1
|
George A, Sadanandan P, Ravi NS, Vaishnavi B, Marepally S, Thangavel S, Velayudhan SR, Srivastava A, Mohankumar KM. Editing of homologous globin genes by nickase-deficient base editor mitigates large intergenic deletions in HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102347. [PMID: 39469667 PMCID: PMC11513543 DOI: 10.1016/j.omtn.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 09/26/2024] [Indexed: 10/30/2024]
Abstract
Recent studies have shown that base editing, even with single-strand breaks, could result in large deletions of the interstitial regions while targeting homologous regions. Several therapeutically relevant genes such as HBG, HBB, CCR5, and CD33 have homologous sites and are prone for large deletion with base editing. Although the deletion frequency and indels observed are lesser than what is obtained with Cas9, they could still diminish therapeutic efficacy. We sought to evaluate whether these deletions could be overcome while maintaining editing efficiency by using dCas9 fusion of ABE8e in the place of nickaseCas9. Using guide RNAs (gRNAs) targeting the γ-globin promoter and the β-globin exon, we evaluated the editing outcome and frequency of large deletion using nABE8e and dABE8e in human HSPCs. We show that dABE8e can edit efficiently while abolishing the formation of large interstitial deletions. Furthermore, this approach enabled efficient multiplexed base editing on complementary strands without generating insertions and deletions. Removal of nickase activity improves the precision of base editing, thus making it a safer approach for therapeutic genome editing.
Collapse
Affiliation(s)
- Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Poornasree Sadanandan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - B. Vaishnavi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Saravanbhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College, Ratnagiri Kilminnal, Vellore, Tamil Nadu 632517, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College, Ratnagiri Kilminnal, Vellore, Tamil Nadu 632517, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| |
Collapse
|
2
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Sahu S, Castro M, Muldoon JJ, Asija K, Wyman SK, Krishnappa N, de Onate L, Eyquem J, Nguyen DN, Wilson RC. Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603391. [PMID: 39071446 PMCID: PMC11275745 DOI: 10.1101/2024.07.14.603391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing. PERC involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating the formulation with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) bearing homology-directed repair template DNA may be included. In contrast to electroporation, PERC is appealing as it requires no dedicated hardware and has less impact on cell phenotype and viability. Due to the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Here we report methods for improved PERC-mediated editing of T cells as well as novel methods for PERC-mediated editing of HSPCs, including knockout and precise knock-in. Editing efficiencies can surpass 90% using either Cas9 or Cas12a in primary T cells or HSPCs. Because PERC calls for only three readily available reagents - protein, RNA, and peptide - and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes this approach appealing for rapid deployment in research and clinical settings.
Collapse
|
4
|
Santos GPD, Rabi LT, Bezerra AA, da Cunha MR, Iatecola A, Fernandes VAR. Transcriptional regulators of fetal hemoglobin. Hematol Transfus Cell Ther 2024:S2531-1379(24)00296-7. [PMID: 39237431 DOI: 10.1016/j.htct.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Sickle cell anemia is a hereditary disease caused by sickle-shaped red blood cells that can lead to vaso-occlusive crises. Treatment options are currently limited, highlighting the need to develop new clinical approaches. Studies demonstrated that elevated levels of fetal hemoglobin (Hb F) are associated with a reduction of mortality and morbidity in sickle cell anemia patients. In light of this, researchers have been trying to elucidate the transcriptional regulation of Hb F to develop new therapeutic interventions. The present study aimed to present the main transcription factors of Hb F and discuss the clinical feasibility of these molecular targets. Two search strategies were used in the PubMed, SciELO, and LILACS databases between July and August 2023 to conduct this review. Manual searches were also conducted by checking references of potentially eligible studies. Eligibility criteria consisted of clinical trials and cohort studies from the last five years that investigated transcription factors associated with Hb F. The transcription factors investigated in at least four eligible studies were included in this review. As a result, 56 eligible studies provided data on the BCL11A, LRF, NF-Y, GATA1, KLF1, HRI, ATF4, and MYB factors. The studies demonstrated that Hb F is cooperatively regulated by transcription factors with the BCL11A factor appearing to be the most specific target gene for γ-globin induction. Although these data are promising, there are still significant gaps and intervention limitations due to the adverse functions of the target genes. New studies that clarify the aspects and functionalities of Hb F regulators may enable new clinical approaches for sickle cell anemia patients.
Collapse
Affiliation(s)
| | - Larissa Teodoro Rabi
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (UNICAMP), Campinas, SP, Brazil; Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - André Alves Bezerra
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | - Marcelo Rodrigues da Cunha
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | - Amilton Iatecola
- Nossa Senhora do Patrocínio University Center, Itú, SP, Brazil; College of Medicine of Jundiaí, Jundiaí, SP, Brazil
| | | |
Collapse
|
5
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
6
|
Raghuraman A, Lawrence R, Shetty R, Avanthika C, Jhaveri S, Pichardo BV, Mujakari A. Role of gene therapy in sickle cell disease. Dis Mon 2024; 70:101689. [PMID: 38326171 DOI: 10.1016/j.disamonth.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Gene therapy is an emerging treatment for sickle cell disease that works by replacing a defective gene with a healthy gene, allowing the body to produce normal red blood cells. This form of treatment has shown promising results in clinical trials, and is a promising alternative to traditional treatments. Gene therapy involves introducing a healthy gene into the body to replace a defective gene. The new gene can be delivered using a viral vector, which is a modified virus that carries the gene. The vector, carrying the healthy gene, is injected into the bloodstream. The healthy gene then enters the patient's cells and begins to produce normal hemoglobin, the protein in red blood cells that carries oxygen throughout the body. METHODOLOGY We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until December 2022. The following search strings and Medical Subject Heading (MeSH) terms were used: "Sickle Cell," "Gene Therapy" and "Stem Cell Transplantation". We explored the literature on Sickle Cell Disease for its epidemiology, etiopathogenesis, the role of various treatment modalities and the risk-benefit ratio of gene therapy over conventional stem cell transplant. RESULTS Gene therapy can reduce or eliminate painful episodes, prevent organ damage, and raise the quality of life for those living with the disease. Additionally, gene therapy may reduce the need for blood transfusions and other traditional treatments. Gene therapy has the potential to improve the lives of those living with sickle cell disease, as well as reduce the burden of the disease on society.
Collapse
Affiliation(s)
| | - Rebecca Lawrence
- Richmond Gabriel University, College of Medicine, Saint Vincent and the Grenadines, United States
| | | | | | | | | | | |
Collapse
|
7
|
Acharya S, Ansari AH, Kumar Das P, Hirano S, Aich M, Rauthan R, Mahato S, Maddileti S, Sarkar S, Kumar M, Phutela R, Gulati S, Rahman A, Goel A, Afzal C, Paul D, Agrawal T, Pulimamidi VK, Jalali S, Nishimasu H, Mariappan I, Nureki O, Maiti S, Chakraborty D. PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics. Nat Commun 2024; 15:5471. [PMID: 38942756 PMCID: PMC11213958 DOI: 10.1038/s41467-024-49233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.
Collapse
Affiliation(s)
- Sundaram Acharya
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Meghali Aich
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Riya Rauthan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudipta Mahato
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sajal Sarkar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rhythm Phutela
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sneha Gulati
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Abdul Rahman
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Arushi Goel
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C Afzal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Deepanjan Paul
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Trupti Agrawal
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Kumar Pulimamidi
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Subhadra Jalali
- Srimati Kannuri Santhamma Centre for vitreoretinal diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan
| | - Indumathi Mariappan
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Prasad K, Devaraju N, George A, Ravi NS, Paul J, Mahalingam G, Rajendiran V, Panigrahi L, Venkatesan V, Lakhotiya K, Periyasami Y, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Thangavel S, Velayudhan SR, Newby GA, Marepally S, Srivastava A, Mohankumar KM. Precise correction of a spectrum of β-thalassemia mutations in coding and non-coding regions by base editors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102205. [PMID: 38817682 PMCID: PMC11137594 DOI: 10.1016/j.omtn.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
β-thalassemia/HbE results from mutations in the β-globin locus that impede the production of functional adult hemoglobin. Base editors (BEs) could facilitate the correction of the point mutations with minimal or no indel creation, but its efficiency and bystander editing for the correction of β-thalassemia mutations in coding and non-coding regions remains unexplored. Here, we screened BE variants in HUDEP-2 cells for their ability to correct a spectrum of β-thalassemia mutations that were integrated into the genome as fragments of HBB. The identified targets were introduced into their endogenous genomic location using BEs and Cas9/homology-directed repair (HDR) to create cellular models with β-thalassemia/HbE. These β-thalassemia/HbE models were then used to assess the efficiency of correction in the native locus and functional β-globin restoration. Most bystander edits produced near target sites did not interfere with adult hemoglobin expression and are not predicted to be pathogenic. Further, the effectiveness of BE was validated for the correction of the pathogenic HbE variant in severe β0/βE-thalassaemia patient cells. Overall, our study establishes a novel platform to screen and select optimal BE tools for therapeutic genome editing by demonstrating the precise, efficient, and scarless correction of pathogenic point mutations spanning multiple regions of HBB including the promoter, intron, and exons.
Collapse
Affiliation(s)
- Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston MA 02111, USA
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 3050074, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Gregory A. Newby
- Departments of Genetic Medicine and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Kumarasamypet M. Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| |
Collapse
|
9
|
Xin Y, Feng H, He C, Lu H, Zuo E, Yan N. Development of a universal antibiotic resistance screening system for efficient enrichment of C-to-G and A-to-G base editing. Int J Biol Macromol 2024; 268:131785. [PMID: 38679258 DOI: 10.1016/j.ijbiomac.2024.131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puromycin-Resistance Screening System, referred to as CGBE/ABE-PRSS, to select genetically modified cells via the CGBE or ABE editors. The CGBE/ABE-PRSS system significantly improves the enrichment efficiency of CGBE- or ABE-modified cells, showing enhancements of up to 59.6 % compared with the controls. Our findings indicate that the CGBE/ABE-PRSS, when driven by the CMV promoter, results in a higher enrichment of edited cells compared to the CAG and EF1α promoters. Furthermore, we demonstrate that this system is compatible with different versions of both CGBE and ABE, enabling various cell species and simultaneous multiplexed genome editing without any detectable random off-targets. In conclusion, our developed CGBE/ABE-PRSS system facilitates the selection of edited cells and holds promise in both basic engineering and gene therapy applications.
Collapse
Affiliation(s)
- Ying Xin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongjiang Lu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nana Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China..
| |
Collapse
|
10
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
11
|
Wang G, Deng H, Peng P, Zheng H, Tian B, Zhu C. Compound heterozygosity for Southeast Asian hereditary persistence of fetal hemoglobin and β0-thalassemia results in thalassemia intermedia: Pedigree analysis and genetic research in a family from South China. A case report. Medicine (Baltimore) 2024; 103:e37446. [PMID: 38457547 PMCID: PMC10919527 DOI: 10.1097/md.0000000000037446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
RATIONALE Compound heterozygotes for deletional β-thalassemia can be difficult to diagnose due to its diverse clinical presentations and no routine screenings. This can lead to disease progression and delay in treatment. PATIENT CONCERNS We reported pedigree analysis and genetic research in a family with rare β-thalassemia. DIAGNOSIS Pedigree analysis and genetic research demonstrated that the patient was a compound heterozygote for β-thalassemia CD17/Southeast Asian hereditary persistence of fetal hemoglobin deletion, inherited from the parents. Magnetic resonance imaging T2* examination revealed severe iron deposition in the liver. Echocardiography revealed endocardial cushion defect. INTERVENTIONS The patient was treated with Deferasirox after receiving the final molecular genetic diagnosis. The initial once-daily dose of Deferasirox was 20 mg/kg/d. OUTCOMES The patient discontinued the medication three months after the first visit. Two years later, the patient visited the Department of Hepatobiliary and Pancreatic Diseases. He was recommended to undergo splenectomy after surgical repair of the congenital heart disease. However, the patient refused surgical treatment because of the economic burden. LESSONS We report that fetal hemoglobin is a sensitive indicator for screening large deletions of the β-globin gene, which can be effectively confirmed by the multiplex ligation-dependent probe amplification assay. In non-transfusion-dependent thalassemia patients, iron status assessment should be regularly performed, and iron chelation treatment should be initiated early. This case will provide insights for the diagnosis of rare genotypes of β-thalassemia and has important implications for genetic counseling.
Collapse
Affiliation(s)
- Guangli Wang
- Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huiping Deng
- Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Neonatology, The Third People’s Hospital of Hubei province, Wuhan, China
| | - Peng Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haiqing Zheng
- Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Baodong Tian
- Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chunjiang Zhu
- Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Pediatrics, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
12
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Rajendiran V, Devaraju N, Haddad M, Ravi NS, Panigrahi L, Paul J, Gopalakrishnan C, Wyman S, Ariudainambi K, Mahalingam G, Periyasami Y, Prasad K, George A, Sukumaran D, Gopinathan S, Pai AA, Nakamura Y, Balasubramanian P, Ramalingam R, Thangavel S, Velayudhan SR, Corn JE, Mackay JP, Marepally S, Srivastava A, Crossley M, Mohankumar KM. Base editing of key residues in the BCL11A-XL-specific zinc finger domains derepresses fetal globin expression. Mol Ther 2024; 32:663-677. [PMID: 38273654 PMCID: PMC10928131 DOI: 10.1016/j.ymthe.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for β-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.
Collapse
Affiliation(s)
- Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mahdi Haddad
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandrasekar Gopalakrishnan
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu 632014, India
| | - Stacia Wyman
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94704, USA
| | | | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Dhiyaneshwaran Sukumaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu 632014, India
| | - Sandhiya Gopinathan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Department of Haematology, Christian Medical College & Hospital, Vellore, Tamil Nadu 632 004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | - Rajasekaran Ramalingam
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu 632014, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Shaji R Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Department of Haematology, Christian Medical College & Hospital, Vellore, Tamil Nadu 632 004, India
| | - Jacon E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94704, USA; Institute of Molecular Health Sciences, Department of Biology, Zurich, Switzerland
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Department of Haematology, Christian Medical College & Hospital, Vellore, Tamil Nadu 632 004, India
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India.
| |
Collapse
|
14
|
Ravi NS, George A, Mohankumar KM. Protocol for arrayed gRNA screening by base editors in mammalian cell lines using lentiviral system. STAR Protoc 2023; 4:102668. [PMID: 37922314 PMCID: PMC10656259 DOI: 10.1016/j.xpro.2023.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023] Open
Abstract
Base editing, a CRISPR-based genome engineering technique, enables precise single-nucleotide modifications while minimizing double-strand breaks. Here, we present a protocol for arrayed mutagenesis using base editors to identify regulatory elements within the gamma-globin locus. We describe steps for guide RNA (gRNA) cloning into lentiviral vectors, establishing stable cell lines with base editor expression, transducing gRNAs, and assessing editing efficiency. This protocol can be applied to diverse genomic regions and cell lines for arrayed screening, facilitating genetic research, and target discovery. For complete details on the use and execution of this protocol, please refer to Ravi et al. (2022)1.
Collapse
Affiliation(s)
- Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India.
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India.
| |
Collapse
|
15
|
Nandy K, Babu D, Rani S, Joshi G, Ijee S, George A, Palani D, Premkumar C, Rajesh P, Vijayanand S, David E, Murugesan M, Velayudhan SR. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci Rep 2023; 13:21953. [PMID: 38081875 PMCID: PMC10713686 DOI: 10.1038/s41598-023-42174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 12/18/2023] Open
Abstract
The preferred method for disease modeling using induced pluripotent stem cells (iPSCs) is to generate isogenic cell lines by correcting or introducing pathogenic mutations. Base editing enables the precise installation of point mutations at specific genomic locations without the need for deleterious double-strand breaks used in the CRISPR-Cas9 gene editing methods. We created a bulk population of iPSCs that homogeneously express ABE8e adenine base editor enzyme under a doxycycline-inducible expression system at the AAVS1 safe harbor locus. These cells enabled fast, efficient and inducible gene editing at targeted genomic regions, eliminating the need for single-cell cloning and screening to identify those with homozygous mutations. We could achieve multiplex genomic editing by creating homozygous mutations in very high efficiencies at four independent genomic loci simultaneously in AAVS1-iABE8e iPSCs, which is highly challenging with previously described methods. The inducible ABE8e expression system allows editing of the genes of interest within a specific time window, enabling temporal control of gene editing to study the cell or lineage-specific functions of genes and their molecular pathways. In summary, the inducible ABE8e system provides a fast, efficient and versatile gene-editing tool for disease modeling and functional genomic studies.
Collapse
Affiliation(s)
- Krittika Nandy
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Dinesh Babu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Sonam Rani
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Gaurav Joshi
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Anila George
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Chitra Premkumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Praveena Rajesh
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - S Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Mohankumar Murugesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
16
|
Bhoopalan SV, Suryaprakash S, Sharma A, Wlodarski MW. Hematopoietic cell transplantation and gene therapy for Diamond-Blackfan anemia: state of the art and science. Front Oncol 2023; 13:1236038. [PMID: 37752993 PMCID: PMC10518466 DOI: 10.3389/fonc.2023.1236038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is one of the most common inherited causes of bone marrow failure in children. DBA typically presents with isolated erythroid hypoplasia and anemia in infants. Congenital anomalies are seen in 50% of the patients. Over time, many patients experience panhematopoietic defects resulting in immunodeficiency and multilineage hematopoietic cytopenias. Additionally, DBA is associated with increased risk of myelodysplastic syndrome, acute myeloid leukemia and solid organ cancers. As a prototypical ribosomopathy, DBA is caused by heterozygous loss-of-function mutations or deletions in over 20 ribosomal protein genes, with RPS19 being involved in 25% of patients. Corticosteroids are the only effective initial pharmacotherapy offered to transfusion-dependent patients aged 1 year or older. However, despite good initial response, only ~20-30% remain steroid-responsive while the majority of the remaining patients will require life-long red blood cell transfusions. Despite continuous chelation, iron overload and related toxicities pose a significant morbidity problem. Allogeneic hematopoietic cell transplantation (HCT) performed to completely replace the dysfunctional hematopoietic stem and progenitor cells is a curative option associated with potentially uncontrollable risks. Advances in HLA-typing, conditioning regimens, infection management, and graft-versus-host-disease prophylaxis have led to improved transplant outcomes in DBA patients, though survival is suboptimal for adolescents and adults with long transfusion-history and patients lacking well-matched donors. Additionally, many patients lack a suitable donor. To address this gap and to mitigate the risk of graft-versus-host disease, several groups are working towards developing autologous genetic therapies to provide another curative option for DBA patients across the whole age spectrum. In this review, we summarize the results of HCT studies and review advances and potential future directions in hematopoietic stem cell-based therapies for DBA.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Shruthi Suryaprakash
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Hardouin G, Magrin E, Corsia A, Cavazzana M, Miccio A, Semeraro M. Sickle Cell Disease: From Genetics to Curative Approaches. Annu Rev Genomics Hum Genet 2023; 24:255-275. [PMID: 37624668 DOI: 10.1146/annurev-genom-120122-081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Sickle cell disease (SCD) is a monogenic blood disease caused by a point mutation in the gene coding for β-globin. The abnormal hemoglobin [sickle hemoglobin (HbS)] polymerizes under low-oxygen conditions and causes red blood cells to sickle. The clinical presentation varies from very severe (with acute pain, chronic pain, and early mortality) to normal (few complications and a normal life span). The variability of SCD might be due (in part) to various genetic modulators. First, we review the main genetic factors, polymorphisms, and modifier genes that influence the expression of globin or otherwise modulate the severity of SCD. Considering SCD as a complex, multifactorial disorder is important for the development of appropriate pharmacological and genetic treatments. Second, we review the characteristics, advantages, and disadvantages of the latest advances in gene therapy for SCD, from lentiviral-vector-based approaches to gene-editing strategies.
Collapse
Affiliation(s)
- Giulia Hardouin
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France; ,
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France;
| | - Elisa Magrin
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
| | - Alice Corsia
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France;
| | - Marina Cavazzana
- Centre d'Investigation Clinique Spécialisé en Biothérapie, Département de Biothérapie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; ,
- Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Université Paris Cité, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France; ,
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre d'Investigation Clinique and Unité de Recherche Clinique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France;
| |
Collapse
|
18
|
Finotti A, Gambari R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front Genome Ed 2023; 5:1204536. [PMID: 37529398 PMCID: PMC10387548 DOI: 10.3389/fgeed.2023.1204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Genome editing (GE) is one of the most efficient and useful molecular approaches to correct the effects of gene mutations in hereditary monogenetic diseases, including β-thalassemia. CRISPR-Cas9 gene editing has been proposed for effective correction of the β-thalassemia mutation, obtaining high-level "de novo" production of adult hemoglobin (HbA). In addition to the correction of the primary gene mutations causing β-thalassemia, several reports demonstrate that gene editing can be employed to increase fetal hemoglobin (HbF), obtaining important clinical benefits in treated β-thalassemia patients. This important objective can be achieved through CRISPR-Cas9 disruption of genes encoding transcriptional repressors of γ-globin gene expression (such as BCL11A, SOX6, KLF-1) or their binding sites in the HBG promoter, mimicking non-deletional and deletional HPFH mutations. These two approaches (β-globin gene correction and genome editing of the genes encoding repressors of γ-globin gene transcription) can be, at least in theory, combined. However, since multiplex CRISPR-Cas9 gene editing is associated with documented evidence concerning possible genotoxicity, this review is focused on the possibility to combine pharmacologically-mediated HbF induction protocols with the "de novo" production of HbA using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Mayuranathan T, Newby GA, Feng R, Yao Y, Mayberry KD, Lazzarotto CR, Li Y, Levine RM, Nimmagadda N, Dempsey E, Kang G, Porter SN, Doerfler PA, Zhang J, Jang Y, Chen J, Bell HW, Crossley M, Bhoopalan SV, Sharma A, Tisdale JF, Pruett-Miller SM, Cheng Y, Tsai SQ, Liu DR, Weiss MJ, Yen JS. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet 2023; 55:1210-1220. [PMID: 37400614 PMCID: PMC10722557 DOI: 10.1038/s41588-023-01434-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Inducing fetal hemoglobin (HbF) in red blood cells can alleviate β-thalassemia and sickle cell disease. We compared five strategies in CD34+ hematopoietic stem and progenitor cells, using either Cas9 nuclease or adenine base editors. The most potent modification was adenine base editor generation of γ-globin -175A>G. Homozygous -175A>G edited erythroid colonies expressed 81 ± 7% HbF versus 17 ± 11% in unedited controls, whereas HbF levels were lower and more variable for two Cas9 strategies targeting a BCL11A binding motif in the γ-globin promoter or a BCL11A erythroid enhancer. The -175A>G base edit also induced HbF more potently than a Cas9 approach in red blood cells generated after transplantation of CD34+ hematopoietic stem and progenitor cells into mice. Our data suggest a strategy for potent, uniform induction of HbF and provide insights into γ-globin gene regulation. More generally, we demonstrate that diverse indels generated by Cas9 can cause unexpected phenotypic variation that can be circumvented by base editing.
Collapse
Affiliation(s)
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin D Mayberry
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikitha Nimmagadda
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin Dempsey
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoonjeong Jang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Chen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Henry W Bell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Martin-Rufino JD, Castano N, Pang M, Grody EI, Joubran S, Caulier A, Wahlster L, Li T, Qiu X, Riera-Escandell AM, Newby GA, Al'Khafaji A, Chaudhary S, Black S, Weng C, Munson G, Liu DR, Wlodarski MW, Sims K, Oakley JH, Fasano RM, Xavier RJ, Lander ES, Klein DE, Sankaran VG. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 2023; 186:2456-2474.e24. [PMID: 37137305 PMCID: PMC10225359 DOI: 10.1016/j.cell.2023.03.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.
Collapse
Affiliation(s)
- Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Castano
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Pang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samantha Joubran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tongqing Li
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojie Qiu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Gregory A Newby
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aziz Al'Khafaji
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kacie Sims
- St. Jude Affiliate Clinic at Our Lady of the Lake Children's Health, Baton Rouge, LA 70809, USA
| | - Jamie H Oakley
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daryl E Klein
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
21
|
Arif T, Farooq A, Ahmad FJ, Akhtar M, Choudhery MS. Prime editing: A potential treatment option for β-thalassemia. Cell Biol Int 2023; 47:699-713. [PMID: 36480796 DOI: 10.1002/cbin.11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The potential to therapeutically alter the genome is one of the remarkable scientific developments in recent years. Genome editing technologies have provided an opportunity to precisely alter genomic sequence(s) in eukaryotic cells as a treatment option for various genetic disorders. These technologies allow the correction of harmful mutations in patients by precise nucleotide editing. Genome editing technologies such as CRISPR (clustered regularly interspaced short palindromic repeat) and base editors have greatly contributed to the practical applications of gene editing. However, these technologies have certain limitations, including imperfect editing, undesirable mutations, off-target effects, and lack of potential to simultaneously edit multiple loci. Recently, prime editing (PE) has emerged as a new gene editing technology with the potential to overcome the above-mentioned limitations. Interestingly, PE not only has higher specificity but also does not require double-strand breaks. In addition, a minimum possibility of potential off-target mutant sites makes PE a preferred choice for therapeutic gene editing. Furthermore, PE has the potential to introduce insertion and deletions of all 12 single-base mutations at target sequences. Considering its potential, PE has been applied as a treatment option for genetic diseases including hemoglobinopathies. β-Thalassemia, for example, one of the most significant blood disorders characterized by reduced levels of functional hemoglobin, could potentially be treated using PE. Therapeutic reactivation of the γ-globin gene in adult β-thalassemia patients through PE technology is considered a promising therapeutic strategy. The current review aims to briefly discuss the genome editing strategies and potential applications of PE for the treatment of β-thalassemia. In addition, the review will also focus on challenges associated with the use of PE.
Collapse
Affiliation(s)
- Taqdees Arif
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Aroosa Farooq
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Fridoon Jawad Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of Punjab Lahore, Lahore, Punjab, Pakistan
| | - Mahmood S Choudhery
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
22
|
Christakopoulos GE, Telange R, Yen J, Weiss MJ. Gene Therapy and Gene Editing for β-Thalassemia. Hematol Oncol Clin North Am 2023; 37:433-447. [PMID: 36907613 PMCID: PMC10355137 DOI: 10.1016/j.hoc.2022.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
After many years of intensive research, emerging data from clinical trials indicate that gene therapy for transfusion-dependent β-thalassemia is now possible. Strategies for therapeutic manipulation of patient hematopoietic stem cells include lentiviral transduction of a functional erythroid-expressed β-globin gene and genome editing to activate fetal hemoglobin production in patient red blood cells. Gene therapy for β-thalassemia and other blood disorders will invariably improve as experience accumulates over time. The best overall approaches are not known and perhaps not yet established. Gene therapy comes at a high cost, and collaboration between multiple stakeholders is required to ensure that these new medicines are administered equitably.
Collapse
Affiliation(s)
- Georgios E Christakopoulos
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN 38105, USA
| | - Raul Telange
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN 38105, USA
| | - Jonathan Yen
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN 38105, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN 38105, USA.
| |
Collapse
|
23
|
Abstract
Thalassemia syndromes are common monogenic disorders and represent a significant health issue worldwide. In this review, the authors elaborate on fundamental genetic knowledge about thalassemias, including the structure and location of globin genes, the production of hemoglobin during development, the molecular lesions causing α-, β-, and other thalassemia syndromes, the genotype-phenotype correlation, and the genetic modifiers of these conditions. In addition, they briefly discuss the molecular techniques applied for diagnosis and innovative cell and gene therapy strategies to cure these conditions.
Collapse
Affiliation(s)
- Nicolò Tesio
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy. https://twitter.com/nicolotesio
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Peslak SA, Demirci S, Chandra V, Ryu B, Bhardwaj SK, Jiang J, Rupon JW, Throm RE, Uchida N, Leonard A, Essawi K, Bonifacino AC, Krouse AE, Linde NS, Donahue RE, Ferrara F, Wielgosz M, Abdulmalik O, Hamagami N, Germino-Watnick P, Le A, Chu R, Hinds M, Weiss MJ, Tong W, Tisdale JF, Blobel GA. Forced enhancer-promoter rewiring to alter gene expression in animal models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:452-465. [PMID: 36852088 PMCID: PMC9958407 DOI: 10.1016/j.omtn.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the β-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) β-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the β-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human β-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.
Collapse
Affiliation(s)
- Scott A. Peslak
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vemika Chandra
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Byoung Ryu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Saurabh K. Bhardwaj
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jing Jiang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jeremy W. Rupon
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert E. Throm
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Nathaniel S. Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Francesca Ferrara
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthew Wielgosz
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paula Germino-Watnick
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anh Le
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Malikiya Hinds
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wei Tong
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Papaioannou NY, Patsali P, Naiisseh B, Papasavva PL, Koniali L, Kurita R, Nakamura Y, Christou S, Sitarou M, Mussolino C, Cathomen T, Kleanthous M, Lederer CW. High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Front Genome Ed 2023; 5:1141618. [PMID: 36969374 PMCID: PMC10030607 DOI: 10.3389/fgeed.2023.1141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Genome editing tools, such as CRISPR/Cas, TALE nucleases and, more recently, double-strand-break-independent editors, have been successfully used for gene therapy and reverse genetics. Among various challenges in the field, tolerable and efficient delivery of editors to target cells and sites, as well as independence from commercially available tools for flexibility and fast adoption of new editing technology are the most pressing. For many hematopoietic research applications, primary CD34+ cells and the human umbilical cord-derived progenitor erythroid 2 (HUDEP-2) cell line are highly informative substrates and readily accessible for in vitro manipulation. Moreover, ex vivo editing of CD34+ cells has immediate therapeutic relevance. Both cell types are sensitive to standard transfection procedures and reagents, such as lipofection with plasmid DNA, calling for more suitable methodology in order to achieve high efficiency and tolerability of editing with editors of choice. These challenges can be addressed by RNA delivery, either as a mixture of guide RNA and mRNA for CRISRP/Cas-based systems or as a mixture of mRNAs for TALENs. Compared to ribonucleoproteins or proteins, RNA as vector creates flexibility by removing dependence on commercial availability or laborious in-house preparations of novel editor proteins. Compared to DNA, RNA is less toxic and by obviating nuclear transcription and export of mRNA offers faster kinetics and higher editing efficiencies. Methods: Here, we detail an in vitro transcription protocol based on plasmid DNA templates with the addition of Anti-Reverse Cap Analog (ARCA) using T7 RNA polymerase, and poly (A) tailing using poly (A) polymerase, combined with nucleofection of HUDEP-2 and patient-derived CD34+ cells. Our protocol for RNA-based delivery employs widely available reagents and equipment and can easily be adopted for universal in vitro delivery of genome editing tools. Results and Discussion: Drawing on a common use case, we employ the protocol to target a β-globin mutation and to reactivate γ-globin expression as two potential therapies for β-hemoglobinopathies, followed by erythroid differentiation and functional analyses. Our protocol allows high editing efficiencies and unimpaired cell viability and differentiation, with scalability, suitability for functional assessment of editing outcomes and high flexibility in the application to different editors.
Collapse
Affiliation(s)
- Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Basma Naiisseh
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Soteroula Christou
- Thalassaemia Centre, State Health Services Organisation of Cyprus, Nicosia, Cyprus
| | - Maria Sitarou
- Thalassaemia Centre, State Health Services Organisation of Cyprus, Larnaca, Cyprus
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
26
|
Borot F, Humbert O, Newby GA, Fields E, Kohli S, Radtke S, Laszlo GS, Mayuranathan T, Ali AM, Weiss MJ, Yen JS, Walter RB, Liu DR, Mukherjee S, Kiem HP. Multiplex Base Editing to Protect from CD33-Directed Therapy: Implications for Immune and Gene Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529353. [PMID: 36865281 PMCID: PMC9980058 DOI: 10.1101/2023.02.23.529353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
On-target toxicity to normal cells is a major safety concern with targeted immune and gene therapies. Here, we developed a base editing (BE) approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate (NHP) hematopoietic stem and progenitor cells (HSPCs) protects from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo , thus demonstrating potential for novel immunotherapies with reduced off-leukemia toxicity. For broader applications to gene therapies, we demonstrated highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes, resulting in long-term persistence of dual gene-edited cells with HbF reactivation in NHPs. In vitro , dual gene-edited cells could be enriched via treatment with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Together, our results highlight the potential of adenine base editors for improved immune and gene therapies. Graphical abstract
Collapse
|
27
|
Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease-A brief update. Front Med (Lausanne) 2023; 9:1065377. [PMID: 36698803 PMCID: PMC9868311 DOI: 10.3389/fmed.2022.1065377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common hemoglobinopathies. Due to its high prevalence, with about 20 million affected individuals worldwide, the development of novel effective treatments is highly warranted. While transplantation of allogeneic hematopoietic stem cells (HSC) is the standard curative treatment approach, a variety of gene transfer and genome editing strategies have demonstrated their potential to provide a prospective cure for SCD patients. Several stratagems employing CRISPR-Cas nucleases or base editors aim at reactivation of γ-globin expression to replace the faulty β-globin chain. The fetal hemoglobin (HbF), consisting of two α-globin and two γ-globin chains, can compensate for defective adult hemoglobin (HbA) and reverse the sickling of hemoglobin-S (HbS). Both disruption of cis-regulatory elements that are involved in inhibiting γ-globin expression, such as BCL11A or LRF binding sites in the γ-globin gene promoters (HBG1/2), or the lineage-specific disruption of BCL11A to reduce its expression in human erythroblasts, have been demonstrated to reestablish HbF expression. Alternatively, the point mutation in the HBB gene has been corrected using homology-directed repair (HDR)-based methodologies. In general, genome editing has shown promising results not only in preclinical animal models but also in clinical trials, both in terms of efficacy and safety. This review provides a brief update on the recent clinical advances in the genome editing space to offer cure for SCD patients, discusses open questions with regard to off-target effects induced by the employed genome editors, and gives an outlook of forthcoming developments.
Collapse
Affiliation(s)
- Parinaz Zarghamian
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Toni Cathomen,
| |
Collapse
|
28
|
CRISPR/Cas9, a promising approach for the treatment of β-thalassemia: a systematic review. Mol Genet Genomics 2023; 298:1-11. [PMID: 36403178 DOI: 10.1007/s00438-022-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The CRISPR/Cas9 technique is easily programmable, fast, more powerful, and efficient at generating a mutation compared to previous gene therapy methods. β-thalassemia is the most common autosomal recessive disorder worldwide. Appropriate genomic changes in the β gene can be modified to alleviate the symptoms of the disease using the CRISPR/Cas9 system. PubMed/Medline, Scopus, Web of Science, and SID databases were searched in Persian and English from February 2000 to September 2022. Finally, 39 articles had inclusion criteria which were reviewed by two separate individuals. Among the reviewed articles, articles were divided into three categories. In the first group, studies attemped to increase the expression of γ-globin and production of hemoglobin F. The strategy of second group of studies were the reduction of the α-globin chain to prevent hemolysis of RBCs by accumulation of excessive α-globins. The third group corrected the mutations causing β-thalassemia. Studies have shown that the genome of β-thalassemia patients can be modified using the CRISPR/Cas9 technique, and this approach might be promising for the treatment of β-thalassemia.
Collapse
|
29
|
George A, Ravi NS, Prasad K, Panigrahi L, Koikkara S, Rajendiran V, Devaraju N, Paul J, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Thangavel S, Marepally S, Velayudhan SR, Srivastava A, Mohankumar KM. Efficient and error-free correction of sickle mutation in human erythroid cells using prime editor-2. Front Genome Ed 2022; 4:1085111. [PMID: 36605051 PMCID: PMC9808041 DOI: 10.3389/fgeed.2022.1085111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Sickle cell anaemia (SCA) is one of the common autosomal recessive monogenic disorders, caused by a transverse point mutation (GAG > GTG) at the sixth codon of the beta-globin gene, which results in haemolytic anaemia due to the fragile RBCs. Recent progress in genome editing has gained attention for the therapeutic cure for SCA. Direct correction of SCA mutation by homology-directed repair relies on a double-strand break (DSB) at the target site and carries the risk of generating beta-thalassaemic mutations if the editing is not error-free. On the other hand, base editors cannot correct the pathogenic SCA mutation resulting from A > T base transversion. Prime editor (PE), the recently described CRISPR/Cas 9 based gene editing tool that enables precise gene manipulations without DSB and unintended nucleotide changes, is a viable approach for the treatment of SCA. However, the major limitation with the use of prime editing is the lower efficiency especially in human erythroid cell lines and primary cells. To overcome these limitations, we developed a modular lenti-viral based prime editor system and demonstrated its use for the precise modelling of SCA mutation and its subsequent correction in human erythroid cell lines. We achieved highly efficient installation of SCA mutation (up to 72%) and its subsequent correction in human erythroid cells. For the first time, we demonstrated the functional restoration of adult haemoglobin without any unintended nucleotide changes or indel formations using the PE2 system. We also validated that the off-target effects mediated by the PE2 system is very minimal even with very efficient on-target conversion, making it a safe therapeutic option. Taken together, the modular lenti-viral prime editor system developed in this study not only expands the range of cell lines targetable by prime editor but also improves the efficiency considerably, enabling the use of prime editor for myriad molecular, genetic, and translational studies.
Collapse
Affiliation(s)
- Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanya Koikkara
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India,Department of Haematology, Christian Medical College and Hospital, Vellore, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Ibaraki, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | | | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Department of Haematology, Christian Medical College and Hospital, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Department of Haematology, Christian Medical College and Hospital, Vellore, India
| | - Kumarasamypet M. Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India,Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India,*Correspondence: Kumarasamypet M. Mohankumar,
| |
Collapse
|
30
|
Crossley M, Christakopoulos GE, Weiss MJ. Effective therapies for sickle cell disease: are we there yet? Trends Genet 2022; 38:1284-1298. [PMID: 35934593 PMCID: PMC9837857 DOI: 10.1016/j.tig.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Sickle cell disease (SCD) is a common genetic blood disorder associated with acute and chronic pain, progressive multiorgan damage, and early mortality. Recent advances in technologies to manipulate the human genome, a century of research and the development of techniques enabling the isolation, efficient genetic modification, and reimplantation of autologous patient hematopoietic stem cells (HSCs), mean that curing most patients with SCD could soon be a reality in wealthy countries. In parallel, ongoing research is pursuing more facile treatments, such as in-vivo-delivered genetic therapies and new drugs that can eventually be administered in low- and middle-income countries where most SCD patients reside.
Collapse
Affiliation(s)
- Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052.
| | | | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
31
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
32
|
Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells 2022; 11:cells11111843. [PMID: 35681538 PMCID: PMC9180595 DOI: 10.3390/cells11111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Autologous hematopoietic stem cell (HSC)-targeted gene therapy provides a one-time cure for various genetic diseases including sickle cell disease (SCD) and β-thalassemia. SCD is caused by a point mutation (20A > T) in the β-globin gene. Since SCD is the most common single-gene disorder, curing SCD is a primary goal in HSC gene therapy. β-thalassemia results from either the absence or the reduction of β-globin expression, and it can be cured using similar strategies. In HSC gene-addition therapy, patient CD34+ HSCs are genetically modified by adding a therapeutic β-globin gene with lentiviral transduction, followed by autologous transplantation. Alternatively, novel gene-editing therapies allow for the correction of the mutated β-globin gene, instead of addition. Furthermore, these diseases can be cured by γ-globin induction based on gene addition/editing in HSCs. In this review, we discuss HSC-targeted gene therapy in SCD with gene addition as well as gene editing.
Collapse
|
33
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|