1
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
2
|
Iyer SH, Simeone KA. Salty Battle to Sudden Death: Young vs. Old, Brain vs. Heart. Epilepsy Curr 2024; 24:437-439. [PMID: 39540134 PMCID: PMC11556351 DOI: 10.1177/15357597241289672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Cardiac-Specific Deletion of Scn8a Mitigates Dravet Syndrome-Associated Sudden Death in Adults King DR, Demirtas M, Tarasov M, Struckman HL, Meng X, Nassal D, Moise N, Miller A, Min D, Soltisz AM, Anne MNK, Alves DPA, Wagnon JL, Weinberg SH, Hund TJ, Veeraraghavan R, Radwański PB. JACC Clin. Electrophysiol . 2024;10(5):829–842. doi:10.1016/j.jacep.2024.01.003. Sudden unexpected death in epilepsy (SUDEP) is a fatal complication experienced by otherwise healthy epilepsy patients. Dravet syndrome (DS) is an inherited epileptic disorder resulting from loss-of-function of the voltage-gated sodium channel, NaV 1.1, and is associated with particularly high SUDEP risk. Evidence is mounting that NaVs abundant in the brain also occur in the heart, suggesting that the very molecular mechanisms underlying epilepsy could also precipitate cardiac arrhythmias and sudden death. Despite marked reduction of NaV 1.1 functional expression in DS, pathogenic late sodium current (INa,L) is paradoxically increased in DS hearts. However, the mechanisms by which DS directly impacts the heart to promote sudden death remain unclear. In this study, the authors sought to provide evidence implicating remodeling of Na+- and Ca2+-handling machinery, including NaV 1.6 and Na+/Ca2+ exchanger (NCX) within transverse (T)-tubules in DS-associated arrhythmias. The authors undertook scanning ion conductance microscopy (SICM)-guided patch clamp, super-resolution microscopy, confocal Ca2+ imaging, and in vivo electrocardiography studies in Scn1a haploinsufficient murine model of DS. DS promotes INa,L in T-tubular nanodomains, but not in other subcellular regions. Consistent with increased NaV activity in these regions, super-resolution microscopy revealed increased NaV 1.6 density near Ca2+ release channels, the ryanodine receptors (RyR2), and NCX in DS relative to WT hearts. The resulting INa,L in these regions promoted aberrant Ca2+ release, leading to ventricular arrhythmias in vivo. Cardiac-specific deletion of NaV 1.6 protects adult DS mice from increased T-tubular late NaV activity and the resulting arrhythmias, as well as sudden death. These data demonstrate that NaV 1.6 undergoes remodeling within T-tubules of adult DS hearts serving as a substrate for Ca2+-mediated cardiac arrhythmias and may be a druggable target for the prevention of SUDEP in adult DS subjects. Molecular and Cellular Context Influences SCN8A Variant Function Vanoye CG, Abramova TV, DeKeyser J-M, Ghabra NF, Oudin MJ, Burge CB, Helbig I, Thompson CH, George AL. JCI Insight 2024; 9(12). doi:10.1172/jci.insight.177530. Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, associate with neurodevelopmental disorders, including developmental and epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by use of a neonatally expressed, alternatively spliced isoform of NaV1.6 (NaV1.6N) and engineered mutations rendering the channel tetrodotoxin (TTX) resistant. We investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in 2 developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput and developed a neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents with small, but significant, differences in voltage dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared with the corresponding WT channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Collapse
Affiliation(s)
- Shruthi H Iyer
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine
| | - Kristina A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine
| |
Collapse
|
3
|
Debanne D, Mylonaki K, Musella ML, Russier M. Voltage-gated ion channels in epilepsies: circuit dysfunctions and treatments. Trends Pharmacol Sci 2024; 45:1018-1032. [PMID: 39406591 DOI: 10.1016/j.tips.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Epileptic encephalopathies are generally considered to be functional disruptions in the balance between neural excitation and inhibition. Excitatory and inhibitory voltage-gated ion channels are key targets of antiepileptic drugs, playing a critical role in regulating neuronal excitation and synaptic transmission. Recent research has highlighted the significance of ion channels in various aspects of epilepsy, including presynaptic neurotransmitter release, intrinsic neuronal excitability, and neural synchrony. Genetic alterations in excitatory and inhibitory ion channels within principal neurons and in inhibitory interneurons have also been identified as key contributors to the development of epilepsies. We review these recent studies and shed light on the bidirectional relationship between epilepsy and neuronal excitability and the latest advancements in pharmacological therapeutics targeting ion channels for epilepsy treatment.
Collapse
|
4
|
Luo S, Zhou X, Wu M, Wang G, Wang L, Feng X, Wu H, Luo R, Lu M, Ju J, Wang W, Yuan L, Luo X, Peng D, Yang L, Zhang Q, Chen M, Liang S, Dong X, Hao G, Zhang Y, Liu Z. Optimizing Nav1.7-Targeted Analgesics: Revealing Off-Target Effects of Spider Venom-Derived Peptide Toxins and Engineering Strategies for Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406656. [PMID: 39248322 PMCID: PMC11558128 DOI: 10.1002/advs.202406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.
Collapse
|
5
|
Kyllo T, Allocco D, Hei LV, Wulff H, Erickson JD. Riluzole attenuates acute neural injury and reactive gliosis, hippocampal-dependent cognitive impairments and spontaneous recurrent generalized seizures in a rat model of temporal lobe epilepsy. Front Pharmacol 2024; 15:1466953. [PMID: 39539628 PMCID: PMC11558044 DOI: 10.3389/fphar.2024.1466953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Riluzole exhibits neuroprotective and therapeutic effects in several neurological disease models associated with excessive synaptic glutamate (Glu) release. We recently showed riluzole prevents acute excitotoxic hippocampal neural injury at 3 days in the kainic acid (KA) model of temporal lobe epilepsy (TLE). Currently, it is unknown if preventing acute neural injury and the neuroinflammatory response is sufficient to suppress epileptogenesis. Methods The KA rat model of TLE was used to determine if riluzole attenuates acute hippocampal neural injury and reactive gliosis. KA was administered to adult male Sprague-Dawley (250 g) rats at 5 mg/kg/hr until status epilepticus (SE) was observed, and riluzole was administered at 10 mg/kg 1 h and 4 h after SE and once per day for the next 2 days. Immunostaining was used to assess neural injury (FJC and NeuN), microglial activation (Iba1 and ED-1/CD68) and astrogliosis (GFAP and vimentin) at day 7 and day 14 after KA-induced SE. Learning and memory tests (Y-maze, Novel object recognition test, Barnes maze), behavioral hyperexcitability tests, and spontaneous generalized recurrent seizure (SRS) activity (24-hour video monitoring) were assessed at 11-15 weeks. Results Here we show that KA-induced hippocampal neural injury precedes the neuroimmune response and that riluzole attenuates acute neural injury, microglial activation, and astrogliosis at 7 and 14 days. We find that reducing acute hippocampal injury and the associated neuroimmune response following KA-induced SE by riluzole attenuates hippocampal-dependent cognitive impairment, behavioral hyperexcitability, and tonic/clonic generalized SRS activity after 3 months. We also show that riluzole attenuates SE-associated body weight loss during the first week after KA-induced SE. Discussion Riluzole acts on multiple targets that are involved to prevent excessive synaptic Glu transmission and excitotoxic neuronal injury. Attenuating KA-induced neural injury and subsequent microglia/astrocyte activation in the hippocampus and extralimbic regions with riluzole reduces TLE-associated cognitive deficits and generalized SRS and suggests that riluzole could be a potential antiepileptogenic drug.
Collapse
Affiliation(s)
- Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Dominic Allocco
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Laine Vande Hei
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, United States
| | - Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| |
Collapse
|
6
|
Guo W, Yang H, Wang Y, Liu T, Pan Y, Chen X, Xu Q, Zhao D, Shan Z, Cai S. Small-molecule natural product sophoricoside reduces peripheral neuropathic pain via directly blocking of NaV1.6 in dorsal root ganglion nociceptive neurons. Neuropsychopharmacology 2024:10.1038/s41386-024-01998-w. [PMID: 39414988 DOI: 10.1038/s41386-024-01998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Peripheral neuropathic pain poses a significant global health challenge. Current drugs for peripheral neuropathic pain often fall short in efficacy or come with severe side effects, emphasizing the critical need for the development of highly effective and well-tolerated alternatives. Sophoricoside (SOP) is a nature product-derived isoflavone that possesses various pharmacological effects on inflammatory and neuropathy diseases. Here, in this study, analgesic effect was investigated by intrathecally administration of SOP/vehicle to spared nerve injury (SNI) or paclitaxel-induced peripheral neuropathic pain (PINP) rodent models, and mechanical allodynia was measured in Von Frey tests. Ipsilateral L4-L6 dorsal root ganglia (DRG) were used for protein expression. In silico molecular docking analysis was applied for assessing compound-target binding affinity. Primary cultured DRG neurons were utilized to investigate SOP's effect on veratridine-triggered nociceptor activities and its selective inhibition of voltage-gated sodium channels subtype 1.6 (NaV1.6). The results showed SOP treatment alleviated mechanical allodynia in SNI and PINP rodent models (paw withdrawal threshold after 1 h of injection: SNI-vehicle: 1.385 ± 0.338 g; SNI-SOP: 9.963 ± 2.029 g, P < 0.001; PINP-vehicle: 5.040 ± 0.985 g; PINP-SOP: 8.287 ± 3.812 g, P = 0.004). SOP presented effects on both inhibiting veratridine-triggered nociceptor activities (oscillatory population: vehicle: 39.9 ± 7.3%; SOP: 30.7 ± 9.8%, P = 0.021) and selectively blocking NaV1.6 in DRG sensory neurons. Molecular docking analysis indicated direct binding between SOP and NaV1.6, leading to its endocytosis in DRG Sensory Neurons. In conclusion, SOP alleviated nociceptive allodynia induced by peripheral nerve injury via selectively blocking of NaV1.6 in DRG nociceptive neurons. we highlight its potential as an analgesic and elucidate its mechanism involving NaV1.6 endocytosis. This research opens avenues for exploring the analgesic effects of SOP and its potential impact on neuropathic pain therapy.
Collapse
Affiliation(s)
- Weijie Guo
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Haoyi Yang
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuwei Wang
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Tao Liu
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Yunping Pan
- Department of Periodontology & Oral Mucosa, Shenzhen Stomatology Hospital, Shenzhen, China
| | - Xiying Chen
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qiuyin Xu
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dizhou Zhao
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Song Cai
- Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Rubio C, Romo-Parra H, López-Landa A, Rubio-Osornio M. Classification of Current Experimental Models of Epilepsy. Brain Sci 2024; 14:1024. [PMID: 39452036 PMCID: PMC11506208 DOI: 10.3390/brainsci14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION This article provides an overview of several experimental models, including in vivo, genetics, chemical, knock-in, knock-out, electrical, in vitro, and optogenetics models, that have been employed to investigate epileptogenesis. The present review introduces a novel categorization of these models, taking into account the fact that the most recent classification that gained widespread acceptance was established by Fisher in 1989. A significant number of such models have become virtually outdated. OBJECTIVE This paper specifically examines the models that have contributed to the investigation of partial seizures, generalized seizures, and status epilepticus. DISCUSSION A description is provided of the primary features associated with the processes that produce and regulate the symptoms of various epileptogenesis models. Numerous experimental epilepsy models in animals have made substantial contributions to the investigation of particular brain regions that are capable of inducing seizures. Experimental models of epilepsy have also enabled the investigation of the therapeutic mechanisms of anti-epileptic medications. Typically, animals are selected for the development and study of experimental animal models of epilepsy based on the specific form of epilepsy being investigated. CONCLUSIONS Currently, it is established that specific animal species can undergo epileptic seizures that resemble those described in humans. Nevertheless, it is crucial to acknowledge that a comprehensive assessment of all forms of human epilepsy has not been feasible. However, these experimental models, both those derived from channelopathies and others, have provided a limited comprehension of the fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Héctor Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01219, Mexico
| | - Alejandro López-Landa
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Mexico City 14269, Mexico
| |
Collapse
|
8
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Johnson JP, Focken T, Karimi Tari P, Dube C, Goodchild SJ, Andrez JC, Bankar G, Burford K, Chang E, Chowdhury S, Christabel J, Dean R, de Boer G, Dehnhardt C, Gong W, Grimwood M, Hussainkhel A, Jia Q, Khakh K, Lee S, Li J, Lin S, Lindgren A, Lofstrand V, Mezeyova J, Nelkenbrecher K, Shuart NG, Sojo L, Sun S, Waldbrook M, Wesolowski S, Wilson M, Xie Z, Zenova A, Zhang W, Scott FL, Cutts AJ, Sherrington RP, Winquist R, Cohen CJ, Empfield JR. The contribution of Na V1.6 to the efficacy of voltage-gated sodium channel inhibitors in wild type and Na V1.6 gain-of-function (GOF) mouse seizure control. Br J Pharmacol 2024; 181:3993-4011. [PMID: 38922847 DOI: 10.1111/bph.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.
Collapse
Affiliation(s)
- James P Johnson
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Thilo Focken
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Parisa Karimi Tari
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Celine Dube
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Samuel J Goodchild
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | | | - Girish Bankar
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Kristen Burford
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Elaine Chang
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Sultan Chowdhury
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Jessica Christabel
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Richard Dean
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Gina de Boer
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Christoph Dehnhardt
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Wei Gong
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Michael Grimwood
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Angela Hussainkhel
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Qi Jia
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Kuldip Khakh
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Stephanie Lee
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Jenny Li
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Sophia Lin
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Andrea Lindgren
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Verner Lofstrand
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Janette Mezeyova
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Karen Nelkenbrecher
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Noah Gregory Shuart
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Luis Sojo
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Shaoyi Sun
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Matthew Waldbrook
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Steven Wesolowski
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Michael Wilson
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Zhiwei Xie
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Alla Zenova
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Wei Zhang
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | | | - Alison J Cutts
- Scientific Affairs, Xenon Pharmaceuticals, Inc, Burnaby, British Columbia, Canada
| | - Robin P Sherrington
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Raymond Winquist
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Charles J Cohen
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - James R Empfield
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| |
Collapse
|
10
|
Nascimento de Lima AP, Zhang H, Chen L, Effraim PR, Gomis-Perez C, Cheng X, Huang J, Waxman SG, Dib-Hajj SD. Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia. Brain 2024; 147:3157-3170. [PMID: 38447953 DOI: 10.1093/brain/awae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.
Collapse
Affiliation(s)
- Ana Paula Nascimento de Lima
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Huiran Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Philip R Effraim
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carolina Gomis-Perez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
11
|
Conecker G, Xia MY, Hecker J, Achkar C, Cukiert C, Devries S, Donner E, Fitzgerald MP, Gardella E, Hammer M, Hegde A, Hu C, Kato M, Luo T, Schreiber JM, Wang Y, Kooistra T, Oudin M, Waldrop K, Youngquist JT, Zhang D, Wirrell E, Perry MS. Global modified Delphi consensus on diagnosis, phenotypes, and treatment of SCN8A-related epilepsy and/or neurodevelopmental disorders. Epilepsia 2024; 65:2322-2338. [PMID: 38802994 DOI: 10.1111/epi.17992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE We aimed to develop consensus for diagnosis/management of SCN8A-related disorders. Utilizing a modified Delphi process, a global cohort of experienced clinicians and caregivers provided input on diagnosis, phenotypes, treatment, and management of SCN8A-related disorders. METHODS A Core Panel (13 clinicians, one researcher, six caregivers), divided into three subgroups (diagnosis/phenotypes, treatment, comorbidities/prognosis), performed a literature review and developed questions for the modified Delphi process. Twenty-eight expert clinicians, one researcher, and 13 caregivers from 16 countries participated in the subsequent three survey rounds. We defined consensus as follows: strong consensus, ≥80% fully agree; moderate consensus, ≥80% fully/partially agree, <10% disagree; and modest consensus, 67%-79% fully/partially agree, <10% disagree. RESULTS Early diagnosis is important for long-term clinical outcomes in SCN8A-related disorders. There are five phenotypes: three with early seizure onset (severe developmental and epileptic encephalopathy [DEE], mild/moderate DEE, self-limited (familial) infantile epilepsy [SeL(F)IE]) and two with later/no seizure onset (neurodevelopmental delay with generalized epilepsy [NDDwGE], NDD without epilepsy [NDDwoE]). Caregivers represented six patients with severe DEE, five mild/moderate DEE, one NDDwGE, and one NDDwoE. Phenotypes vary by age at seizures/developmental delay onset, seizure type, electroencephalographic/magnetic resonance imaging findings, and first-line treatment. Gain of function (GOF) versus loss of function (LOF) is valuable for informing treatment. Sodium channel blockers are optimal first-line treatment for GOF, severe DEE, mild/moderate DEE, and SeL(F)IE; levetiracetam is relatively contraindicated in GOF patients. First-line treatment for NDDwGE is valproate, ethosuximide, or lamotrigine; sodium channel blockers are relatively contraindicated in LOF patients. SIGNIFICANCE This is the first-ever global consensus for the diagnosis and treatment of SCN8A-related disorders. This consensus will reduce knowledge gaps in disease recognition and inform preferred treatment across this heterogeneous disorder. Consensus of this type allows more clinicians to provide evidence-based care and empowers SCN8A families to advocate for their children.
Collapse
Affiliation(s)
- Gabrielle Conecker
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
| | - Maya Y Xia
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- COMBINEDBrain, Brentwood, Tennessee, USA
| | - JayEtta Hecker
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
| | - Christelle Achkar
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cristine Cukiert
- Department of Neurology and Neurosurgery, Cukiert Clinic, São Paulo, Brazil
| | - Seth Devries
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Elizabeth Donner
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark P Fitzgerald
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Michael Hammer
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- Department of Neurology and Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Anaita Hegde
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Chunhui Hu
- Department of Neurology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), National Regional Medical Center, Fuzhou, China
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Epilepsy Medical Center, Showa University Hospital, Shinagawa-ku, Tokyo, Japan
| | - Tian Luo
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - John M Schreiber
- Department of Neurology, Children's National Hospital, Washington, District of Columbia, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Tammy Kooistra
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - Madeleine Oudin
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Kayla Waldrop
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - J Tyler Youngquist
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - Dennis Zhang
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - Elaine Wirrell
- Child and Adolescent Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Neurosciences Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| |
Collapse
|
12
|
Dib-Hajj SD, Waxman SG. Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders. J Clin Invest 2024; 134:e182198. [PMID: 38949022 PMCID: PMC11213459 DOI: 10.1172/jci182198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Multiple approaches have targeted voltage-gated sodium (Nav) channels for analgesia. In this issue of the JCI, Shin et al. identified a peptide aptamer, NaViPA1, carrying a short polybasic motif flanked by serine residues in a structurally disordered region of loop 1 in tetrodotoxin-sensitive (TTX-S) but not tetrodotoxin-resistant (TTX-R) channels. NaViPA1h inhibited TTX-S NaV channels and attenuated excitability of sensory neurons. Delivery of NaViPA1 in vivo via adeno-associated virions restricted its expression to peripheral sensory neurons and induced analgesia in rats. Targeting of short linear motifs in this manner may provide a gene therapy modality, with minimal side effects due to its peripherally-restricted biodistribution, which opens up a therapeutic strategy for hyperexcitability disorders, including pain.
Collapse
Affiliation(s)
- Sulayman D. Dib-Hajj
- Department of Neurology and
- Center for Neuroscience & Regeneration Research, Yale University, New Haven, Connecticut, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G. Waxman
- Department of Neurology and
- Center for Neuroscience & Regeneration Research, Yale University, New Haven, Connecticut, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
13
|
Wong JC, Escayg A. Carvedilol increases seizure resistance in a mouse model of SCN8A-derived epilepsy. Front Pharmacol 2024; 15:1397225. [PMID: 38895634 PMCID: PMC11184058 DOI: 10.3389/fphar.2024.1397225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with mutations that alter the function of the sodium channel SCN8A present with a range of clinical features, including mild to severe seizures, developmental delay, intellectual disability, autism, feeding dysfunction, motor impairment, and hypotonia. In an effort to identify compounds that could be potentially beneficial in SCN8A-associated epilepsy, Atkin et al. conducted an in vitro screen which resulted in the identification of 90 compounds that effectively reduced sodium influx into the cells expressing the human SCN8A R1872Q mutation. The top compounds that emerged from this screen included amitriptyline, carvedilol, and nilvadipine. In the current study, we evaluated the ability of these three compounds to increase resistance to 6 Hz or pentylenetetrazole (PTZ)-induced seizures in wild-type CF1 mice and in a mouse line expressing the human SCN8A R1620L mutation. We also evaluated the effects of fenfluramine administration, which was recently associated with a 60%-90% decrease in seizure frequency in three patients with SCN8A-associated epilepsy. While amitriptyline, carvedilol, and fenfluramine provided robust protection against induced seizures in CF1 mice, only carvedilol was able to significantly increase resistance to 6 Hz- and PTZ-induced seizures in RL/+ mutants. These results provide support for further evaluation of carvedilol as a potential treatment for patients with SCN8A mutations.
Collapse
Affiliation(s)
- Jennifer C. Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
14
|
Chowdhury R, Bhuia MS, Al Hasan MS, Ansari SA, Ansari IA, Gurgel APAD, Coutinho HDM, Islam MT. Anticonvulsant effect of (±) citronellal possibly through the GABAergic and voltage-gated sodium channel receptor interaction pathways: In vivo and in silico studies. Neurochem Int 2024; 175:105704. [PMID: 38395152 DOI: 10.1016/j.neuint.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to investigate the anticonvulsant effects of citronellal (CIT) and possible underlying mechanisms through an isoniazid (INH)-induced seizure (convulsion) via in vivo and in silico studies. For this, convulsions were induced by the oral administration of INH (300 mg/kg) to the mice. The animals were treated orally with different doses of CIT (50, 100, and 200 mg/kg). Vehicle served as a negative control (NC), while diazepam (DZP) (2 mg/kg) and carbamazepine (CAR) (80 mg/kg) were provided (p.o.) as positive controls (PC). A combination therapy of CIT (middle dose) with DZP and CAR was also given to two separate groups of animals to estimate the synergistic or antagonistic effects. Molecular docking and visualization of ligand-receptor interactions are also estimated through different computational tools. The results of the in vivo study showed that CIT dose-dependently significantly (p < 0.05) exhibited a higher onset of seizures while reducing the frequency and duration of seizures in mice compared to the NC group. Besides these, in combination therapy, CIT significantly antagonized the activity of CAR and DZP, leading to a reduction in the onset of seizures and an increase in their frequency and duration compared to treatment with CAR and DZP alone. Additionally, molecular docking revealed that the CIT exhibited a moderate binding affinity (-5.8 kcal/mol) towards the GABAA receptor and a relative binding affinity (-5.3 kcal/mol) towards the voltage-gated sodium channel receptor by forming several bonds. In conclusion, CIT showed moderate anticonvulsant activity in INH-induced convulsion animals, possibly by enhancing GABAA receptor activity and inhibiting the voltage-gated sodium channel receptor.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, 10124, Italy
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, 63105-000, Brazil CE, 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
15
|
Goodchild SJ, Shuart NG, Williams AD, Ye W, Parrish RR, Soriano M, Thouta S, Mezeyova J, Waldbrook M, Dean R, Focken T, Ghovanloo MR, Ruben PC, Scott F, Cohen CJ, Empfield J, Johnson JP. Molecular Pharmacology of Selective Na V1.6 and Dual Na V1.6/Na V1.2 Channel Inhibitors that Suppress Excitatory Neuronal Activity Ex Vivo. ACS Chem Neurosci 2024; 15:1169-1184. [PMID: 38359277 PMCID: PMC10958515 DOI: 10.1021/acschemneuro.3c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Voltage-gated sodium channel (NaV) inhibitors are used to treat neurological disorders of hyperexcitability such as epilepsy. These drugs act by attenuating neuronal action potential firing to reduce excitability in the brain. However, all currently available NaV-targeting antiseizure medications nonselectively inhibit the brain channels NaV1.1, NaV1.2, and NaV1.6, which potentially limits the efficacy and therapeutic safety margins of these drugs. Here, we report on XPC-7724 and XPC-5462, which represent a new class of small molecule NaV-targeting compounds. These compounds specifically target inhibition of the NaV1.6 and NaV1.2 channels, which are abundantly expressed in excitatory pyramidal neurons. They have a > 100-fold molecular selectivity against NaV1.1 channels, which are predominantly expressed in inhibitory neurons. Sparing NaV1.1 preserves the inhibitory activity in the brain. These compounds bind to and stabilize the inactivated state of the channels thereby reducing the activity of excitatory neurons. They have higher potency, with longer residency times and slower off-rates, than the clinically used antiseizure medications carbamazepine and phenytoin. The neuronal selectivity of these compounds is demonstrated in brain slices by inhibition of firing in cortical excitatory pyramidal neurons, without impacting fast spiking inhibitory interneurons. XPC-5462 also suppresses epileptiform activity in an ex vivo brain slice seizure model, whereas XPC-7224 does not, suggesting a possible requirement of Nav1.2 inhibition in 0-Mg2+- or 4-AP-induced brain slice seizure models. The profiles of these compounds will facilitate pharmacological dissection of the physiological roles of NaV1.2 and NaV1.6 in neurons and help define the role of specific channels in disease states. This unique selectivity profile provides a new approach to potentially treat disorders of neuronal hyperexcitability by selectively downregulating excitatory circuits.
Collapse
Affiliation(s)
- Samuel J. Goodchild
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Noah Gregory Shuart
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Aaron D. Williams
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Wenlei Ye
- Neurocrine
Biosciences, San Diego, California 92130, United States
| | - R. Ryley Parrish
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Maegan Soriano
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Samrat Thouta
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Janette Mezeyova
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Richard Dean
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Thilo Focken
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Mohammad-Reza Ghovanloo
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department
of Neurology, Yale University, New Haven, Connecticut 06519, United States
| | - Peter C. Ruben
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Fiona Scott
- Neurocrine
Biosciences, San Diego, California 92130, United States
| | - Charles J. Cohen
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - James Empfield
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - JP Johnson
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| |
Collapse
|
16
|
de Cássia Collaço R, Lammens M, Blevins C, Rodgers K, Gurau A, Yamauchi S, Kim C, Forrester J, Liu E, Ha J, Mei Y, Boehm C, Wohler E, Sobreira N, Rowe PC, Valle D, Brock MV, Bosmans F. Anxiety and dysautonomia symptoms in patients with a Na V1.7 mutation and the potential benefits of low-dose short-acting guanfacine. Clin Auton Res 2024; 34:191-201. [PMID: 38064009 DOI: 10.1007/s10286-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
PURPOSE Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.
Collapse
Affiliation(s)
- Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Maxime Lammens
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Carley Blevins
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Rodgers
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrei Gurau
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Suguru Yamauchi
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Kim
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jeannine Forrester
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Edward Liu
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jinny Ha
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuping Mei
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Corrine Boehm
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Rowe
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Malcolm V Brock
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
17
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
18
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
19
|
Wang G, Xu L, Chen H, Liu Y, Pan P, Hou T. Recent advances in computational studies on voltage‐gated sodium channels: Drug design and mechanism studies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Gaoang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou Jiangsu China
| | - Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Yifei Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
20
|
Ghovanloo MR, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj SD, Waxman SG. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. CELL REPORTS METHODS 2023; 3:100385. [PMID: 36814833 PMCID: PMC9939380 DOI: 10.1016/j.crmeth.2022.100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The patch-clamp technique is the gold-standard methodology for analysis of excitable cells. However, throughput of manual patch-clamp is slow, and high-throughput robotic patch-clamp, while helpful for applications like drug screening, has been primarily used to study channels and receptors expressed in heterologous systems. We introduce an approach for automated high-throughput patch-clamping that enhances analysis of excitable cells at the channel and cellular levels. This involves dissociating and isolating neurons from intact tissues and patch-clamping using a robotic instrument, followed by using an open-source Python script for analysis and filtration. As a proof of concept, we apply this approach to investigate the biophysical properties of voltage-gated sodium (Nav) channels in dorsal root ganglion (DRG) neurons, which are among the most diverse and complex neuronal cells. Our approach enables voltage- and current-clamp recordings in the same cell, allowing unbiased, fast, simultaneous, and head-to-head electrophysiological recordings from a wide range of freshly isolated neurons without requiring culturing on coverslips.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Emre Kiziltug
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
21
|
Wang G, Yu J, Du H, Shen C, Zhang X, Liu Y, Zhang Y, Cao D, Pan P, Hou T. VGSC-DB: an online database of voltage-gated sodium channels. J Cheminform 2022; 14:75. [PMID: 36320030 PMCID: PMC9628066 DOI: 10.1186/s13321-022-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
As an important member of ion channels family, the voltage-gated sodium channel (VGSC/Nav) is associated with a variety of diseases, including epilepsy, migraine, ataxia, etc., and has always been a hot target for drug design and discovery. Many subtype-selective modulators targeting VGSCs have been reported, and some of them have been approved for clinical applications. However, the drug design resources related to VGSCs are insufficient, especially the lack of accurate and extensive compound data toward VGSCs. To fulfill this demand, we develop the Voltage-gated Sodium Channels Database (VGSC-DB). VGSC-DB is the first open-source database for VGSCs, which provides open access to 6055 data records, including 3396 compounds from 173 references toward nine subtypes of Navs (Nav1.1 ~ Nav1.9). A total of 28 items of information is included in each data record, including the chemical structure, biological activity (IC50/EC50), target, binding site, organism, chemical and physical properties, etc. VGSC-DB collects the data from small-molecule compounds, toxins and various derivatives. Users can search the information of compounds by text or structure, and the advanced search function is also supported to realize batch query. VGSC-DB is freely accessible at http://cadd.zju.edu.cn/vgsc/ , and all the data can be downloaded in XLSX/SDF file formats.
Collapse
Affiliation(s)
- Gaoang Wang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jiahui Yu
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongyan Du
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Chao Shen
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Xujun Zhang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yifei Liu
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yangyang Zhang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dongsheng Cao
- grid.216417.70000 0001 0379 7164Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004 Hunan China
| | - Peichen Pan
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Tingjun Hou
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
22
|
Hill SF, Ziobro JM, Jafar‐Nejad P, Rigo F, Meisler MH. Genetic interaction between Scn8a and potassium channel genes Kcna1 and Kcnq2. Epilepsia 2022; 63:e125-e131. [PMID: 35892317 PMCID: PMC9804156 DOI: 10.1111/epi.17374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/07/2023]
Abstract
Voltage-gated sodium and potassium channels regulate the initiation and termination of neuronal action potentials. Gain-of-function mutations of sodium channel Scn8a and loss-of-function mutations of potassium channels Kcna1 and Kcnq2 increase neuronal activity and lead to seizure disorders. We tested the hypothesis that reducing the expression of Scn8a would compensate for loss-of-function mutations of Kcna1 or Kcnq2. Scn8a expression was reduced by the administration of an antisense oligonucleotide (ASO). This treatment lengthened the survival of the Kcn1a and Kcnq2 mutants, and reduced the seizure frequency in the Kcnq2 mutant mice. These observations suggest that reduction of SCN8A may be therapeutic for genetic epilepsies resulting from mutations in these potassium channel genes.
Collapse
Affiliation(s)
- Sophie F. Hill
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMichiganUSA,Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Julie M. Ziobro
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | | | - Frank Rigo
- Ionis PharmaceuticalsCarlsbadCaliforniaUSA
| | - Miriam H. Meisler
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMichiganUSA,Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
23
|
Thouta S, Waldbrook MG, Lin S, Mahadevan A, Mezeyova J, Soriano M, Versi P, Goodchild SJ, Parrish RR. Pharmacological determination of the fractional block of Nav channels required to impair neuronal excitability and ex vivo seizures. Front Cell Neurosci 2022; 16:964691. [PMID: 36246527 PMCID: PMC9557217 DOI: 10.3389/fncel.2022.964691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are essential for the initiation and propagation of action potentials in neurons. Of the nine human channel subtypes, Nav1.1, Nav1.2 and Nav1.6 are prominently expressed in the adult central nervous system (CNS). All three of these sodium channel subtypes are sensitive to block by the neurotoxin tetrodotoxin (TTX), with TTX being almost equipotent on all three subtypes. In the present study we have used TTX to determine the fractional block of Nav channels required to impair action potential firing in pyramidal neurons and reduce network seizure-like activity. Using automated patch-clamp electrophysiology, we first determined the IC50s of TTX on mouse Nav1.1, Nav1.2 and Nav1.6 channels expressed in HEK cells, demonstrating this to be consistent with previously published data on human orthologs. We then compared this data to the potency of block of Nav current measured in pyramidal neurons from neocortical brain slices. Interestingly, we found that it requires nearly 10-fold greater concentration of TTX over the IC50 to induce significant block of action potentials using a current-step protocol. In contrast, concentrations near the IC50 resulted in a significant reduction in AP firing and increase in rheobase using a ramp protocol. Surprisingly, a 20% reduction in action potential generation observed with 3 nM TTX resulted in significant block of seizure-like activity in the 0 Mg2+ model of epilepsy. Additionally, we found that approximately 50% block in pyramidal cell intrinsic excitability is sufficient to completely block all seizure-like events. Furthermore, we also show that the anticonvulsant drug phenytoin blocked seizure-like events in a manner similar to TTX. These data serve as a critical starting point in understanding how fractional block of Nav channels affect intrinsic neuronal excitability and seizure-like activity. It further suggests that seizures can be controlled without significantly compromising intrinsic neuronal activity and determines the required fold over IC50 for novel and clinically relevant Nav channel blockers to produce efficacy and limit side effects.
Collapse
Affiliation(s)
- Samrat Thouta
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Matthew G. Waldbrook
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Sophia Lin
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Arjun Mahadevan
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Janette Mezeyova
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Maegan Soriano
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Pareesa Versi
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - R. Ryley Parrish
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
24
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): I. Drugs in preclinical and early clinical development. Epilepsia 2022; 63:2865-2882. [PMID: 35946083 DOI: 10.1111/epi.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
The Eilat Conferences have provided a forum for discussion of novel treatments of epilepsy among basic and clinical scientists, clinicians, and representatives from regulatory agencies as well as from the pharmaceutical industry for 3 decades. Initially with a focus on pharmacological treatments, the Eilat Conferences now also include sessions dedicated to devices for treatment and monitoring. The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain, on May 22-25, 2022 and was attended by 157 delegates from 26 countries. As in previous Eilat Conferences, the core of EILAT XVI consisted of a sequence of sessions where compounds under development were presented and discussed. This progress report summarizes preclinical and, when available, phase 1 clinical data on five different investigational compounds in preclinical or early clinical development, namely GAO-3-02, GRT-X, NBI-921352 (formerly XEN901), OV329, and XEN496 (a pediatric granular formulation of retigabine/ezogabine). Overall, the data presented in this report illustrate novel strategies for developing antiseizure medications, including an interest in novel molecular targets, and a trend to pursue potential new treatments for rare and previously neglected severe epilepsy syndromes.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|