rice Clp proteolytic subunit gene, OsClpP6, was suppressed by infestation of BPH gravid females and mechanical wounding. Silencing OsClpP6 enhanced the level of BPH-induced jasmonic acid (JA), JA-isoleucine (JA-Ile), and ABA, which in turn promoted the production of BPH-elicited rice volatiles and increased the resistance of rice to BPH. Field trials showed that silencing OsClpP6 decreased the population densities of BPH and WBPH. We also observed that silencing OsClpP6 decreased chlorophyll content in rice leaves at early developmental stages and impaired rice root growth and seed setting rate. These findings demonstrate that an OsClpP6-mediated Clp system in rice was involved in plant growth-defense trade-offs by affecting the biosynthesis of defense-related signaling molecules in chloroplasts. Moreover, rice plants, after recognizing BPH infestation, can enhance rice resistance to BPH by decreasing the Clp system activity. The work might provide a new way to breed rice varieties that are resistant to herbivores.
Collapse
Affiliation(s)
| | | | | | | | - Yonggen Lou
- State Key Laboratory of Rice Breeding and Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (M.Y.); (P.K.); (L.C.)
| |
Collapse
|
11
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
12
|
Chang X, Guo Y, Xie Y, Ren Y, Bi Y, Wang F, Fang Q, Ye G. Rice volatile compound (E)-β-caryophyllene induced by rice dwarf virus (RDV) attracts the natural enemy Cyrtorhinus lividipennis to prey on RDV insect vectors. PEST MANAGEMENT SCIENCE 2024; 80:874-884. [PMID: 37814777 DOI: 10.1002/ps.7822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Rice dwarf virus (RDV)-induced rice plant volatiles (E)-β-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies. RESULTS The results showed that C. lividipennis preferred RDV-infected rice plant odors over RDV-free rice plant odors. C. lividipennis was attracted by (E)-β-caryophyllene, but showed no behavioral responses to 2-heptanol. The attraction of (E)-β-caryophyllene towards C. lividipennis was further confirmed using oscas1 rice plants, which do not release (E)-β-caryophyllene in response to RDV infection, through a series of complementary assays. The oviposition preference of the RDV vector insect Nephotettix cincticeps (Hemiptera: Cicadellidae) showed no significant difference between RDV-infected and RDV-free wild-type plants, nor between oscas1-RDV and oscas1 plants. However, the predation rate of C. lividipennis for N. cincticeps eggs on RDV-infected plants was higher than that on RDV-free plants, whereas there was no significant difference between oscas1-RDV and oscas1 plants. CONCLUSION (E)-β-caryophyllene induced by RDV attracted more C. lividipennis to prey on N. cincticeps eggs and played a crucial role in plant-virus-vector-enemy interactions. These novel findings will promote the design of new strategies for disease control by controlling the populations of insect vectors, for example recruiting more natural enemies by virus-induced plant volatiles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuefei Chang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yating Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yujia Xie
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yijia Ren
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaluan Bi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Andrade FM, Sales L, Favaris AP, Bento JMS, Mithöfer A, Peñaflor MFGV. Identity Matters: Multiple Herbivory Induces Less Attractive or Repellent Coffee Plant Volatile Emission to Different Natural Enemies. J Chem Ecol 2023; 49:696-709. [PMID: 37875650 DOI: 10.1007/s10886-023-01454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/26/2023]
Abstract
Co-infestations by herbivores, a common situation found in natural settings, can distinctly affect induced plant defenses compared to single infestations. Related tritrophic interactions might be affected through the emission of changed blends of herbivore-induced plant volatiles (HIPVs). In a previous study, we observed that the infestation by red spider mite (Oligonychus ilicis) on coffee plants facilitated the infestation by white mealybug (Planococcus minor), whereas the reverse sequence of infestation did not occur. Here, we examined the involvement of the jasmonate and salicylate pathways in the plant-mediated asymmetrical facilitation between red spider mites and white mealybugs as well as the effect of multiple herbivory on attractiveness to the predatory mite Euseius concordis and the ladybug Cryptolaemus montrouzieri. Both mite and mealybug herbivory led to the accumulation of JA-Ile, JA, and cis-OPDA in plants, although the catabolic reactions of JA-Ile were specifically regulated by each herbivore. Infestation by mites or mealybugs induced the release of novel volatiles by coffee plants, which selectively attracted their respective predators. Even though the co-infestation by mites and mealybugs resulted in a stronger accumulation of JA-Ile, JA and SA than the single infestation treatments, the volatile emission was similar to that of mite-infested or mealybug-infested plants. However, multiple infestation had a negative impact on the attractiveness of HIPVs to the predators, making them less attractive to the predatory mite and a repellent to the ladybug. We discuss the potential underlying mechanisms of the susceptibility induced by mites, and the effect of multiple infestation on each predator.
Collapse
Affiliation(s)
| | - Lara Sales
- Department of Entomology, Lavras Federal University, Lavras, Brazil
| | - Arodí P Favaris
- 'Luiz de Queiroz' College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil
| | - José Maurício Simões Bento
- 'Luiz de Queiroz' College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maria Fernanda G V Peñaflor
- Department of Entomology, Lavras Federal University, Lavras, Brazil.
- Laboratory of Chemical Ecology of Insect-Plant Interaction, Department of Entomology, Lavras Federal University, Trevo Rotatório Professor Edmir Sá Santos, s/n, PO Box 3037, Lavras, 37203-202, Brazil.
| |
Collapse
|
14
|
Lu L, Sun Z, Wang R, Du Y, Zhang Z, Lan T, Song Y, Zeng R. Integration of transcriptome and metabolome analyses reveals the role of OsSPL10 in rice defense against brown planthopper. PLANT CELL REPORTS 2023; 42:2023-2038. [PMID: 37819387 DOI: 10.1007/s00299-023-03080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yifei Du
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Tao Lan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
15
|
Gao H, Lin X, Yuan X, Zou J, Zhang H, Zhang Y, Liu Z. The salivary chaperone protein NlDNAJB9 of Nilaparvata lugens activates plant immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6874-6888. [PMID: 37103882 DOI: 10.1093/jxb/erad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens (Stål) is a main pest on rice. It secretes saliva to regulate plant defense responses, when penetrating rice plant and sucking phloem sap through its stylet. However, the molecular mechanisms of BPH salivary proteins regulating plant defense responses remain poorly understood. A N. lugens DNAJ protein (NlDNAJB9) gene was highly expressed in salivary glands, and the knock down of NlDNAJB9 significantly enhanced honeydew excretion and fecundity of the BPH. NlDNAJB9 could induce plant cell death, and the overexpression of NlDNAJB9 gene in Nicotiana benthamiana induced calcium signaling, mitogen-activated protein kinase (MAPK) cascades, reactive oxygen species (ROS) accumulation, jasmonic acid (JA) hormone signaling and callose deposition. The results from different NlDNAJB9 deletion mutants indicated that the nuclear localization of NlDNAJB9 was not necessary to induce cell death. The DNAJ domain was the key region to induce cell death, and the overexpression of DNAJ domain in N. benthamiana significantly inhibited insect feeding and pathogenic infection. NlDNAJB9 might interact indirectly with NlHSC70-3 to regulate plant defense responses. NlDNAJB9 and its orthologs were highly conserved in three planthopper species, and could induce ROS burst and cell death in plants. Our study provides new insights into the molecular mechanisms of insect-plant interactions.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
16
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
17
|
Li H, Xu L, Wu W, Peng W, Lou Y, Lu J. Infestation by the Piercing-Sucking Herbivore Nilaparvata lugens Systemically Triggers JA- and SA-Dependent Defense Responses in Rice. BIOLOGY 2023; 12:820. [PMID: 37372105 DOI: 10.3390/biology12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
It has been well documented that an infestation of the piercing-sucking herbivore, brown planthopper (BPH), Nilaparvata lugens, activates strong local defenses in rice. However, whether a BPH infestation elicits systemic responses in rice remains largely unknown. In this study, we investigated BPH-induced systemic defenses by detecting the change in expression levels of 12 JA- and/or SA-signaling-responsive marker genes in different rice tissues upon a BPH attack. We found that an infestation of gravid BPH females on rice leaf sheaths significantly increased the local transcript level of all 12 marker genes tested except OsVSP, whose expression was induced only weakly at a later stage of the BPH infestation. Moreover, an infestation of gravid BPH females also systemically up-regulated the transcription levels of three JA-signaling-responsive genes (OsJAZ8, OsJAMyb, and OsPR3), one SA-signaling-responsive gene (OsWRKY62), and two JA- and SA- signaling-responsive genes (OsPR1a and OsPR10a). Our results demonstrate that an infestation of gravid BPH females systemically activates JA- and SA-dependent defenses in rice, which may in turn influence the composition and structure of the community in the rice ecosystem.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liping Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weizheng Peng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Qiu C, Zeng J, Tang Y, Gao Q, Xiao W, Lou Y. The Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Influences Nilaparvata lugens Population Growth Directly, by Preying on Its Eggs, and Indirectly, by Inducing Defenses in Rice. Int J Mol Sci 2023; 24:8754. [PMID: 37240102 PMCID: PMC10217797 DOI: 10.3390/ijms24108754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically found feeding in the field. If FAW infests rice in China, the fitness of other insect pests on rice may be influenced. However, how FAW and other insect pests on rice interact remains unknown. In this study, we found that the infestation of FAW larvae on rice plants prolonged the developmental duration of the brown planthopper (BPH, Nilaparvata lugens (Stål)) eggs and plants damaged by gravid BPH females did not induce defenses that influenced the growth of FAW larvae. Moreover, co-infestation by FAW larvae on rice plants did not influence the attractiveness of volatiles emitted from BPH-infested plants to Anagrus nilaparvatae, an egg parasitoid of rice planthoppers. FAW larvae were able to prey on BPH eggs laid on rice plants and grew faster compared to those larvae that lacked available eggs. Studies revealed that the delay in the development of BPH eggs on FAW-infested plants was probably related to the increase in levels of jasmonoyl-isoleucine, abscisic acid and the defensive compounds in the rice leaf sheaths on which BPH eggs were laid. These findings indicate that, if FAW invades rice plants in China, the population density of BPH may be decreased by intraguild predation and induced plant defenses, whereas the population density of FAW may be increased.
Collapse
Affiliation(s)
- Chen Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Jiamei Zeng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Yingying Tang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
19
|
O'Malley L, Wang J, Nikzad M, Sheng H, St Leger R. Genetic variation in disease resistance in Drosophila spp. is mitigated in Drosophila sechellia by specialization to a toxic host. Sci Rep 2023; 13:7793. [PMID: 37179396 PMCID: PMC10183017 DOI: 10.1038/s41598-023-34976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
We found that Drosophila species vary in their susceptibility to the broad-spectrum entomopathogen, Metarhizium anisopliae (strain Ma549). Generalist species were generally more resistant than dietary specialists, with the cactophilic Drosophila buzzatii and Drosophila sechellia, a specialist of the Morinda citrifolia (Morinda) fruit, being most susceptible. Morinda fruit is reported to be toxic to most herbivores because it contains Octanoic Acid (OA). We confirmed that OA is toxic to Drosophila spp., other than D. sechellia, and we also found that OA is highly toxic to entomopathogenic fungi including Ma549 and Beauveria bassiana. Drosophila sechellia fed a diet containing OA, even at levels much less than found in Morinda fruit, had greatly reduced susceptibility to Ma549. This suggests that specializing to Morinda may have provided an enemy-free space, reducing adaptive prioritization on a strong immune response. Our results demonstrate that M. anisopliae and Drosophila species with divergent lifestyles provide a versatile model system for understanding the mechanisms of host-pathogen interactions at different scales and in environmental context.
Collapse
Affiliation(s)
- Liam O'Malley
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Jonathan Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Matthew Nikzad
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Huiyu Sheng
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Raymond St Leger
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
20
|
Li S, Qi L, Tan X, Li S, Fang J, Ji R. Small Brown Planthopper Nymph Infestation Regulates Plant Defenses by Affecting Secondary Metabolite Biosynthesis in Rice. Int J Mol Sci 2023; 24:ijms24054764. [PMID: 36902211 PMCID: PMC10003665 DOI: 10.3390/ijms24054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The small brown planthopper (SBPH, Laodelphax striatellus) is one of the most destructive insect pests in rice (Oryza sativa), which is the world's major grain crop. The dynamic changes in the rice transcriptome and metabolome in response to planthopper female adult feeding and oviposition have been reported. However, the effects of nymph feeding remain unclear. In this study, we found that pre-infestation with SBPH nymphs increased the susceptibility of rice plants to SBPH infestation. We used a combination of broadly targeted metabolomic and transcriptomic studies to investigate the rice metabolites altered by SBPH feeding. We observed that SBPH feeding induced significant changes in 92 metabolites, including 56 defense-related secondary metabolites (34 flavonoids, 17 alkaloids, and 5 phenolic acids). Notably, there were more downregulated metabolites than upregulated metabolites. Additionally, nymph feeding significantly increased the accumulation of seven phenolamines and three phenolic acids but decreased the levels of most flavonoids. In SBPH-infested groups, 29 differentially accumulated flavonoids were downregulated, and this effect was more pronounced with infestation time. The findings of this study indicate that SBPH nymph feeding suppresses flavonoid biosynthesis in rice, resulting in increased susceptibility to SBPH infestation.
Collapse
Affiliation(s)
- Shuai Li
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Liangxuan Qi
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinyang Tan
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jichao Fang
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (J.F.); (R.J.)
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: (J.F.); (R.J.)
| |
Collapse
|
21
|
Yao C, Du L, Liu Q, Hu X, Ye W, Turlings TCJ, Li Y. Stemborer-induced rice plant volatiles boost direct and indirect resistance in neighboring plants. THE NEW PHYTOLOGIST 2023; 237:2375-2387. [PMID: 36259093 DOI: 10.1111/nph.18548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are known to be perceived by neighboring plants, resulting in induction or priming of chemical defenses. There is little information on the defense responses that are triggered by these plant-plant interactions, and the phenomenon has rarely been studied in rice. Using chemical and molecular analyses in combination with insect behavioral and performance experiments, we studied how volatiles emitted by rice plants infested by the striped stemborer (SSB) Chilo suppressalis affect defenses against this pest in conspecific plants. Compared with rice plants exposed to the volatiles from uninfested plants, plants exposed to SSB-induced volatiles showed enhanced direct and indirect resistance to SSB. When subjected to caterpillar damage, the HIPV-exposed plants showed increased expression of jasmonic acid (JA) signaling genes, resulting in JA accumulation and higher levels of defensive proteinase inhibitors. Moreover, plants exposed to SSB-induced volatiles emitted larger amounts of inducible volatiles and were more attractive to the parasitoid Cotesia chilonis. By unraveling the factors involved in HIPV-mediated defense priming in rice, we reveal a key defensive role for proteinase inhibitors. These findings pave the way for novel rice management strategies to enhance the plant's resistance to one of its most devastating pests.
Collapse
Affiliation(s)
- Chengcheng Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingsong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaoyun Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
22
|
Liu Q, Turlings TCJ, Li Y. Can herbivores sharing the same host plant be mutualists? Trends Ecol Evol 2023; 38:509-511. [PMID: 36863968 DOI: 10.1016/j.tree.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Resource partitioning is considered to be a prerequisite for coexisting species to evolve from competition to mutualism. This is uniquely different for two major pest insects of rice. These herbivores preferentially opt to coinfest the same host plants, and through plant-mediated mechanisms, cooperatively utilize these plants in a mutualistic manner.
Collapse
Affiliation(s)
- Qingsong Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences and College of Agriculture, Henan University, Kaifeng 475004, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Yunhe Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences and College of Agriculture, Henan University, Kaifeng 475004, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Guo HG, Miao SZ, Ai PP, Zhang MZ, Yan Z, Du YL. Bioactive volatile compounds from Penicillium digitatum-infected apples: Oviposition attractants for yellow peach moth Conogethes punctiferalis (Lepidoptera: Crambidae). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionPlant-associated microbes critically shape the dynamics of plant-and insect-associated communities. In previous studies, we reported that the yellow peach moth Conogethes punctiferalis (YPM) preferred to Penicillium digitatum-infected apples (PDA) for oviposition. However, the underlying mechanisms remains unclear.MethodsIn the present study, the behavioral and physiological experiments were conducted to determine how P. digitatum affects the oviposition selection of mated YPM females via altering host plant volatile organic compounds (VOCs).ResultsMated YPM females were attracted to and laid more eggs on PDA than on non-infected apples (NIA), mechanically damaged apples (MDA), and P. digitatum in potato dextrose agar medium (PPD) in the oviposition selection experiments. Four-arm olfactometer assays further confirmed that odors in PDA were responsible for the attractiveness of mated YPM females. Further analyses showed that 38 VOCs were collected and identified from all treatments by GC-MS, with five specific VOCs (methyl 2-methylbutyrate, styrene, methyl caproate, butyl caprylate, and n-tetradecane) emitting from PDA. A principal component analysis (PCA) based on the absolute contents of 38 VOCs revealed a clear separation of PDA from NIA, MDA, and PPD. Moreover, when P. digitatum-induced specific VOCs were added to apples in individual or synthetic blends, there was a significantly higher percentage of mated YPM females to apples with individual or synthetic blends consisting of methyl 2-methylbutyrate, butyl caprylate, or n-tetradecane in Y-tube olfactometer experiments, suggesting that these three specific VOCs acted as predominant olfactory signals for mated YPM females to PDA.DiscussionTaken together, the microbe P. digitatum was an important driver of the interactions between YPMs and host plants by altering plant volatiles. These findings may form the basis for developing attractant baits for field trapping YPMs in the future.
Collapse
|
24
|
Khallaf MA, Sadek MM, Anderson P. Predator efficacy and attraction to herbivore-induced volatiles determine insect pest selection of inferior host plant. iScience 2023; 26:106077. [PMID: 36818286 PMCID: PMC9929603 DOI: 10.1016/j.isci.2023.106077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Unlike mammals, most invertebrates provide no direct parental care for their progeny, which makes a well-selected oviposition site crucial. However, little is known about the female evaluation of opportunities and threats during host selection. Leveraging the wide range of host plants used by the polyphagous pest, Spodoptera littoralis, we investigate oviposition choice between two plants of different nutritional quality. Females prefer to lay their eggs on the host plant, which has inferior larval development and more natural enemies but provides lower predation rates. On the superior host plant, a major predator shows more successful search behavior and is more attracted to herbivore-induced volatiles. Our findings show that predator efficacy and odor-guided attraction, rather than predator abundance, determine enemy free space. We postulate that predators' behaviors contribute to the weak correlation between preference and performance during host plant selection in S. littoralis and in polyphagous insects in general.
Collapse
Affiliation(s)
- Mohammed A. Khallaf
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden,Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt,Corresponding author
| | - Medhat M. Sadek
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt,Corresponding author
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden,Corresponding author
| |
Collapse
|
25
|
Virus-Induced Plant Volatiles Promote Virus Acquisition and Transmission by Insect Vectors. Int J Mol Sci 2023; 24:ijms24021777. [PMID: 36675290 PMCID: PMC9860585 DOI: 10.3390/ijms24021777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Rice dwarf virus (RDV) is transmitted by insect vectors Nephotettix virescens and Nephotettix cincticeps (Hemiptera: Cicadellidae) that threatens rice yield and results in substantial economic losses. RDV induces two volatiles ((E)-β-caryophyllene (EBC) and 2-heptanol) to emit from RDV-infected rice plants. However, the effects of the two volatiles on the olfactory behavior of both non-viruliferous and viruliferous N. virescens are unknown, and whether the two volatiles could facilitate the spread and dispersal of RDV remains elusive. Combining the methods of insect behavior, chemical ecology, and molecular biology, we found that EBC and 2-heptanol influenced the olfactory behavior of non-viruliferous and viruliferous N. virescens, independently. EBC attracted non-viruliferous N. virescens towards RDV-infected rice plants, promoting virus acquisition by non-viruliferous vectors. The effect was confirmed by using oscas1 mutant rice plants (repressed EBC synthesis), but EBC had no effects on viruliferous N. virescens. 2-heptanol did not attract or repel non-viruliferous N. virescens. However, spraying experiments showed that 2-heptanol repelled viruliferous N. virescens to prefer RDV-free rice plants, which would be conducive to the transmission of the virus. These novel results reveal that rice plant volatiles modify the behavior of N. virescens vectors to promote RDV acquisition and transmission. They will provide new insights into virus-vector-plant interactions, and promote the development of new prevention and control strategies for disease management.
Collapse
|
26
|
Croijmans L, Valstar RT, Schuur L, Jacobs I, van Apeldoorn DF, Poelman EH. Intraspecific plant variation and nonhost herbivores affect parasitoid host location behaviour. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Elevated CO2 Altered Rice VOCs Aggravate Population Occurrence of Brown Planthoppers by Improving Host Selection Ability. BIOLOGY 2022; 11:biology11060882. [PMID: 35741403 PMCID: PMC9219841 DOI: 10.3390/biology11060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In recent years, the atmospheric CO2 concentration was increasing continuously, which has led to the change in the photosynthesis and chemical composition of rice plants. The growth and development of brown planthopper (BPH) Nilaparvata lugens are further affected. Plants release volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. Therefore, here we aim to explore the effect of rice VOCs on the host selection ability of BPH under elevated CO2. Among the identified thirty-six rice VOCs, the contents of heptadecane, linalool and limonene from rice plants were significantly decreased under elevated CO2. Moreover, we found that the VOCs of rice damaged by BPH were also changed. Undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants, which might lead to enhancement of the host selection ability of BPH, eventually aggravating the damage caused by BPH. However, the role of these VOCs in host selection ability of BPH is not clear, and more experiments are needed to verify their function. Abstract It is predicted that plant volatile organic compounds (VOCs) are affected by the atmospheric CO2 levels rising globally, which further affects the interaction between plants and herbivorous insects, especially the host selection behavior of herbivorous insects. In this study, the effects of elevated CO2 on the host-selection behavior of the brown planthopper (BPH) Nilaparvata lugens, and the emission of VOCs from the healthy and BPH-damaged rice plants were studied simultaneously to make clear the population occurrence of BPH under global climate change. Compared with ambient CO2, elevated CO2 significantly increased the host selection percent of BPH for the healthy (CK) and BPH-damaged rice plants, and the host selection percent of BPH for the BPH-damaged rice plants was significantly higher than that for the healthy rice plants under elevated CO2, which might be regulated by the transcription levels of OBP1, OBP2 and CSP8 in BPH due to the upregulated transcriptional levels of these three genes of BPH under elevated CO2. In addition, we analyzed and quantified the emission of VOCs in rice plants grown under ambient CO2 and elevated CO2 by GS-MS. A total of 36 VOCs from rice plants were identified into eight categories, including alkanes, alkenes, alcohols, aldehydes, ketones, esters, phenols and aromatic hydrocarbons. Elevated CO2 significantly decreased the contents of heptadecane, linalool and limonene from rice plants compared with ambient CO2. Besides, the contents of linalool, phytol, decanal, 1-methyldecalin and 2,6-diphenylphenol from BPH-damaged rice plants under ambient CO2, and undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants. The percentage composition of phenols was positively correlated with the host selection rate of BPH. Our study indicates that elevated CO2 is beneficial to promote the host selection ability of BPH for rice plants damaged by BPHs due to the changed plant VOCs.
Collapse
|
28
|
Zhang J, Komail Raza SA, Wei Z, Keesey IW, Parker AL, Feistel F, Chen J, Cassau S, Fandino RA, Grosse-Wilde E, Dong S, Kingsolver J, Gershenzon J, Knaden M, Hansson BS. Competing beetles attract egg laying in a hawkmoth. Curr Biol 2022; 32:861-869.e8. [PMID: 35016007 DOI: 10.1016/j.cub.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
In nature, plant-insect interactions occur in complex settings involving multiple trophic levels, often with multiple species at each level.1 Herbivore attack of a host plant typically dramatically alters the plant's odor emission in terms of concentration and composition.2,3 Therefore, a well-adapted herbivore should be able to predict whether a plant is still suitable as a host by judging these changes in the emitted bouquet. Although studies have demonstrated that oviposition preferences of successive insects were affected by previous infestations,4,5 the underlying molecular and olfactory mechanisms remain unknown. Here, we report that tobacco hawkmoths (Manduca sexta) preferentially oviposit on Jimson weed (Datura wrightii) that is already infested by a specialist, the three-lined potato beetle (Lema daturaphila). Interestingly, the moths' offspring do not benefit directly, as larvae develop more slowly when feeding together with Lema beetles. However, one of M. sexta's main enemies, the parasitoid wasp Cotesia congregata, prefers the headspace of M. sexta-infested plants to that of plants infested by both herbivores. Hence, we conclude that female M. sexta ignore the interspecific competition with beetles and oviposit deliberately on beetle-infested plants to provide their offspring with an enemy-reduced space, thus providing a trade-off that generates a net benefit to the survival and fitness of the subsequent generation. We identify that α-copaene, emitted by beetle-infested Datura, plays a role in this preference. By performing heterologous expression and single-sensillum recordings, we show that odorant receptor (Or35) is involved in α-copaene detection.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Syed Ali Komail Raza
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Zhiqiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Weigang No. 1, 210095 Nanjing, China
| | - Ian W Keesey
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Anna L Parker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Felix Feistel
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Jingyuan Chen
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; Department of Ecology and Evolutionary Biology, Cornell University, Dale R. Corson Hall, Ithaca, NY 14853, USA
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Shuanglin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Weigang No. 1, 210095 Nanjing, China
| | - Joel Kingsolver
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
29
|
Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, Leal WS, Moura DS, Bento JMS, Silva-Filho MC. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. THE ISME JOURNAL 2021; 15:3522-3533. [PMID: 34127802 PMCID: PMC8630062 DOI: 10.1038/s41396-021-01010-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.
Collapse
Affiliation(s)
- Flávia P. Franco
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Amanda C. Túler
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Diego Z. Gallan
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Felipe G. Gonçalves
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Arodí P. Favaris
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | | | - Walter S. Leal
- grid.27860.3b0000 0004 1936 9684Department of Molecular and Cellular Biology, University of California, Davis, CA USA
| | - Daniel S. Moura
- grid.11899.380000 0004 1937 0722Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - José Maurício S. Bento
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Marcio C. Silva-Filho
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| |
Collapse
|
30
|
Liu Q, Hu X, Su S, Ning Y, Peng Y, Ye G, Lou Y, Turlings TCJ, Li Y. Cooperative herbivory between two important pests of rice. Nat Commun 2021; 12:6772. [PMID: 34799588 PMCID: PMC8604950 DOI: 10.1038/s41467-021-27021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Normally, when different species of herbivorous arthropods feed on the same plant this leads to fitness-reducing competition. We found this to be different for two of Asia's most destructive rice pests, the brown planthopper and the rice striped stem borer. Both insects directly and indirectly benefit from jointly attacking the same host plant. Double infestation improved host plant quality, particularly for the stemborer because the planthopper fully suppresses caterpillar-induced production of proteinase inhibitors. It also reduced the risk of egg parasitism, due to diminished parasitoid attraction. Females of both pests have adapted their oviposition behaviour accordingly. Their strong preference for plants infested by the other species even overrides their avoidance of plants already attacked by conspecifics. This cooperation between herbivores is telling of adaptations resulting from the evolution of plant-insect interactions, and points out mechanistic vulnerabilities that can be targeted to control these major pests.
Collapse
Affiliation(s)
- Qingsong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
- College of Life Sciences, Xinyang Normal University, 464000, Xinyang, China
| | - Xiaoyun Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuangli Su
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Gongyin Ye
- Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yonggen Lou
- Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
31
|
Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda. J Chem Ecol 2021; 47:799-809. [PMID: 34347233 DOI: 10.1007/s10886-021-01302-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Fall armyworm (Spodoptera frugiperda) is a major global pest of many crops, including maize (Zea mays). This insect is known to use host plant-derived volatile organic compounds to locate suitable hosts during both its adult and larval stages, yet the function of individual compounds remains mostly enigmatic. In this study, we use a combination of volatile profiling, electrophysiological assays, pair-wise choice behavioral assays, and chemical supplementation treatments to identify and assess specific compounds from maize that influence S. frugiperda host location. Our findings reveal that methyl salicylate and (E)-alpha-bergamotene are oviposition attractants for adult moths but do not impact larval behavior. While geranyl acetate can act as an oviposition attractant or repellent depending on the host volatile context and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) is an oviposition deterrent. These compounds can also be attractive to the larvae when applied to specific maize inbreds. These data show that S. frugiperda uses different plant volatile cues for host location in its adult and larval stage and that the background volatile context that specific volatiles are perceived in, alters their impact as behavioral cues.
Collapse
|
32
|
Mujiono K, Tohi T, Sobhy IS, Hojo Y, Shinya T, Galis I. Herbivore-induced and constitutive volatiles are controlled by different oxylipin-dependent mechanisms in rice. PLANT, CELL & ENVIRONMENT 2021; 44:2687-2699. [PMID: 34114241 DOI: 10.1111/pce.14126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Despite the importance of volatile organic compounds (VOCs) for plants, control mechanisms for their basal and stress-induced biosynthesis and release remain unclear. We sampled and characterized headspace and internal leaf volatile pools in rice (Oryza sativa), after a simulated herbivory treatment, which triggers an endogenous jasmonate burst. Certain volatiles, such as linalool, were strongly upregulated by simulated herbivory stress. In contrast, other volatiles, such as β-caryophyllene, were constitutively emitted and fluctuated according to time of day. Transcripts of the linalool synthase gene transiently increased 1-3 h after exposure of rice to simulated herbivory, whereas transcripts of caryophyllene synthase peaked independently at dawn. Unexpectedly, although emission and accumulation patterns of rice inducible and constitutive VOCs were substantially different, both groups of volatiles were compromised in jasmonate-deficient hebiba mutants, which lack the allene oxide cyclase (AOC) gene. This suggests that rice employs at least two distinct oxylipin-dependent mechanisms downstream of AOC to control production of constitutive and herbivore-induced volatiles. Levels of the JA precursor, 12-oxo-phytodienoic acid (OPDA), were correlated with constitutive volatile levels suggesting that OPDA or its derivatives could be involved in control of volatile emission in rice.
Collapse
Affiliation(s)
- Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Tilisa Tohi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- School of Life Sciences, Huxley Building, Keele University, Keele, UK
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
33
|
Chang X, Wang F, Fang Q, Chen F, Yao H, Gatehouse AMR, Ye G. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. PLANT, CELL & ENVIRONMENT 2021; 44:2700-2715. [PMID: 33866575 DOI: 10.1111/pce.14069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/19/2023]
Abstract
Plant viruses can manipulate their hosts to release odours that are attractive or repellent to their insect vectors. However, the volatile organic compounds (VOCs), either individually or as mixtures, which play a key role in the olfactory behaviour of insect vectors remains largely unknown. Our study focused on green rice leafhoppers (GRLHs) vectoring rice dwarf virus (RDV) revealed that RDV infection significantly induced the emission of (E)-β-caryophyllene and 2-heptanol by rice plants, which influenced the olfactory behaviour of both non-viruliferous and viruliferous GRLHs. (E)-β-caryophyllene attracted non-viruliferous GRLHs to settle on RDV-infected plants, but neither attracted nor repelled viruliferous GRLHs. In contrast, 2-heptanol repelled viruliferous GRLHs to settle on RDV-infected plants, but neither repelled nor attracted non-viruliferous GRLHs. Suppression of (E)-β-caryophyllene synthase OsCAS via CRISPR-Cas9 to generate oscas-1 plants enabled us to confirm the important role played by (E)-β-caryophyllene in modulating the virus-vector-host plant interaction. These novel results reveal the role of these virus-induced VOCs in modulating the behaviour of its GRLH insect vector and may facilitate the design of new strategies for disease control through manipulation of plant volatile emissions.
Collapse
Affiliation(s)
- Xuefei Chang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Joo Y, Schuman MC. Hiding in plain smell. eLife 2020; 9:e60912. [PMID: 32780018 PMCID: PMC7419156 DOI: 10.7554/elife.60912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022] Open
Abstract
A common rice pest can avoid its natural parasite by settling on plants that smell like they have been damaged by a species of caterpillar.
Collapse
Affiliation(s)
- Youngsung Joo
- Department of Biology, Chungbuk National UniversityCheongjuRepublic of Korea
| | - Meredith C Schuman
- Department of Geography, University of ZurichZürichSwitzerland
- Department of Chemistry, University of ZurichZurichSwitzerland
| |
Collapse
|