1
|
Rizo J, Jaczynska K, Rosenmund C. Evaluation of synaptotagmin-1 action models by all-atom molecular dynamics simulations. FEBS Open Bio 2025. [PMID: 39815397 DOI: 10.1002/2211-5463.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Neurotransmitter release is triggered in microseconds by the two C2 domains of the Ca2+ sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 C2B domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca2+-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca2+-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca2+-binding loops away from the fusion site. To test these models, we performed molecular dynamics simulations of SNARE complexes bridging a vesicle and a flat bilayer, including the synaptotagmin-1 C2 domains in various configurations. Our data do not support the notion that insertion of the synaptotagmin-1 Ca2+-binding loops causes substantial membrane curvature or major perturbations of the lipid bilayers that could facilitate membrane fusion. We observed membrane bridging by the synaptotagmin-1 C2 domains, but such bridging or the presence of the C2 domains near the site of fusion hindered the action of the SNAREs in bringing the membranes together. These results argue against models predicting that synaptotagmin-1 triggers neurotransmitter release by inducing membrane curvature, perturbing bilayers or bridging membranes. Instead, our data support the hypothesis that binding via the primary interface keeps the synaptotagmin-1 C2 domains away from the site of fusion, orienting them such that they trigger release through a remote action.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
2
|
Jaczynska K, Esser V, Xu J, Sari L, Lin MM, Rosenmund C, Rizo J. A lever hypothesis for Synaptotagmin-1 action in neurotransmitter release. Proc Natl Acad Sci U S A 2025; 122:e2417941121. [PMID: 39793049 PMCID: PMC11725900 DOI: 10.1073/pnas.2417941121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Neurotransmitter release is triggered in microseconds by Ca2+-binding to the Synaptotagmin-1 C2-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca2+-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 C2B domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca2+-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca2+-binding loops away from the fusion site, hindering these putative activities. To clarify this paradox, we have used NMR and fluorescence spectroscopy. NMR experiments reveal that binding of C2B domain arginines to SNARE acidic residues at region II remains after disruption of region I, and that a mutation that impairs spontaneous and Ca2+-triggered neurotransmitter release enhances binding through region I. Moreover, fluorescence assays show that Ca2+ does not induce dissociation of Synaptotagmin-1 from membrane-anchored SNARE complex but causes reorientation of the C2B domain. Based on these results and electrophysiological data described by Toulme et al. (https://doi.org/10.1073/pnas.2409636121), we propose that upon Ca2+ binding the Synaptotagmin-1 C2B domain reorients on the membrane and dissociates from the SNAREs at region I but not region II, acting remotely as a lever that pulls the SNARE complex and facilitates linker zippering or other SNARE structural changes required for fast membrane fusion.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Levent Sari
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Milo M. Lin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Christian Rosenmund
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin10117, Germany
- NeuroCure Cluster of Excellence, Berlin10117, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
3
|
Kragelj J, Ghosh R, Xiao Y, Dumarieh R, Lagasca D, Krishna S, Frederick KK. Spatially resolved DNP-assisted NMR illuminates the conformational ensemble of α-synuclein in intact viable cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.24.563877. [PMID: 37961511 PMCID: PMC10634803 DOI: 10.1101/2023.10.24.563877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein α-syn adopts a wide variety of conformations including an intrinsically disordered monomeric form and an α-helical rich membrane-associated form that is thought to play an important role in cellular membrane processes. However, despite the high affinity of α-syn for membranes, evidence that the α-helical form is adopted inside cells has been indirect. DNP-assisted solid state NMR on frozen cellular samples can report on protein conformations inside cells. Moreover, by controlling the distribution of the DNP polarization agent throughout the cellular biomass, such experiments can provide quantitative information upon the entire structural ensemble or provide information about spatially resolved sub-populations. Using DNP-assisted magic angle spinning (MAS) NMR we establish that purified α-syn in the membrane-associated and intrinsically disordered forms have distinguishable spectra. We then introduced isotopically labeled monomeric α-syn into cells. When the DNP polarization agent is dispersed homogenously throughout the cell, we found that a minority of the α-syn inside cells adopted a highly α-helical rich conformation. When the DNP polarization agent is peripherally localized, we found that the α-helical rich conformation predominates. Thus, we provide direct evidence that α-helix rich conformations of α-syn are adopted near the cellular periphery inside cells under physiological conditions. Moreover, we demonstrate how selectively altering the spatial distribution of the DNP polarization agent can be a powerful tool to observe spatially distinct structural ensembles. This approach paves the way for more nuanced investigations into the conformations that proteins adopt in different areas of the cell.
Collapse
Affiliation(s)
- Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
4
|
Park Y. Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1. Methods Mol Biol 2025; 2887:175-182. [PMID: 39806154 DOI: 10.1007/978-1-0716-4314-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca2+ sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca2+-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane. Fluorescence anisotropy offers a methodological advantage for studying protein-membrane interactions. This protocol outlines a method utilizing fluorescence anisotropy to monitor the cis- and trans-membrane interactions of Syt-1, employing both purified native vesicles and plasma membrane-mimicking liposomes (PM-liposomes).
Collapse
Affiliation(s)
- Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
5
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release. Nat Commun 2024; 15:10741. [PMID: 39738049 DOI: 10.1038/s41467-024-54960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon calcium activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of calcium-triggered fusion clamp reversal, govern the overall kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal calcium concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the calcium-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Christopher A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
6
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Bhasne K, Bogoian-Mullen A, Clerico EM, Gierasch LM. The Hsc70 system maintains the synaptic SNARE protein SNAP-25 in an assembly-competent state and delays its aggregation. J Biol Chem 2024; 300:108001. [PMID: 39551143 PMCID: PMC11697113 DOI: 10.1016/j.jbc.2024.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024] Open
Abstract
The complex mechanism of synaptic vesicle fusion with the plasma membrane for neurotransmitter release is initiated by the formation of the SNARE complex at the presynaptic terminal of the neuron. The SNARE complex is composed of four helices contributed by three proteins: one from syntaxin (localized at the plasma membrane), one from synaptobrevin (localized at the synaptic vesicle), and two from the intrinsically disordered and aggregation-prone synaptosomal-associated 25 kDa protein (SNAP-25), which is localized to the plasma membrane by virtue of palmitoylation of cysteine residues. The fusion process is tightly regulated and requires the constitutively expressed Hsp70 chaperone (Hsc70) and its J-protein co-chaperone CSPα. We hypothesize that Hsc70 and CSPα cooperate to chaperone SNAP-25, disfavoring its aggregation and keeping it in a folding state competent for SNARE complex formation. To test this hypothesis, we used a bottom-up approach and studied the interaction between Hsc70 and CSPα with SNAP-25 in vitro. We showed that the aggregation of SNAP-25 is delayed in the presence of Hsc70 and CSPα. Using a peptide array that spans the sequence of SNAP-25, we identified three potential Hsc70-interacting sequences and designed peptides containing these sequences to test binding in solution. We characterized the interaction of SNAP-25-derived peptides with Hsc70 and CSPα using a combination of biochemical and biophysical techniques, including native-PAGE, binding affinity by fluorescence anisotropy, ATPase-activity of Hsc70, and NMR. We have identified an Hsc70 binding site within SNAP-25 that is likely to represent the site used in the cell to facilitate SNARE complex formation.
Collapse
Affiliation(s)
- Karishma Bhasne
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA
| | - Antonia Bogoian-Mullen
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA
| | - Eugenia M Clerico
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA.
| | - Lila M Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA; Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA.
| |
Collapse
|
9
|
Bykhovskaia M. Dynamic formation of the protein-lipid prefusion complex. Biophys J 2024; 123:3569-3586. [PMID: 39257001 PMCID: PMC11495646 DOI: 10.1016/j.bpj.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein synaptotagmin 1 (Syt1) serves as a Ca2+ sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating the PM upon Ca2+ binding; however, the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein complexin (Cpx) promotes Ca2+-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of the PM and SVs. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a "dead-end" state, wherein Syt1 attaches tightly to the PM but does not immerse into it, as opposed to a prefusion state, which has the tips of the Ca2+-bound C2 domains of Syt1 inserted into the PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous docking of Syt1 to the SNARE-Cpx bundle and the PM, followed by Ca2+ chelation and the penetration of the tips of Syt1 domains into the PM, leading to the prefusion state of the protein-lipid complex. Importantly, we found that direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the prefusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative dead-end state of the protein-lipid complex that can be formed if this pathway is disrupted.
Collapse
|
10
|
Toulmé E, Salazar Lázaro A, Trimbuch T, Rizo J, Rosenmund C. Neurotransmitter release is triggered by a calcium-induced rearrangement in the Synaptotagmin-1/SNARE complex primary interface. Proc Natl Acad Sci U S A 2024; 121:e2409636121. [PMID: 39374398 PMCID: PMC11494337 DOI: 10.1073/pnas.2409636121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
The Ca2+ sensor synaptotagmin-1 (Syt1) triggers neurotransmitter release together with the neuronal sensitive factor attachment protein receptor (SNARE) complex formed by syntaxin-1, SNAP25, and synaptobrevin. Moreover, Syt1 increases synaptic vesicle (SV) priming and impairs spontaneous vesicle release. The Syt1 C2B domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of Syt1 and the mechanism underlying Ca2+ triggering of release are unknown. Using mutagenesis and electrophysiological experiments, we show that region II is functionally and spatially subdivided: Binding of C2B domain arginines to SNAP-25 acidic residues at one face of region II is crucial for Ca2+-evoked release but not for vesicle priming or clamping of spontaneous release, whereas other SNAP-25 and syntaxin-1 acidic residues at the other face mediate priming and clamping of spontaneous release but not evoked release. Mutations that disrupt region I impair the priming and clamping functions of Syt1 while, strikingly, mutations that enhance binding through this region increase vesicle priming and clamping of spontaneous release, but strongly inhibit evoked release and vesicle fusogenicity. These results support previous findings that the primary interface mediates the functions of Syt1 in vesicle priming and clamping of spontaneous release and, importantly, show that Ca2+ triggering of release requires a rearrangement of the primary interface involving dissociation of region I, while region II remains bound. Together with biophysical studies presented in [K. Jaczynska et al., bioRxiv [Preprint] (2024). https://doi.org/10.1101/2024.06.17.599417 (Accessed 18 June 2024)], our data suggest a model whereby this rearrangement pulls the SNARE complex to facilitate fast SV fusion.
Collapse
Affiliation(s)
- Estelle Toulmé
- Institute of Neurophysiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin10117, Germany
- NeuroCure Cluster of Excellence, Berlin10117, Germany
| | - Andrea Salazar Lázaro
- Institute of Neurophysiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin10117, Germany
- NeuroCure Cluster of Excellence, Berlin10117, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin10117, Germany
- NeuroCure Cluster of Excellence, Berlin10117, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin10117, Germany
- NeuroCure Cluster of Excellence, Berlin10117, Germany
| |
Collapse
|
11
|
Li K, Li K, Fan J, Zhang X, Tao C, Xiang Y, Cui L, Li H, Li M, Zhang Y, Geng J, Lai Y. Synergistic regulation of fusion pore opening and dilation by SNARE and synaptotagmin-1. J Mol Cell Biol 2024; 16:mjae011. [PMID: 38444183 PMCID: PMC11472156 DOI: 10.1093/jmcb/mjae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/19/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Fusion pore opening is a transient intermediate state of synaptic vesicle exocytosis, which is highly dynamic and precisely regulated by the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and synaptotagmin-1 (Syt1). Yet, the regulatory mechanism is not fully understood. In this work, using single-channel membrane fusion electrophysiology, we determined that SNAREpins are important for driving fusion pore opening and dilation but incapable of regulating the dynamics. When Syt1 was added, the closing frequency of fusion pores significantly increased, while the radius of fusion pores mildly decreased. In response to Ca2+, SNARE/Syt1 greatly increased the radius of fusion pores and reduced their closing frequency. Moreover, the residue F349 in the C2B domain of Syt1, which mediates Syt1 oligomerization, was required for clamping fusion pore opening in the absence of Ca2+, probably by extending the distance between the two membranes. Finally, in Ca2+-triggered fusion, the primary interface between SNARE and Syt1 plays a critical role in stabilizing and dilating the fusion pore, while the polybasic region of Syt1 C2B domain has a mild effect on increasing the radius of the fusion pore. In summary, our results suggest that Syt1, SNARE, and the anionic membrane synergically orchestrate the dynamics of fusion pore opening in synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Kaiju Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Kaiyu Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaqi Fan
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengyan Tao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yijuan Xiang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lele Cui
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghan Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Ying Lai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Toulmé E, Lázaro AS, Trimbuch T, Rizo J, Rosenmund C. Neurotransmitter release is triggered by a calcium-induced rearrangement in the Synaptotagmin-1/SNARE complex primary interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599435. [PMID: 38948868 PMCID: PMC11213007 DOI: 10.1101/2024.06.17.599435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Ca2+ sensor synaptotagmin-1 triggers neurotransmitter release together with the neuronal SNARE complex formed by syntaxin-1, SNAP25 and synaptobrevin. Moreover, synaptotagmin-1 increases synaptic vesicle priming and impairs spontaneous vesicle release. The synaptotagmin-1 C2B domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of synaptotagmin-1, and the mechanism underlying Ca2+-triggering of release is unknown. Using mutagenesis and electrophysiological experiments, we show that region II is functionally and spatially subdivided: binding of C2B domain arginines to SNAP-25 acidic residues at one face of region II is crucial for Ca2+-evoked release but not for vesicle priming or clamping of spontaneous release, whereas other SNAP-25 and syntaxin-1 acidic residues at the other face mediate priming and clamping of spontaneous release but not evoked release. Mutations that disrupt region I impair the priming and clamping functions of synaptotagmin-1 while, strikingly, mutations that enhance binding through this region increase vesicle priming and clamping of spontaneous release, but strongly inhibit evoked release and vesicle fusogenicity. These results support previous findings that the primary interface mediates the functions of synaptotagmin-1 in vesicle priming and clamping of spontaneous release, and, importantly, show that Ca2+-triggering of release requires a rearrangement of the primary interface involving dissociation of region I, while region II remains bound. Together with modeling and biophysical studies presented in the accompanying paper, our data suggest a model whereby this rearrangement pulls the SNARE complex to facilitate fast synaptic vesicle fusion.
Collapse
Affiliation(s)
- Estelle Toulmé
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| | - Andrea Salazar Lázaro
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| | - Thorsten Trimbuch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christian Rosenmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
13
|
Jaczynska K, Esser V, Xu J, Sari L, Lin MM, Rosenmund C, Rizo J. A lever hypothesis for Synaptotagmin-1 action in neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599417. [PMID: 38948826 PMCID: PMC11212951 DOI: 10.1101/2024.06.17.599417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Neurotransmitter release is triggered in microseconds by Ca2+-binding to the Synaptotagmin-1 C2 domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca2+-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 C2B domain to SNARE complexes through a 'primary interface' comprising two regions (I and II). The Synaptotagmin-1 Ca2+-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but SNARE complex binding orients the Ca2+-binding loops away from the fusion site, hindering these putative activities. Molecular dynamics simulations now suggest that Synaptotagmin-1 C2 domains near the site of fusion hinder SNARE action, providing an explanation for this paradox and arguing against previous models of Sytnaptotagmin-1 action. NMR experiments reveal that binding of C2B domain arginines to SNARE acidic residues at region II remains after disruption of region I. These results and fluorescence resonance energy transfer assays, together with previous data, suggest that Ca2+ causes reorientation of the C2B domain on the membrane and dissociation from the SNAREs at region I but not region II. Based on these results and molecular modeling, we propose that Synaptotagmin-1 acts as a lever that pulls the SNARE complex when Ca2+ causes reorientation of the C2B domain, facilitating linker zippering and fast membrane fusion. This hypothesis is supported by the electrophysiological data described in the accompanying paper.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Levent Sari
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Milo M. Lin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christian Rosenmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
14
|
van Boven MA, Mestroni M, Zwijnenburg PJG, Verhage M, Cornelisse LN. A de novo missense mutation in synaptotagmin-1 associated with neurodevelopmental disorder desynchronizes neurotransmitter release. Mol Psychiatry 2024; 29:1798-1809. [PMID: 38321119 PMCID: PMC11371641 DOI: 10.1038/s41380-024-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Maaike A van Boven
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marta Mestroni
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Bykhovskaia M. Dynamic Formation of the Protein-Lipid Pre-fusion Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589983. [PMID: 38659925 PMCID: PMC11042276 DOI: 10.1101/2024.04.17.589983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein Synaptotagmin 1 (Syt1) serves as a Ca2+ sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating into PM upon Ca2+ binding, however the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein Complexin (Cpx) promotes the Ca2+-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics (MD) to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of PM and SV. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a "dead-end" state, wherein Syt1 attaches tightly to PM but does not immerse into it, as opposed to a pre-fusion state, which has the tips of the Ca2+-bound C2 domains of Syt1 inserted into PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous Syt1 docking to the SNARE-Cpx bundle and PM, followed by the Ca2+ chelation and the penetration of the tips of Syt1 domains into PM, leading to the pre-fusion state of the protein-lipid complex. Importantly, we found that the direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the pre-fusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative "dead-end" state of the protein-lipid complex that can be formed if this pathway is disrupted.
Collapse
|
16
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. A minimal presynaptic protein machinery mediating synchronous and asynchronous exocytosis and short-term plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589559. [PMID: 38659918 PMCID: PMC11042279 DOI: 10.1101/2024.04.15.589559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic Ca2+ influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically-relevant conditions to delineate the minimal protein machinery sufficient to account for different modes of Ca2+-triggered vesicle fusion and short-term facilitation. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin, synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon Ca2+ activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of Ca2+-triggered fusion clamp reversal, govern the kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal Ca2+ concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the Ca2+-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Manindra Bera
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Cell Biology, Yale University School of Medicine, New Haven, USA
| | - Chris A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Cell Biology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - Shyam S Krishnakumar
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
17
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. J Mol Biol 2024; 436:168502. [PMID: 38417672 PMCID: PMC11384659 DOI: 10.1016/j.jmb.2024.168502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Salazar Lázaro A, Trimbuch T, Vardar G, Rosenmund C. The stability of the primed pool of synaptic vesicles and the clamping of spontaneous neurotransmitter release rely on the integrity of the C-terminal half of the SNARE domain of syntaxin-1A. eLife 2024; 12:RP90775. [PMID: 38512129 PMCID: PMC10957171 DOI: 10.7554/elife.90775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.
Collapse
Affiliation(s)
- Andrea Salazar Lázaro
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Gülçin Vardar
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- NeuroCure Excellence ClusterBerlinGermany
| |
Collapse
|
19
|
Kádková A, Murach J, Østergaard M, Malsam A, Malsam J, Lolicato F, Nickel W, Söllner TH, Sørensen JB. SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions. eLife 2024; 12:RP88619. [PMID: 38411501 PMCID: PMC10911398 DOI: 10.7554/elife.88619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
Collapse
Affiliation(s)
- Anna Kádková
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | | | - Maiken Østergaard
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Andrea Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Jörg Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergDenmark
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | | | | |
Collapse
|
20
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577102. [PMID: 38328168 PMCID: PMC10849727 DOI: 10.1101/2024.01.24.577102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved SNARE complex assembly, and control multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Jagiellonian University, Faculty of Chemistry, Department of Organic Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
21
|
Norman CA, Krishnakumar SS, Timofeeva Y, Volynski KE. The release of inhibition model reproduces kinetics and plasticity of neurotransmitter release in central synapses. Commun Biol 2023; 6:1091. [PMID: 37891212 PMCID: PMC10611806 DOI: 10.1038/s42003-023-05445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the 'release-of-inhibition' model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.
Collapse
Affiliation(s)
- Christopher A Norman
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, CV4 7AL, UK
| | - Shyam S Krishnakumar
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurology, Yale Nanobiology Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Yulia Timofeeva
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| | - Kirill E Volynski
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
22
|
Queiroz Zetune Villa Real K, Mougios N, Rehm R, Sograte-Idrissi S, Albert L, Rahimi AM, Maidorn M, Hentze J, Martínez-Carranza M, Hosseini H, Saal KA, Oleksiievets N, Prigge M, Tsukanov R, Stenmark P, Fornasiero EF, Opazo F. A Versatile Synaptotagmin-1 Nanobody Provides Perturbation-Free Live Synaptic Imaging And Low Linkage-Error in Super-Resolution Microscopy. SMALL METHODS 2023; 7:e2300218. [PMID: 37421204 DOI: 10.1002/smtd.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Imaging of living synapses has relied for over two decades on the overexpression of synaptic proteins fused to fluorescent reporters. This strategy alters the stoichiometry of synaptic components and ultimately affects synapse physiology. To overcome these limitations, here a nanobody is presented that binds the calcium sensor synaptotagmin-1 (NbSyt1). This nanobody functions as an intrabody (iNbSyt1) in living neurons and is minimally invasive, leaving synaptic transmission almost unaffected, as suggested by the crystal structure of the NbSyt1 bound to Synaptotagmin-1 and by the physiological data. Its single-domain nature enables the generation of protein-based fluorescent reporters, as showcased here by measuring spatially localized presynaptic Ca2+ with a NbSyt1- jGCaMP8 chimera. Moreover, the small size of NbSyt1 makes it ideal for various super-resolution imaging methods. Overall, NbSyt1 is a versatile binder that will enable imaging in cellular and molecular neuroscience with unprecedented precision across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Karine Queiroz Zetune Villa Real
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ronja Rehm
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - László Albert
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Amir Mohammad Rahimi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Manuel Maidorn
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jannik Hentze
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Hassan Hosseini
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Kim-Ann Saal
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118, Magdeburg, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
23
|
Rahman MM, Pathak A, Schueler KL, Alsharif H, Michl A, Alexander J, Kim JA, Bhatnagar S. Genetic ablation of synaptotagmin-9 alters tomosyn-1 function to increase insulin secretion from pancreatic β-cells improving glucose clearance. FASEB J 2023; 37:e23075. [PMID: 37432648 PMCID: PMC10348599 DOI: 10.1096/fj.202300291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Stimulus-coupled insulin secretion from the pancreatic islet β-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which β-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in β-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Asmita Pathak
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | | | - Haifa Alsharif
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Ava Michl
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Justin Alexander
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Jeong-A Kim
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Sushant Bhatnagar
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| |
Collapse
|
24
|
Kragelj J, Dumarieh R, Xiao Y, Frederick KK. Conformational ensembles explain NMR spectra of frozen intrinsically disordered proteins. Protein Sci 2023; 32:e4628. [PMID: 36930141 PMCID: PMC10108432 DOI: 10.1002/pro.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Protein regions which are intrinsically disordered, exist as an ensemble of rapidly interconverting structures. Cooling proteins to cryogenic temperatures for dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR studies suspends most of the motions, resulting in peaks that are broad but not featureless. To demonstrate that detailed conformational restraints can be retrieved from the peak shapes of frozen proteins alone, we developed and used a simulation framework to assign peak features to conformers in the ensemble. We validated our simulations by comparing them to spectra of α-synuclein acquired under different experimental conditions. Our assignments of peaks to discrete dihedral angle populations suggest that structural constraints are attainable under cryogenic conditions. The ability to infer ensemble populations from peak shapes has important implications for DNP MAS NMR studies of proteins with regions of disorder in living cells because chemical shifts are the most accessible measured parameter.
Collapse
Affiliation(s)
- Jaka Kragelj
- Department of BiophysicsUT Southwestern Medical CenterDallasTexas75390‐8816USA
- Present address:
National Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
| | - Rania Dumarieh
- Department of BiophysicsUT Southwestern Medical CenterDallasTexas75390‐8816USA
| | - Yiling Xiao
- Department of BiophysicsUT Southwestern Medical CenterDallasTexas75390‐8816USA
| | - Kendra K. Frederick
- Department of BiophysicsUT Southwestern Medical CenterDallasTexas75390‐8816USA
- Center for Alzheimer's and Neurodegenerative DiseaseUT Southwestern Medical CenterDallasTexas75390USA
| |
Collapse
|
25
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
26
|
Brunger AT, Leitz J. The Core Complex of the Ca 2+-Triggered Presynaptic Fusion Machinery. J Mol Biol 2023; 435:167853. [PMID: 36243149 PMCID: PMC10578080 DOI: 10.1016/j.jmb.2022.167853] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Synaptic neurotransmitter release is mediated by an orchestra of presynaptic proteins that precisely control and trigger fusion between synaptic vesicles and the neuron terminal at the active zone upon the arrival of an action potential. Critical to this process are the neuronal SNAREs (Soluble N-ethylmaleimide sensitive factor Attachment protein REceptor), the Ca2+-sensor synaptotagmin, the activator/regulator complexin, and other factors. Here, we review the interactions between the SNARE complex and synaptotagmin, with focus on the so-called primary interface between synaptotagmin and the SNARE complex that has been validated in terms of its physiological relevance. We discuss several other but less validated interfaces as well, including the so-called tripartite interface, and we discuss the pros and cons for these possible alternative interfaces. We also present new molecular dynamics simulations of the tripartite interface and new data of an inhibitor of the primary interface in a reconstituted system of synaptic vesicle fusion.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States.
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
27
|
Jaczynska K, Esquivies L, Pfuetzner RA, Alten B, Brewer KD, Zhou Q, Kavalali ET, Brunger AT, Rizo J. Analysis of tripartite Synaptotagmin-1-SNARE-complexin-1 complexes in solution. FEBS Open Bio 2023; 13:26-50. [PMID: 36305864 PMCID: PMC9811660 DOI: 10.1002/2211-5463.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 01/07/2023] Open
Abstract
Characterizing interactions of Synaptotagmin-1 with the SNARE complex is crucial to understand the mechanism of neurotransmitter release. X-ray crystallography revealed how the Synaptotagmin-1 C2 B domain binds to the SNARE complex through a so-called primary interface and to a complexin-1-SNARE complex through a so-called tripartite interface. Mutagenesis and electrophysiology supported the functional relevance of both interfaces, and extensive additional data validated the primary interface. However, ITC evidence suggesting that binding via the tripartite interface occurs in solution was called into question by subsequent NMR data. Here, we describe joint efforts to address this apparent contradiction. Using the same ITC approach with the same C2 B domain mutant used previously (C2 BKA-Q ) but including ion exchange chromatography to purify it, which is crucial to remove polyacidic contaminants, we were unable to observe the substantial endothermic ITC signal that was previously attributed to binding of this mutant to the complexin-1-SNARE complex through the tripartite interface. We were also unable to detect substantial populations of the tripartite interface in NMR analyses of the ITC samples or in measurements of paramagnetic relaxation effects, despite the high sensitivity of this method to detect weak protein complexes. However, these experiments do not rule out the possibility of very low affinity (KD > 1 mm) binding through this interface. These results emphasize the need to develop methods to characterize the structure of synaptotagmin-1-SNARE complexes between two membranes and to perform further structure-function analyses to establish the physiological relevance of the tripartite interface.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Luis Esquivies
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Baris Alten
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Present address:
Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Present address:
Department of NeurologyBrigham and Women's HospitalBostonMAUSA
- Present address:
Harvard Medical SchoolBostonMAUSA
| | - Kyle D. Brewer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Present address:
ETTA BiotechnologyPalo AltoCAUSA
| | - Qiangjun Zhou
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Ege T. Kavalali
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
| | - Axel T. Brunger
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
28
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Zhou Q. Calcium Sensors of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:119-138. [PMID: 37615865 DOI: 10.1007/978-3-031-34229-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium (Ca2+) plays a critical role in triggering all three primary modes of neurotransmitter release (synchronous, asynchronous, and spontaneous). Synaptotagmin1, a protein with two C2 domains, is the first isoform of the synaptotagmin family that was identified and demonstrated as the primary Ca2+ sensor for synchronous neurotransmitter release. Other isoforms of the synaptotagmin family as well as other C2 proteins such as the double C2 domain protein family were found to act as Ca2+ sensors for different modes of neurotransmitter release. Major recent advances and previous data suggest a new model, release-of-inhibition, for the initiation of Ca2+-triggered synchronous neurotransmitter release. Synaptotagmin1 binds Ca2+ via its two C2 domains and relieves a primed pre-fusion machinery. Before Ca2+ triggering, synaptotagmin1 interacts Ca2+ independently with partially zippered SNARE complexes, the plasma membrane, phospholipids, and other components to form a primed pre-fusion state that is ready for fast release. However, membrane fusion is inhibited until the arrival of Ca2+ reorients the Ca2+-binding loops of the C2 domain to perturb the lipid bilayers, help bridge the membranes, and/or induce membrane curvatures, which serves as a power stroke to activate fusion. This chapter reviews the evidence supporting these models and discusses the molecular interactions that may underlie these abilities.
Collapse
Affiliation(s)
- Qiangjun Zhou
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Chen Y, Fan J, Xiao D, Li X. The role of SCAMP5 in central nervous system diseases. Neurol Res 2022; 44:1024-1037. [PMID: 36217917 DOI: 10.1080/01616412.2022.2107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Secretory carrier membrane proteins (SCAMPs) constitute a group of membrane transport proteins in plants, insects and mammals. The mammalian genome contains five types of SCAMP genes, namely, SCAMP1-SCAMP5. SCAMPs participate in the vesicle cycling fusion of vesicles and cell membranes and play roles in regulating exocytosis and endocytosis, activating synaptic function and transmitting nerve signals. Among these proteins, SCAMP5 is highly expressed in the brain and has direct or indirect effects on the function of the central nervous system. This paper may allow us to better understand the role of SCAMP5 in the central nervous system diseases. SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases. METHODS Through PubMed, this paper examined and analyzed the role of SCAMP5 in the central nervous system, as well as the relationship between SCAMP5 and various neurological diseases using the key terms "secretory carrier membrane proteins"," SCAMP5"," exocytosis"," endocytosis", "synaptic function", "central nervous system diseases" up to 01 March 2022. RESULTS SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. CONCLUSION This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
31
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
32
|
Zhu J, McDargh ZA, Li F, Krishnakumar SS, Rothman JE, O’Shaughnessy B. Synaptotagmin rings as high-sensitivity regulators of synaptic vesicle docking and fusion. Proc Natl Acad Sci U S A 2022; 119:e2208337119. [PMID: 36103579 PMCID: PMC9499556 DOI: 10.1073/pnas.2208337119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A. McDargh
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | | | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
33
|
Rizo J, David G, Fealey ME, Jaczynska K. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. FEBS Open Bio 2022; 12:1912-1938. [PMID: 35986639 PMCID: PMC9623538 DOI: 10.1002/2211-5463.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The mechanism of neurotransmitter release has been extensively characterized, showing that vesicle fusion is mediated by the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin. This complex is disassembled by N-ethylmaleimide sensitive factor (NSF) and SNAPs to recycle the SNAREs, whereas Munc18-1 and Munc13s organize SNARE complex assembly in an NSF-SNAP-resistant manner. Synaptotagmin-1 acts as the Ca2+ sensor that triggers exocytosis in a tight interplay with the SNAREs and complexins. Here, we review technical aspects associated with investigation of protein interactions underlying these steps, which is hindered because the release machinery is assembled between two membranes and is highly dynamic. Moreover, weak interactions, which are difficult to characterize, play key roles in neurotransmitter release, for instance by lowering energy barriers that need to be overcome in this highly regulated process. We illustrate the crucial role that structural biology has played in uncovering mechanisms underlying neurotransmitter release, but also discuss the importance of considering the limitations of the techniques used, including lessons learned from research in our lab and others. In particular, we emphasize: (a) the promiscuity of some protein sequences, including membrane-binding regions that can mediate irrelevant interactions with proteins in the absence of their native targets; (b) the need to ensure that weak interactions observed in crystal structures are biologically relevant; and (c) the limitations of isothermal titration calorimetry to analyze weak interactions. Finally, we stress that even studies that required re-interpretation often helped to move the field forward by improving our understanding of the system and providing testable hypotheses.
Collapse
Affiliation(s)
- Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Guillaume David
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Michael E. Fealey
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
34
|
Wu Z, Ma L, Courtney NA, Zhu J, Landajuela A, Zhang Y, Chapman ER, Karatekin E. Polybasic Patches in Both C2 Domains of Synaptotagmin-1 Are Required for Evoked Neurotransmitter Release. J Neurosci 2022; 42:5816-5829. [PMID: 35701163 PMCID: PMC9337609 DOI: 10.1523/jneurosci.1385-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/04/2022] [Accepted: 03/13/2022] [Indexed: 01/29/2023] Open
Abstract
Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex. The C2A domain is also required for Syt1 function, but it is not clear why. Here, we asked what critical feature of C2A may be responsible for its functional role and compared this to the analogous feature in C2B. We focused on highly conserved poly-lysine patches located on the sides of C2A (K189-192) and C2B (K324-327). We tested effects of charge-neutralization mutations in either region (Syt1K189-192A and Syt1K326-327A) side by side to determine their relative contributions to Syt1 function in cultured cortical neurons from mice of either sex and in single-molecule experiments. Combining electrophysiological recordings and optical tweezers measurements to probe dynamic single C2 domain-membrane interactions, we show that both C2A and C2B polybasic patches contribute to membrane binding, and both are required for evoked release. The size of the readily releasable vesicle pool and the rate of spontaneous release were unaffected, so both patches are likely required specifically for synchronization of release. We suggest these patches contribute to cooperative membrane binding, increasing the overall affinity of Syt1 for negatively charged membranes and facilitating evoked release.SIGNIFICANCE STATEMENT Synaptotagmin-1 is a vesicular calcium sensor required for synchronous neurotransmitter release. Its tandem cytosolic C2 domains (C2A and C2B) bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. How calcium binding to Synaptotagmin-1 leads to release and the relative contributions of the C2 domains are unclear. Combining electrophysiological recordings from cultured neurons and optical tweezers measurements of single C2 domain-membrane interactions, we show that conserved polybasic regions in both domains contribute to membrane binding cooperatively, and both are required for evoked release, likely by increasing the overall affinity of Synaptotagmin-1 for acidic membranes.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Lu Ma
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Nicholas A Courtney
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Ane Landajuela
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, Centre National de la Recherche Scientifique UMR 8003, 75270 Paris, France
| |
Collapse
|
35
|
Lai Y, Tuvim MJ, Leitz J, Peters J, Pfuetzner RA, Esquivies L, Zhou Q, Czako B, Cross JB, Jones P, Dickey BF, Brunger AT. Screening of Hydrocarbon-Stapled Peptides for Inhibition of Calcium-Triggered Exocytosis. Front Pharmacol 2022; 13:891041. [PMID: 35814209 PMCID: PMC9258623 DOI: 10.3389/fphar.2022.891041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The so-called primary interface between the SNARE complex and synaptotagmin-1 (Syt1) is essential for Ca2+-triggered neurotransmitter release in neuronal synapses. The interacting residues of the primary interface are conserved across different species for synaptotagmins (Syt1, Syt2, Syt9), SNAP-25, and syntaxin-1A homologs involved in fast synchronous release. This Ca2+-independent interface forms prior to Ca2+-triggering and plays a role in synaptic vesicle priming. This primary interface is also conserved in the fusion machinery that is responsible for mucin granule membrane fusion. Ca2+-stimulated mucin secretion is mediated by the SNAREs syntaxin-3, SNAP-23, VAMP8, Syt2, and other proteins. Here, we designed and screened a series of hydrocarbon-stapled peptides consisting of SNAP-25 fragments that included some of the key residues involved in the primary interface as observed in high-resolution crystal structures. We selected a subset of four stapled peptides that were highly α-helical as assessed by circular dichroism and that inhibited both Ca2+-independent and Ca2+-triggered ensemble lipid-mixing with neuronal SNAREs and Syt1. In a single-vesicle content-mixing assay with reconstituted neuronal SNAREs and Syt1 or with reconstituted airway SNAREs and Syt2, the selected peptides also suppressed Ca2+-triggered fusion. Taken together, hydrocarbon-stapled peptides that interfere with the primary interface consequently inhibit Ca2+-triggered exocytosis. Our inhibitor screen suggests that these compounds may be useful to combat mucus hypersecretion, which is a major cause of airway obstruction in the pathophysiology of COPD, asthma, and cystic fibrosis.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,*Correspondence: Axel T. Brunger, ; Ying Lai, ; Burton F. Dickey,
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - John Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Barbara Czako
- Institute for Applied Cancer Science, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Jason B. Cross
- Institute for Applied Cancer Science, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Philip Jones
- Institute for Applied Cancer Science, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Burton F. Dickey
- Department of Pulmonary Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, United States,*Correspondence: Axel T. Brunger, ; Ying Lai, ; Burton F. Dickey,
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States,*Correspondence: Axel T. Brunger, ; Ying Lai, ; Burton F. Dickey,
| |
Collapse
|
36
|
Rizo J, Sari L, Qi Y, Im W, Lin MM. All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer. eLife 2022; 11:76356. [PMID: 35708237 PMCID: PMC9239685 DOI: 10.7554/elife.76356] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca2+ influx.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Levent Sari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Green Center for Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yife Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, United States.,Department of Chemistry, Lehigh University, Bethlehem, United States.,Department of Bioengineering, Lehigh University, Bethlehem, United States.,Department of Computer Science and Engineering, Lehigh University, Bethlehem, United States
| | - Milo M Lin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Green Center for Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
37
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
38
|
Lai Y, Fois G, Flores JR, Tuvim MJ, Zhou Q, Yang K, Leitz J, Peters J, Zhang Y, Pfuetzner RA, Esquivies L, Jones P, Frick M, Dickey BF, Brunger AT. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature 2022; 603:949-956. [PMID: 35322233 PMCID: PMC8967716 DOI: 10.1038/s41586-022-04543-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Membrane fusion triggered by Ca2+ is orchestrated by a conserved set of proteins to mediate synaptic neurotransmitter release, mucin secretion and other regulated exocytic processes1-4. For neurotransmitter release, the Ca2+ sensitivity is introduced by interactions between the Ca2+ sensor synaptotagmin and the SNARE complex5, and sequence conservation and functional studies suggest that this mechanism is also conserved for mucin secretion6. Disruption of Ca2+-triggered membrane fusion by a pharmacological agent would have therapeutic value for mucus hypersecretion as it is the major cause of airway obstruction in the pathophysiology of respiratory viral infection, asthma, chronic obstructive pulmonary disease and cystic fibrosis7-11. Here we designed a hydrocarbon-stapled peptide that specifically disrupts Ca2+-triggered membrane fusion by interfering with the so-called primary interface between the neuronal SNARE complex and the Ca2+-binding C2B domain of synaptotagmin-1. In reconstituted systems with these neuronal synaptic proteins or with their airway homologues syntaxin-3, SNAP-23, VAMP8, synaptotagmin-2, along with Munc13-2 and Munc18-2, the stapled peptide strongly suppressed Ca2+-triggered fusion at physiological Ca2+ concentrations. Conjugation of cell-penetrating peptides to the stapled peptide resulted in efficient delivery into cultured human airway epithelial cells and mouse airway epithelium, where it markedly and specifically reduced stimulated mucin secretion in both systems, and substantially attenuated mucus occlusion of mouse airways. Taken together, peptides that disrupt Ca2+-triggered membrane fusion may enable the therapeutic modulation of mucin secretory pathways.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Jose R Flores
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Cell & Developmental Biology, Vanderbilt Brain Institute, Center for Structural Biology, Vanderbilt University, TN, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - John Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Fudan University, Shanghai, China
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Philip Jones
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany.
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Camacho M, Quade B, Trimbuch T, Xu J, Sari L, Rizo J, Rosenmund C. Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C 1C 2B region. eLife 2021; 10:e72030. [PMID: 34779770 PMCID: PMC8648301 DOI: 10.7554/elife.72030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022] Open
Abstract
Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C1C2B region with the plasma membrane: (i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and (ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here, we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.
Collapse
Affiliation(s)
- Marcial Camacho
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Thorsten Trimbuch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Levent Sari
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical CenterDallasUnited States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Christian Rosenmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
40
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
41
|
Voleti R, Bali S, Guerrero J, Smothers J, Springhower C, Acosta GA, Brewer KD, Albericio F, Rizo J. Evaluation of the tert-butyl group as a probe for NMR studies of macromolecular complexes. JOURNAL OF BIOMOLECULAR NMR 2021; 75:347-363. [PMID: 34505210 PMCID: PMC9482097 DOI: 10.1007/s10858-021-00380-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/04/2023]
Abstract
The development of methyl transverse relaxation optimized spectroscopy has greatly facilitated the study of macromolecular assemblies by solution NMR spectroscopy. However, limited sample solubility and stability has hindered application of this technique to ongoing studies of complexes formed on membranes by the neuronal SNAREs that mediate neurotransmitter release and synaptotagmin-1, the Ca2+ sensor that triggers release. Since the 1H NMR signal of a tBu group attached to a large protein or complex can be observed with high sensitivity if the group retains high mobility, we have explored the use of this strategy to analyze presynaptic complexes involved in neurotransmitter release. For this purpose, we attached tBu groups at single cysteines of fragments of synaptotagmin-1, complexin-1 and the neuronal SNAREs by reaction with 5-(tert-butyldisulfaneyl)-2-nitrobenzoic acid (BDSNB), tBu iodoacetamide or tBu acrylate. The tBu resonances of the tagged proteins were generally sharp and intense, although tBu groups attached with BDSNB had a tendency to exhibit somewhat broader resonances that likely result because of the shorter linkage between the tBu and the tagged cysteine. Incorporation of the tagged proteins into complexes on nanodiscs led to severe broadening of the tBu resonances in some cases. However, sharp tBu resonances could readily be observed for some complexes of more than 200 kDa at low micromolar concentrations. Our results show that tagging of proteins with tBu groups provides a powerful approach to study large biomolecular assemblies of limited stability and/or solubility that may be applicable even at nanomolar concentrations.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jaime Guerrero
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jared Smothers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charis Springhower
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Alicat Scientific, Tucson, AZ, 85743, USA
| | - Gerardo A Acosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Kyle D Brewer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
42
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
43
|
Synaptotagmin-1-, Munc18-1-, and Munc13-1-dependent liposome fusion with a few neuronal SNAREs. Proc Natl Acad Sci U S A 2021; 118:2019314118. [PMID: 33468652 DOI: 10.1073/pnas.2019314118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurotransmitter release is governed by eight central proteins among other factors: the neuronal SNAREs syntaxin-1, synaptobrevin, and SNAP-25, which form a tight SNARE complex that brings the synaptic vesicle and plasma membranes together; NSF and SNAPs, which disassemble SNARE complexes; Munc18-1 and Munc13-1, which organize SNARE complex assembly; and the Ca2+ sensor synaptotagmin-1. Reconstitution experiments revealed that Munc18-1, Munc13-1, NSF, and α-SNAP can mediate Ca2+-dependent liposome fusion between synaptobrevin liposomes and syntaxin-1-SNAP-25 liposomes, but high fusion efficiency due to uncontrolled SNARE complex assembly did not allow investigation of the role of synaptotagmin-1 on fusion. Here, we show that decreasing the synaptobrevin-to-lipid ratio in the corresponding liposomes to very low levels leads to inefficient fusion and that synaptotagmin-1 strongly stimulates fusion under these conditions. Such stimulation depends on Ca2+ binding to the two C2 domains of synaptotagmin-1. We also show that anchoring SNAP-25 on the syntaxin-1 liposomes dramatically enhances fusion. Moreover, we uncover a synergy between synaptotagmin-1 and membrane anchoring of SNAP-25, which allows efficient Ca2+-dependent fusion between liposomes bearing very low synaptobrevin densities and liposomes containing very low syntaxin-1 densities. Thus, liposome fusion in our assays is achieved with a few SNARE complexes in a manner that requires Munc18-1 and Munc13-1 and that depends on Ca2+ binding to synaptotagmin-1, all of which are fundamental features of neurotransmitter release in neurons.
Collapse
|
44
|
Voleti R, Jaczynska K, Rizo J. Ca 2+-dependent release of synaptotagmin-1 from the SNARE complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. eLife 2020; 9:57154. [PMID: 32808925 PMCID: PMC7498268 DOI: 10.7554/elife.57154] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
The Ca2+ sensor synaptotagmin-1 and the SNARE complex cooperate to trigger neurotransmitter release. Structural studies elucidated three distinct synaptotagmin-1-SNARE complex binding modes involving 'polybasic', 'primary' and 'tripartite' interfaces of synaptotagmin-1. We investigated these interactions using NMR and fluorescence spectroscopy. Synaptotagmin-1 binds to the SNARE complex through the polybasic and primary interfaces in solution. Ca2+-free synaptotagmin-1 binds to SNARE complexes anchored on PIP2-containing nanodiscs. R398Q/R399Q and E295A/Y338W mutations at the primary interface, which strongly impair neurotransmitter release, disrupt and enhance synaptotagmin-1-SNARE complex binding, respectively. Ca2+ induces tight binding of synaptotagmin-1 to PIP2-containing nanodiscs, disrupting synaptotagmin-1-SNARE interactions. Specific effects of mutations in the polybasic region on Ca2+-dependent synaptotagmin-1-PIP2-membrane interactions correlate with their effects on release. Our data suggest that synaptotagmin-1 binds to the SNARE complex through the primary interface and that Ca2+ releases this interaction, inducing PIP2/membrane binding and allowing cooperation between synaptotagmin-1 and the SNAREs in membrane fusion to trigger release.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|