1
|
Gal-Oz ST, Baysoy A, Vijaykumar B, Mostafavi S, Benoist C, Shay T. Microheterogeneity in the Kinetics and Sex-Specific Response to Type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:96-104. [PMID: 38775402 PMCID: PMC11328978 DOI: 10.4049/jimmunol.2300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/16/2024] [Indexed: 06/19/2024]
Abstract
The response to type I IFNs involves the rapid induction of prototypical IFN signature genes (ISGs). It is not known whether the tightly controlled ISG expression observed at the cell population level correctly represents the coherent responses of individual cells or whether it masks some heterogeneity in gene modules and/or responding cells. We performed a time-resolved single-cell analysis of the first 3 h after in vivo IFN stimulation in macrophages and CD4+ T and B lymphocytes from mice. All ISGs were generally induced in concert, with no clear cluster of faster- or slower-responding ISGs. Response kinetics differed between cell types: mostly homogeneous for macrophages, but with far more kinetic diversity among B and T lymphocytes, which included a distinct subset of nonresponsive cells. Velocity analysis confirmed the differences between macrophages in which the response progressed throughout the full 3 h, versus B and T lymphocytes in which it was rapidly curtailed by negative feedback and revealed differences in transcription rates between the lineages. In all cell types, female cells responded faster than their male counterparts. The ISG response thus seems to proceed as a homogeneous gene block, but with kinetics that vary between immune cell types and with sex differences that might underlie differential outcomes of viral infections.
Collapse
Affiliation(s)
- Shani T Gal-Oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alev Baysoy
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Brinda Vijaykumar
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Kaneko T, Ezra S, Abdo R, Voss C, Zhong S, Liu X, Hovey O, Slessarev M, Van Nynatten LR, Ye M, Fraser DD, Li SSC. Kinome and phosphoproteome reprogramming underlies the aberrant immune responses in critically ill COVID-19 patients. Clin Proteomics 2024; 21:13. [PMID: 38389037 PMCID: PMC10882830 DOI: 10.1186/s12014-024-09457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Sally Ezra
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Rober Abdo
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Courtney Voss
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Shanshan Zhong
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Owen Hovey
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Marat Slessarev
- Departments of Medicine and Pediatrics, Western University, London, Canada
| | | | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Douglas D Fraser
- Departments of Medicine and Pediatrics, Western University, London, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON, N6C 2R5, Canada
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
3
|
Schuurman AR, Chouchane O, Butler JM, Peters-Sengers H, Joosten S, Brands X, Haak BW, Otto NA, Uhel F, Klarenbeek A, van Linge CC, van Kampen A, Pras-Raves M, van Weeghel M, van Eijk M, Ferraz MJ, Faber DR, de Vos A, Scicluna BP, Vaz FM, Wiersinga WJ, van der Poll T. The shifting lipidomic landscape of blood monocytes and neutrophils during pneumonia. JCI Insight 2024; 9:e164400. [PMID: 38385743 DOI: 10.1172/jci.insight.164400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastiaan Joosten
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Xanthe Brands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Natasja A Otto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
- Médecine Intensive Réanimation, AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| | - Augustijn Klarenbeek
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine Ca van Linge
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine van Kampen
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mia Pras-Raves
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, University of Leiden, Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, University of Leiden, Netherlands
| | - Daniël R Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Alex de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, and
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Reijnders TDY, Schuurman AR, Verhoeff J, van den Braber M, Douma RA, Faber DR, Paul AGA, Wiersinga WJ, Saris A, Garcia Vallejo JJ, van der Poll T. High-dimensional phenotyping of the peripheral immune response in community-acquired pneumonia. Front Immunol 2023; 14:1260283. [PMID: 38077404 PMCID: PMC10704504 DOI: 10.3389/fimmu.2023.1260283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Background Community-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP. Methods We analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35). Results We identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP. Conclusion CAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19.
Collapse
Affiliation(s)
- Tom D. Y. Reijnders
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Alex R. Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marlous van den Braber
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Renée A. Douma
- Department of Internal Medicine, Flevo Hospital, Almere, Netherlands
| | - Daniël R. Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Alberta G. A. Paul
- Application Department, Cytek Biosciences, Inc., Fremont, CA, United States
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Anno Saris
- Infectious Disease, Leiden Universitair Medisch Centrum, Leiden, Netherlands
| | - Juan J. Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Hoffmann AD, Weinberg SE, Swaminathan S, Chaudhuri S, Almubarak HF, Schipma MJ, Mao C, Wang X, El-Shennawy L, Dashzeveg NK, Wei J, Mehl PJ, Shihadah LJ, Wai CM, Ostiguin C, Jia Y, D'Amico P, Wang NR, Luo Y, Demonbreun AR, Ison MG, Liu H, Fang D. Unique molecular signatures sustained in circulating monocytes and regulatory T cells in convalescent COVID-19 patients. Clin Immunol 2023; 252:109634. [PMID: 37150240 PMCID: PMC10162478 DOI: 10.1016/j.clim.2023.109634] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including convalescent COVID-19 and sero-negative controls. Flow cytometry analyses revealed reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells within the patients who have recovered from severe COVID-19. sc-RNA seq analysis identifies seven heterogeneous clusters of monocytes and nine Treg clusters featuring distinct molecular signatures in association with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocytes and Tregs expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters featuring S100 family genes: one monocyte cluster of S100A8 & A9 coupled with high HLA-I and another cluster of S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, as well as a unique TGF-β high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-lived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (≥ 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.
Collapse
Affiliation(s)
- Andrew D Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sam E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Suchitra Swaminathan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hannah Faisal Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinkun Wang
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nurmaa K Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul J Mehl
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laura J Shihadah
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ching Man Wai
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carolina Ostiguin
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paolo D'Amico
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Neale R Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexis R Demonbreun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael G Ison
- Division of Infectious Disease, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Pan T, Cao G, Tang E, Zhao Y, Penaloza-MacMaster P, Fang Y, Huang J. A single-cell atlas reveals shared and distinct immune responses and metabolic profiles in SARS-CoV-2 and HIV-1 infections. Front Genet 2023; 14:1105673. [PMID: 36992700 PMCID: PMC10040851 DOI: 10.3389/fgene.2023.1105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Within the inflammatory immune response to viral infection, the distribution and cell type-specific profiles of immune cell populations and the immune-mediated viral clearance pathways vary according to the specific virus. Uncovering the immunological similarities and differences between viral infections is critical to understanding disease progression and developing effective vaccines and therapies. Insight into COVID-19 disease progression has been bolstered by the integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from related viruses to compare immune responses. Expanding this concept, we propose that a high-resolution, systematic comparison between immune cells from SARS-CoV-2 infection and an inflammatory infectious disease with a different pathophysiology will provide a more comprehensive picture of the viral clearance pathways that underscore immunological and clinical differences between infections. Methods: Using a novel consensus single-cell annotation method, we integrate previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19, 10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail the phenotypic features and regulatory pathways in the major immune cell clusters. Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activity, and downregulated mitophagy. Discussion: Our results indicate that differential IFN-I signaling regulates the distinct immune responses in the two diseases, revealing insight into fundamental disease biology and potential therapeutic candidates.
Collapse
Affiliation(s)
- Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | | | - Yun Fang
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Seliger B, Jasinski-Bergner S, Massa C, Mueller A, Biehl K, Yang B, Bachmann M, Jonigk D, Eichhorn P, Hartmann A, Wickenhauser C, Bauer M. Induction of pulmonary HLA-G expression by SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:582. [PMID: 36334153 PMCID: PMC9637071 DOI: 10.1007/s00018-022-04592-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell responses. While it is physiologically expressed at the maternal-fetal interface and in immune-privileged organs, HLA-G expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were associated with a high frequency of tissue-infiltrating immune cells, but low numbers of CD8+ cells and an altered expression of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770, Brandenburg, Germany.
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Bachmann
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
- German Center for Lung Research (DZL), Hannover Medical School (BREATH), 30625, Hannover, Germany
| | - Philip Eichhorn
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
8
|
Rondovic G, Djordjevic D, Udovicic I, Stanojevic I, Zeba S, Abazovic T, Vojvodic D, Abazovic D, Khan W, Surbatovic M. From Cytokine Storm to Cytokine Breeze: Did Lessons Learned from Immunopathogenesis Improve Immunomodulatory Treatment of Moderate-to-Severe COVID-19? Biomedicines 2022; 10:2620. [PMID: 36289881 PMCID: PMC9599155 DOI: 10.3390/biomedicines10102620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Complex immune response to infection has been highlighted, more than ever, during the COVID-19 pandemic. This review explores the immunomodulatory treatment of moderate-to-severe forms of this viral sepsis in the context of specific immunopathogenesis. Our objective is to analyze in detail the existing strategies for the use of immunomodulators in COVID-19. Immunomodulating therapy is very challenging; there are still underpowered or, in other ways, insufficient studies with inconclusive or conflicting results regarding a rationale for adding a second immunomodulatory drug to dexamethasone. Bearing in mind that a "cytokine storm" is not present in the majority of COVID-19 patients, it is to be expected that the path to the adequate choice of a second immunomodulatory drug is paved with uncertainty. Anakinra, a recombinant human IL-1 receptor antagonist, is a good choice in this setting. Yet, the latest update of the COVID-19 Treatment Guidelines Panel (31 May 2022) claims that there is insufficient evidence to recommend either for or against the use of anakinra for the treatment of COVID-19. EMA's human medicines committee recommended extending the indication of anakinra to include treatment of COVID-19 in adult patients only recently (17 December 2021). It is obvious that this is still a work in progress, with few ongoing clinical trials. With over 6 million deaths from COVID-19, this is the right time to speed up this process. Our conclusion is that, during the course of COVID-19, the immune response is changing from the early phase to the late phase in individual patients, so immunomodulating therapy should be guided by individual responses at different time points.
Collapse
Affiliation(s)
- Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dzihan Abazovic
- Biocell Hospital, Omladinskih Brigada 86a, 11000 Belgrade, Serbia
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Winkler MS, Osuchowski MF, Payen D, Torres A, Dickel S, Skirecki T. Renaissance of glucocorticoids in critical care in the era of COVID-19: ten urging questions. Crit Care 2022; 26:308. [PMID: 36209188 PMCID: PMC9547674 DOI: 10.1186/s13054-022-04185-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
The 40-year-old experience with glucocorticosteroids (GCs) in the context of severe infections is complex and troublesome. Recently, however, a clear indication for GCs in severe COVID-19 has been established. This may constitute a harbinger of a wider use of GCs in critical illnesses. A fundamental prerequisite of such an action is a better understanding of the heterogeneity of critical illness and GCs operationalization within the precision medicine approach. In this perspective, we formulate ten major questions regarding the use of GCs in critical illness. Answering them will likely facilitate a new era of effective and personalized GCs use in modern critical care.
Collapse
Affiliation(s)
- Martin S. Winkler
- grid.7450.60000 0001 2364 4210Department of Anaesthesiology and Intensive Care Medicine, University Medical Center, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Marcin F. Osuchowski
- grid.420022.60000 0001 0723 5126Ludwig Boltzmann Institute for Traumatology Ludwig Boltzmann Institute for Trauma in Cooperation with the AUVA, Vienna, Austria
| | - Didier Payen
- grid.508487.60000 0004 7885 7602Emeritus Professor of Anesthesiology and Critical Care, University of Paris 7, Cité, Sorbonne, Paris, France
| | - Antoni Torres
- grid.413448.e0000 0000 9314 1427Servei de Pneumologia, Hospital Clinic IDIBAPS, Universitat de Barcelona, Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Steffen Dickel
- grid.7450.60000 0001 2364 4210Department of Anaesthesiology and Intensive Care Medicine, University Medical Center, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Tomasz Skirecki
- grid.414852.e0000 0001 2205 7719Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
10
|
COVID-19 Salivary Protein Profile: Unravelling Molecular Aspects of SARS-CoV-2 Infection. J Clin Med 2022; 11:jcm11195571. [PMID: 36233441 PMCID: PMC9570692 DOI: 10.3390/jcm11195571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is the most impacting global pandemic of all time, with over 600 million infected and 6.5 million deaths worldwide, in addition to an unprecedented economic impact. Despite the many advances in scientific knowledge about the disease, much remains to be clarified about the molecular alterations induced by SARS-CoV-2 infection. In this work, we present a hybrid proteomics and in silico interactomics strategy to establish a COVID-19 salivary protein profile. Data are available via ProteomeXchange with identifier PXD036571. The differential proteome was narrowed down by the Partial Least-Squares Discriminant Analysis and enrichment analysis was performed with FunRich. In parallel, OralInt was used to determine interspecies Protein-Protein Interactions between humans and SARS-CoV-2. Five dysregulated biological processes were identified in the COVID-19 proteome profile: Apoptosis, Energy Pathways, Immune Response, Protein Metabolism and Transport. We identified 10 proteins (KLK 11, IMPA2, ANXA7, PLP2, IGLV2-11, IGHV3-43D, IGKV2-24, TMEM165, VSIG10 and PHB2) that had never been associated with SARS-CoV-2 infection, representing new evidence of the impact of COVID-19. Interactomics analysis showed viral influence on the host immune response, mainly through interaction with the degranulation of neutrophils. The virus alters the host’s energy metabolism and interferes with apoptosis mechanisms.
Collapse
|
11
|
Hoffmann AD, Weinberg SE, Swaminathan S, Chaudhuri S, Mubarak HF, Schipma MJ, Mao C, Wang X, El-Shennawy L, Dashzeveg NK, Wei J, Mehl PJ, Shihadah LJ, Wai CM, Ostiguin C, Jia Y, D'Amico P, Wang NR, Luo Y, Demonbreun AR, Ison MG, Liu H, Fang D. Unique molecular signatures sustained in circulating monocytes and regulatory T cells in Convalescent COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.26.485922. [PMID: 35378753 PMCID: PMC8978941 DOI: 10.1101/2022.03.26.485922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized multi-omic single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including covenlesent COVID-19 and sero-negative controls. The reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells are significantly associated with the patients recovered from severe COVID-19. Consistently, sc-RNA seq analysis reveals seven heterogeneous clusters of monocytes (M0-M6) and ten Treg clusters (T0-T9) featuring distinct molecular signatures and associated with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocyte and Treg expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters with S100 family genes: S100A8 & A9 with high HLA-I whereas S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, and a unique TGF-β high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-ived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (>= 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.
Collapse
|