1
|
de Leeuw NF, Budhathoki R, Russell LJ, Loerke D, Blankenship JT. Nuclei as mechanical bumpers during epithelial remodeling. J Cell Biol 2024; 223:e202405078. [PMID: 39325019 PMCID: PMC11450824 DOI: 10.1083/jcb.202405078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The morphogenesis of developing tissues relies on extensive cellular rearrangements in shape, position, and identity. A key process in reshaping tissues is cell intercalation-driven elongation, where epithelial cells align and intercalate along a common axis. Typically, analyses focus on how peripheral cortical forces influence cell shape changes. Less attention is given to how inhomogeneities in internal structures, particularly the nucleus, impact cell shaping. Here, we examine how pulsed contractile and extension dynamics interact with the nucleus in elongating Drosophila embryos. Our data show that tightly packed nuclei in apical layers hinder tissue remodeling/oscillatory behaviors. We identify two mechanisms for resolving internuclear tensions: nuclear deformation and dispersion. Embryos with non-deformable nuclei use nuclear dispersion to maintain near-normal extensile rates, while those with non-dispersible nuclei due to microtubule inhibition exhibit disruptions in contractile behaviors. Disrupting both mechanisms leads to severe tissue extension defects and cell extrusion. These findings highlight the critical role of nuclear shape and positioning in topological remodeling of epithelia.
Collapse
Affiliation(s)
- Noah F. de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Liam J. Russell
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | | |
Collapse
|
2
|
Rozman J, Krajnc M, Ziherl P. Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers. PHYSICAL REVIEW LETTERS 2024; 133:168401. [PMID: 39485953 DOI: 10.1103/physrevlett.133.168401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.
Collapse
|
3
|
Barone V, Tagua A, Román JÁAS, Hamdoun A, Garrido-García J, Lyons DC, Escudero LM. Local and global changes in cell density induce reorganisation of 3D packing in a proliferating epithelium. Development 2024; 151:dev202362. [PMID: 38619327 PMCID: PMC11112164 DOI: 10.1242/dev.202362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes, adopting a shape named 'scutoid' that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here, we use live imaging of the sea star embryo coupled with deep learning-based segmentation to dissect the relative contributions of cell density, tissue compaction and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing immediately after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.
Collapse
Affiliation(s)
- Vanessa Barone
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Jesus Á. Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juan Garrido-García
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Deirdre C. Lyons
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Luis M. Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
4
|
Walther RF, Lancaster C, Burden JJ, Pichaud F. A dystroglycan-laminin-integrin axis coordinates cell shape remodeling in the developing Drosophila retina. PLoS Biol 2024; 22:e3002783. [PMID: 39226305 PMCID: PMC11398702 DOI: 10.1371/journal.pbio.3002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye. The ommatidium is shaped as a hexagonal prism, and generating this 3D structure requires ommatidial cells to adopt specific apical and basal polygonal geometries. Using this model system, we find that generating cell type-specific basal geometries starts with patterning of the basal extracellular matrix, whereby Laminin accumulates at discrete locations across the basal surface of the retina. We find the Dystroglycan receptor complex (DGC) is required for this patterning by promoting localized Laminin accumulation at the basal surface of cells. Moreover, our results reveal that localized accumulation of Laminin and the DGC are required for directing Integrin adhesion. This induces cell basal geometry remodeling by anchoring the basal surface of cells to the extracellular matrix at specific, Laminin-rich locations. We propose that patterning of a basal extracellular matrix by generating discrete Laminin domains can direct Integrin adhesion to induce cell shape remodeling in epithelial morphogenesis.
Collapse
Affiliation(s)
- Rhian F Walther
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Courtney Lancaster
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Jemima J Burden
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Franck Pichaud
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| |
Collapse
|
5
|
Domokos G, Goriely A, Horváth ÁG, Regős K. Soft cells and the geometry of seashells. PNAS NEXUS 2024; 3:pgae311. [PMID: 39258217 PMCID: PMC11385584 DOI: 10.1093/pnasnexus/pgae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024]
Abstract
A central problem of geometry is the tiling of space with simple structures. The classical solutions, such as triangles, squares, and hexagons in the plane and cubes and other polyhedra in three-dimensional space are built with sharp corners and flat faces. However, many tilings in Nature are characterized by shapes with curved edges, nonflat faces, and few, if any, sharp corners. An important question is then to relate prototypical sharp tilings to softer natural shapes. Here, we solve this problem by introducing a new class of shapes, the soft cells, minimizing the number of sharp corners and filling space as soft tilings. We prove that an infinite class of polyhedral tilings can be smoothly deformed into soft tilings and we construct the soft versions of all Dirichlet-Voronoi cells associated with point lattices in two and three dimensions. Remarkably, these ideal soft shapes, born out of geometry, are found abundantly in nature, from cells to shells.
Collapse
Affiliation(s)
- Gábor Domokos
- Department of Morphology and Geometric Modeling, Budapest University of Technology and Economics, Budapest, 1111, Hungary
- HUN-REN-BME Morphodynamics Research Group, Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Ákos G Horváth
- HUN-REN-BME Morphodynamics Research Group, Budapest University of Technology and Economics, Budapest, 1111, Hungary
- Department of Algebra and Geometry, Budapest University of Technology and Economics, Budapest,1111, Hungary
| | - Krisztina Regős
- Department of Morphology and Geometric Modeling, Budapest University of Technology and Economics, Budapest, 1111, Hungary
- HUN-REN-BME Morphodynamics Research Group, Budapest University of Technology and Economics, Budapest, 1111, Hungary
| |
Collapse
|
6
|
Mim MS, Kumar N, Levis M, Unger MF, Miranda G, Gazzo D, Robinett T, Zartman JJ. Piezo regulates epithelial topology and promotes precision in organ size control. Cell Rep 2024; 43:114398. [PMID: 38935502 DOI: 10.1016/j.celrep.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria F Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel Miranda
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Trent Robinett
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Runser S, Vetter R, Iber D. SimuCell3D: three-dimensional simulation of tissue mechanics with cell polarization. NATURE COMPUTATIONAL SCIENCE 2024; 4:299-309. [PMID: 38594592 PMCID: PMC11052725 DOI: 10.1038/s43588-024-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The three-dimensional (3D) organization of cells determines tissue function and integrity, and changes markedly in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, high computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, an efficient open-source program to simulate large tissues in three dimensions with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform mechanical properties, as found in polarized epithelia. Spheroids, vesicles, sheets, tubes and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at a great level of detail.
Collapse
Affiliation(s)
- Steve Runser
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
9
|
Lim SE, Vicente-Munuera P, Mao Y. Forced back into shape: Mechanics of epithelial wound repair. Curr Opin Cell Biol 2024; 87:102324. [PMID: 38290420 DOI: 10.1016/j.ceb.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Wound repair, the closing of a hole, is inherently a physical process that requires the change of shape of materials, in this case, cells and tissues. Not only is efficient and accurate wound repair critical for restoring barrier function and reducing infection, but it is also critical for restoring the complex three-dimensional architecture of an organ. This re-sculpting of tissues requires the complex coordination of cell behaviours in multiple dimensions, in space and time, to ensure that the repaired structure can continue functioning optimally. Recent evidence highlights the importance of cell and tissue mechanics in 2D and 3D to achieve such seamless wound repair.
Collapse
Affiliation(s)
- Shu En Lim
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Pablo Vicente-Munuera
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Barone V, Tagua A, Andrés-San Román JÁ, Hamdoun A, Garrido-García J, Lyons DC, Escudero LM. Local and global changes in cell density induce reorganisation of 3D packing in a proliferating epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579268. [PMID: 38370815 PMCID: PMC10871321 DOI: 10.1101/2024.02.08.579268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes adopting a shape named "scutoid" that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here we use live-imaging of the sea star embryo coupled with deep learning-based segmentation, to dissect the relative contributions of cell density, tissue compaction, and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing just after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.
Collapse
Affiliation(s)
- Vanessa Barone
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, 92093, USA
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, 93950, USA
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla. 41013 Seville, Spain
| | - Jesus Á Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla. 41013 Seville, Spain
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Juan Garrido-García
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla. 41013 Seville, Spain
| | - Deirdre C Lyons
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla. 41013 Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
11
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
12
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
13
|
Mederacke M, Conrad L, Doumpas N, Vetter R, Iber D. Geometric effects position renal vesicles during kidney development. Cell Rep 2023; 42:113526. [PMID: 38060445 DOI: 10.1016/j.celrep.2023.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development.
Collapse
Affiliation(s)
- Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Nikolaos Doumpas
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
14
|
Mitchell NP, Cislo DJ. TubULAR: tracking in toto deformations of dynamic tissues via constrained maps. Nat Methods 2023; 20:1980-1988. [PMID: 38057529 PMCID: PMC10848277 DOI: 10.1038/s41592-023-02081-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
A common motif in biology is the arrangement of cells into tubes, which further transform into complex shapes. Traditionally, analysis of dynamic tissues has relied on inspecting static snapshots, live imaging of cross-sections or tracking isolated cells in three dimensions. However, capturing the interplay between in-plane and out-of-plane behaviors requires following the full surface as it deforms and integrating cell-scale motions into collective, tissue-scale deformations. Here, we present an analysis framework that builds in toto maps of tissue deformations by following tissue parcels in a static material frame of reference. Our approach then relates in-plane and out-of-plane behaviors and decomposes complex deformation maps into elementary contributions. The tube-like surface Lagrangian analysis resource (TubULAR) provides an open-source implementation accessible either as a standalone toolkit or as an extension of the ImSAnE package used in the developmental biology community. We demonstrate our approach by analyzing shape change in the embryonic Drosophila midgut and beating zebrafish heart. The method naturally generalizes to in vitro and synthetic systems and provides ready access to the mechanical mechanisms relating genetic patterning to organ shape change.
Collapse
Affiliation(s)
- Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Dillon J Cislo
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Andrés-San Román JA, Gordillo-Vázquez C, Franco-Barranco D, Morato L, Fernández-Espartero CH, Baonza G, Tagua A, Vicente-Munuera P, Palacios AM, Gavilán MP, Martín-Belmonte F, Annese V, Gómez-Gálvez P, Arganda-Carreras I, Escudero LM. CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia. CELL REPORTS METHODS 2023; 3:100597. [PMID: 37751739 PMCID: PMC10626192 DOI: 10.1016/j.crmeth.2023.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.
Collapse
Affiliation(s)
- Jesús A Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Carmen Gordillo-Vázquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Daniel Franco-Barranco
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| | - Laura Morato
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Cecilia H Fernández-Espartero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ramón & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | | | - Ana M Palacios
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - María P Gavilán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), JA/CSIC/Universidad de Sevilla/Universidad Pablo de Olavide and Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ramón & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute, 48940 Leioa, Spain.
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain.
| |
Collapse
|
16
|
Long Y, Vetter R, Iber D. 2D effects enhance precision of gradient-based tissue patterning. iScience 2023; 26:107880. [PMID: 37810247 PMCID: PMC10550716 DOI: 10.1016/j.isci.2023.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Robust embryonic development requires pattern formation with high spatial accuracy. In epithelial tissues that are patterned by morphogen gradients, the emerging patterns achieve levels of precision that have recently been explained by a simple one-dimensional reaction-diffusion model with kinetic noise. Here, we show that patterning precision is even greater if transverse diffusion effects are at play in such tissues. The positional error, a measure for spatial patterning accuracy, decreases in wider tissues but then saturates beyond a width of about ten cells. This demonstrates that the precision of gradient-based patterning in two- or higher-dimensional systems can be even greater than predicted by 1D models, and further attests to the potential of noisy morphogen gradients for high-precision tissue patterning.
Collapse
Affiliation(s)
- Yuchong Long
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Nakajima Y, Apaza Alccayhuaman KA, Botticelli D, Lang NP, De Rossi EF, Xavier SP. Mucosal adhesion phenomenon after maxillary sinus floor elevation: A preclinical study. Clin Oral Implants Res 2023; 34:967-978. [PMID: 37403596 DOI: 10.1111/clr.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
AIM To describe the histological events that occur after maxillary sinus floor elevation when the elevated and undetached sinus mucosa are in close proximity or in contact with each other. MATERIALS AND METHODS From 76 rabbits, 152 elevated maxillary sinuses were analyzed histologically. Sites without adhesions were classified as "No proximity," whereas the adhesion stages were divided into "Proximity," "Fusion," and "Synechia stages." The width of the pseudostratified columnar epithelium and the distance between the two layers of the elevated and undetached sinus mucosae were measured at various standardized positions. RESULTS Thirty-one sites presenting with adhesions were found. Twelve sites were in the proximity stage," presenting cilia of the two epithelial layers that were shortened and interlinked within the mucous context. Hyperactivity of the goblet cells was also observed. In the other cases, the hyperplastic epithelium showed attempts to reach the contralateral mucosa. The 15 "fusion stage" sites presented regions with epithelial cells of the two mucosal layers that penetrated each other. Four sites presented "synechiae stages," represented by bridges of connective tissue connecting the two lamina propria. CONCLUSIONS Close proximity or tight contact between the elevated and undetached mucosa adhering to the bone walls might occur after maxillary sinus floor elevation. This induced hyperplasia of the epithelial cells and adhesion of the two layers until synechiae formation.
Collapse
Affiliation(s)
- Yasushi Nakajima
- Department of Oral Implantology, Osaka Dental University, Osaka, Japan
- ARDEC Academy, Rimini, Italy
| | | | | | | | | | - Samuel Porfirio Xavier
- ARDEC Academy, Rimini, Italy
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Zheng X, Betjes MA, Ender P, Goos YJ, Huelsz-Prince G, Clevers H, van Zon JS, Tans SJ. Organoid cell fate dynamics in space and time. SCIENCE ADVANCES 2023; 9:eadd6480. [PMID: 37595032 PMCID: PMC10438469 DOI: 10.1126/sciadv.add6480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Organoids are a major new tool to study tissue renewal. However, characterizing the underlying differentiation dynamics remains challenging. Here, we developed TypeTracker, which identifies cell fates by AI-enabled cell tracking and propagating end point fates back along the branched lineage trees. Cells that ultimately migrate to the villus commit to their new type early, when still deep inside the crypt, with important consequences: (i) Secretory cells commit before terminal division, with secretory fates emerging symmetrically in sister cells. (ii) Different secretory types descend from distinct stem cell lineages rather than an omnipotent secretory progenitor. (iii) The ratio between secretory and absorptive cells is strongly affected by proliferation after commitment. (iv) Spatial patterning occurs after commitment through type-dependent cell rearrangements. This "commit-then-sort" model contrasts with the conventional conveyor belt picture, where cells differentiate by moving up the crypt-villus axis and hence raises new questions about the underlying commitment and sorting mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | | | - Sander J Tans
- Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- AMOLF, Amsterdam, Netherlands.
| |
Collapse
|
19
|
Adelmann JA, Vetter R, Iber D. The impact of cell size on morphogen gradient precision. Development 2023; 150:dev201702. [PMID: 37249125 PMCID: PMC10281552 DOI: 10.1242/dev.201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Tissue patterning during embryonic development is remarkably precise. Here, we numerically determine the impact of the cell diameter, gradient length and the morphogen source on the variability of morphogen gradients. We show that the positional error increases with the gradient length relative to the size of the morphogen source, and with the square root of the cell diameter and the readout position. We provide theoretical explanations for these relationships, and show that they enable high patterning precision over developmental time for readouts that scale with expanding tissue domains, as observed in the Drosophila wing disc. Our analysis suggests that epithelial tissues generally achieve higher patterning precision with small cross-sectional cell areas. An extensive survey of measured apical cell areas shows that they are indeed small in developing tissues that are patterned by morphogen gradients. Enhanced precision may thus have led to the emergence of pseudostratification in epithelia, a phenomenon for which the evolutionary benefit had so far remained elusive.
Collapse
Affiliation(s)
- Jan A. Adelmann
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
20
|
Adelmann JA, Vetter R, Iber D. Patterning precision under non-linear morphogen decay and molecular noise. eLife 2023; 12:e84757. [PMID: 37102505 PMCID: PMC10139688 DOI: 10.7554/elife.84757] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Morphogen gradients can instruct cells about their position in a patterned tissue. Non-linear morphogen decay has been suggested to increase gradient precision by reducing the sensitivity to variability in the morphogen source. Here, we use cell-based simulations to quantitatively compare the positional error of gradients for linear and non-linear morphogen decay. While we confirm that non-linear decay reduces the positional error close to the source, the reduction is very small for physiological noise levels. Far from the source, the positional error is much larger for non-linear decay in tissues that pose a flux barrier to the morphogen at the boundary. In light of this new data, a physiological role of morphogen decay dynamics in patterning precision appears unlikely.
Collapse
Affiliation(s)
- Jan Andreas Adelmann
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
21
|
Phung TKN, Mitchel JA, O'Sullivan MJ, Park JA. Quantification of basal stem cell elongation and stress fiber accumulation in the pseudostratified airway epithelium during the unjamming transition. Biol Open 2023; 12:bio059727. [PMID: 37014330 PMCID: PMC10151827 DOI: 10.1242/bio.059727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Under homeostatic conditions, epithelial cells remain non-migratory. However, during embryonic development and pathological conditions, they become migratory. The mechanism underlying the transition of the epithelial layer between non-migratory and migratory phases is a fundamental question in biology. Using well-differentiated primary human bronchial epithelial cells that form a pseudostratified epithelium, we have previously identified that a confluent epithelial layer can transition from a non-migratory to migratory phase through an unjamming transition (UJT). We previously defined collective cellular migration and apical cell elongation as hallmarks of UJT. However, other cell-type-specific changes have not been previously studied in the pseudostratified airway epithelium, which consists of multiple cell types. Here, we focused on the quantifying morphological changes in basal stem cells during the UJT. Our data demonstrate that during the UJT, airway basal stem cells elongated and enlarged, and their stress fibers elongated and aligned. These morphological changes observed in basal stem cells correlated to the previously defined hallmarks of the UJT. Moreover, basal cell and stress fiber elongation were observed prior to apical cell elongation. Together, these morphological changes indicate that basal stem cells in pseudostratified airway epithelium are actively remodeling, presumably through accumulation of stress fibers during the UJT.
Collapse
Affiliation(s)
- Thien-Khoi N. Phung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jennifer A. Mitchel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Michael J. O'Sullivan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
22
|
Gómez HF, Doumpas N, Iber D. Time-lapse and cleared imaging of mouse embryonic lung explants to study three-dimensional cell morphology and topology dynamics. STAR Protoc 2023; 4:102187. [PMID: 36952332 PMCID: PMC10064273 DOI: 10.1016/j.xpro.2023.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023] Open
Abstract
Here, we present a protocol for collecting high-spatiotemporal-resolution datasets of undisturbed mouse embryonic epithelial rudiments using light-sheet fluorescence microscopy. We describe steps for rudiment dissection, clearing, and embedding for cleared and live imaging. We then detail procedures for light-sheet imaging followed by image processing and morphometric analysis. We provide protocol variations for imaging both growing and optically cleared lung explants to encourage the quantitative exploration of three-dimensional cell shapes, cell organization, and complex cell-cell dynamics. For complete details on the use and execution of this protocol, please refer to Gómez et al. (2021).1.
Collapse
Affiliation(s)
- Harold Fernando Gómez
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| | - Nikolaos Doumpas
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
23
|
Lou Y, Rupprecht JF, Theis S, Hiraiwa T, Saunders TE. Curvature-Induced Cell Rearrangements in Biological Tissues. PHYSICAL REVIEW LETTERS 2023; 130:108401. [PMID: 36962052 DOI: 10.1103/physrevlett.130.108401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
On a curved surface, epithelial cells can adapt to geometric constraints by tilting and by exchanging their neighbors from apical to basal sides, known as an apico-basal topological transition 1 (AB-T1). The relationship between cell tilt, AB-T1s, and tissue curvature still lacks a unified understanding. Here, we propose a general framework for cell packing in curved environments and explain the formation of AB-T1s from the perspective of strain anisotropy. We find that steep curvature gradients can lead to cell tilting and induce AB-T1s. Alternatively, pressure differences across the epithelial tissue can drive AB-T1s in regions of large curvature anisotropy. The two mechanisms compete to determine the impact of tissue geometry and mechanics on optimized cell rearrangements in three dimensions.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jean-Francois Rupprecht
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - Sophie Theis
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
24
|
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Tagua A, Gordillo-Vázquez C, Andrés-San Román JA, Franco-Barranco D, Palacios AM, Velasco A, Capitán-Agudo C, Grima C, Annese V, Arganda-Carreras I, Robles R, Márquez A, Buceta J, Escudero LM. A quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia. Cell Syst 2022; 13:631-643.e8. [PMID: 35835108 DOI: 10.1016/j.cels.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023]
Abstract
Epithelial cell organization and the mechanical stability of tissues are closely related. In this context, it has been recently shown that packing optimization in bended or folded epithelia is achieved by an energy minimization mechanism that leads to a complex cellular shape: the "scutoid". Here, we focus on the relationship between this shape and the connectivity between cells. We use a combination of computational, experimental, and biophysical approaches to examine how energy drivers affect the three-dimensional (3D) packing of tubular epithelia. We propose an energy-based stochastic model that explains the 3D cellular connectivity. Then, we challenge it by experimentally reducing the cell adhesion. As a result, we observed an increment in the appearance of scutoids that correlated with a decrease in the energy barrier necessary to connect with new cells. We conclude that tubular epithelia satisfy a quantitative biophysical principle that links tissue geometry and energetics with the average cellular connectivity.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Samira Anbari
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA 18018, USA
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Gordillo-Vázquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús A Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Franco-Barranco
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Ana M Palacios
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain
| | - Carlos Capitán-Agudo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain
| | - Clara Grima
- Departamento de Matemática Aplicada I, Universidad de Sevilla, Seville 41012, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Donostia International Physics Center (DIPC), San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rafael Robles
- Departamento de Matemática Aplicada I, Universidad de Sevilla, Seville 41012, Spain
| | - Alberto Márquez
- Departamento de Matemática Aplicada I, Universidad de Sevilla, Seville 41012, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna 46980, Spain.
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
25
|
EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data. Med Image Anal 2022; 81:102523. [DOI: 10.1016/j.media.2022.102523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
|
26
|
Iber D, Vetter R. Relationship between epithelial organization and morphogen interpretation. Curr Opin Genet Dev 2022; 75:101916. [PMID: 35605527 DOI: 10.1016/j.gde.2022.101916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Despite molecular noise and genetic differences between individuals, developmental outcomes are remarkably constant. Decades of research has focused on the underlying mechanisms that ensure this precision and robustness. Recent quantifications of chemical gradients and epithelial cell shapes provide novel insights into the basis of precise development. In this review, we argue that these two aspects may be linked in epithelial morphogenesis.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|